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Abstract:  

To understand how to assess optimally the risks of inhaled particles on respiratory health, it is 

necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the 

complex transport process through a non-dichotomously bifurcating network of conduit airways. 

It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the 

terminal bronchioles. The wide range of in silico available and the limited realistic model for the 

extrathoracic region of the lung have improved understanding of the ultrafine particle transport 

and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for 

the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed 

to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the 
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development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) 

solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, 

and light activity were considered in this modelling study. A comprehensive pressure-drop along 

five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-

drops is observed, which could aid the health risk assessment system for patients with respiratory 

diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in 

different lobes is different for various physical activities. Moreover, the numerical results showed 

hot spots in various locations among the different lobes for different flow rates, which could be 

helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region.   

Keywords: Respiratory health risk assessment; ultrafine particle deposition; drug delivery; lobar 

deposition; pharmaceutical aerosol.  

Introduction 

Different natural sources (hot volcanic lava, smoke, ocean spray etc.) and also from traffic, home 

cooking, and complicated chemical reactions expose significant amount of ultrafine particles into 

the atmosphere. Moreover, the increased popularity of nanomaterial products and industrialization 

of nanomaterials may increase the emission of ultrafine particles (Lee et al., 2011) into the 

atmosphere. Inhaled nanoparticles deposit into extrathoracic airways result in strong diffusion and 

thermophoretic effects (Asgharian and Price, 2007).  Due to their tiny size (dp<1μm) (Zhang and 

Kleinstreuer, 2004), ultrafine particles can travel up to the alveoli. A  certain percentage of those 

particles may deposit on the surface of the airways and interact with the epithelium, submucosa, 

and vessels of the airways (Gehr and Heyder, 2000; Rothen-Rutishauser et al., 2005). These 

ultrafine particles may be soluble in the epithelium fluid, taken up by epithelium cells, or adhere 



to the interstitium of the pulmonary airways (Gehr and Heyder, 2000). Depending upon the 

residence time and the toxicity, the deposited nanoparticles can result in various pulmonary 

diseases (Frampton, 2001; Gehr and Heyder, 2000). Evidence suggests that these nano-sized 

particles are actually more harmful to the respiratory system compare to the micro-size particles 

(Frampton, 2001; Oberdörster, 2000; Hsiao and Huang, 2013). The deposition of highly toxic 

ultrafine particles with bounded toxic carriers produces inflammation in the pulmonary epithelium, 

which is characterized by inflammatory cell infiltration and activation of vascular endothelial 

adhesion molecules (Laumbach and Kipen, 2012). The damaged epithelium cells ultimately reduce 

mucociliary clearance rate in the respiratory system and lead to various lung diseases (Diat‐

Sanchez, 1997). For this reason, a comprehensive investigation of ultrafine particle TD in a whole 

lung model, considering a possible entire branching pattern, is essential for a comprehensive 

health-risk assessment of potentially toxic particles.  

A wide range of numerical studies has been conducted on ultrafine particles TD in the extrathoracic 

region, including the nasal and oral passages, the pharynx, and larynx (Cheng et al., 1996; Cheng 

et al., 1988; Inthavong et al., 2011; Shi et al., 2006; Swift et al., 1992; Xi and Longest, 2008a, b; 

Zhang and Kleinstreuer, 2011a). A computer simulation of the ultrafine particle diffusion pattern 

in a single bifurcation airway model was conducted by Yu et al. (1996).  They concluded that the 

inlet condition significantly influences the flow and concentration distribution pattern. A 

comprehensive airflow structure and nanoparticles deposition study (Zhang and Kleinstreuer, 

2004) for the first three generations (G0-G3) of the Weibel-based pulmonary model illustrates that 

the regional DE of a certain range (1≤nm≤150) of nanoparticles could be linked to the diffusion 

parameter. Local deposition of large nanoparticles (100 nm) is more uniformly dispersed than 

smaller (1 nm) nanoparticles (Zhang et al., 2005). Longest and Xi (2007) showed the effect of 



direct Lagrangian approach for ultrafine particle deposition in the upper airways by considering 

the finite inertia-and-slip correction factor. Farhadi Ghalati et al. (2012) found four major hot spots 

in a study of total and regional nanoparticle deposition fraction in a realistic CT-based model that 

reached to the trachea. Moskal and Gradoń (2002) investigated spatial deposition of aerosol 

nanoparticles for the first two generations of non-realistic geometry. Zhang et al. (2008) reported 

airflow and nanoparticle deposition in triple bifurcation units (G0-G3, G3-G6, etc.) up to 16 

generations. They concluded that fully developed uniform nanoparticle concentration can be 

considered beyond generation 12 (G12). The study also showed that the geometric effects, 

including the daughter branch rotation, are insignificant for nanoparticles of less than 10nm in 

diameter.  

Salma et al. (2015) studied pulmonary burden and ultrafine particle deposition distribution in 

stochastic pulmonary airways under different physical conditions. They concluded that the 

extrathoracic area of the lung receives the largest surface density deposition rate compared to other 

parts of the lung. Recently, Sohrabi et al. (2017) reported the ultrafine particle transport and 

delivery in a heterogeneous pulmonary network up to 16 generations. The authors considered a 

reconstructed model up to the 4th generation, and the artificially rebuilt pathway for the remaining 

12 generations. In their model only a single truncated bifurcation throughout the 16 generations 

was considered which is far from the realistic branching pattern of the human respiratory system. 

Moreover, the single truncated bifurcation is not enough to predict the ultrafine particle TD in the 

terminal airways. Despite the high computational cost, it is important to consider the entire 

possible branching pattern of the human lung for a better understanding of the ultrafine particle 

TD in the complex bifurcating airways of the human lung. Until now there is no numerical or 



analytical studies, which consider the whole branching pattern is available in the literature on 

ultrafine particle TD’s for an entire lung model.  

This study presents a more realistic, asymmetric, digital 17-generation lung model by considering 

the entire possible branching pattern. The computational mesh in the conduit- reconstructed 

anatomical model was generated from the Ansys 17.2 meshing module and studied a 

comprehensive ultrafine particle TD in the different lobes of a 17-generation branching conduit 

model. The current study also performs generation-by-generation pressure-drop throughout the 

17-generations.       

Numerical Methods 

The current 17-generation anatomical airway model is the best available publication of the lung 

asymmetric model, as proposed by Schmidt et al. (2004). The present nanoparticle TD study is an 

extension of the CFD airflow study of Gemci et al. (2008) and microparticle TD study of Islam et 

al. (2017). An advanced meshing technique is used to generate the computational mesh. The details 

about the anatomical model and meshing can be found in Appendix A.  

The viscous laminar model is used for the present study and the calculated maximum Reynolds 

number is 1620.  The present study considers the anatomical model as derived from the trachea, 

which does not include the extrathoracic region. The flow behaviour at the extrathoracic region 

may be locally turbulent for Qin ≥ 30 lpm flow rates (Zhang and Kleinstreuer, 2004). However, the 

turbulence dispersion effects on nanoparticle deposition are found insignificant in the extrathoraic 

region (Zhang and Kleinstreuer, 2004, Longest and Xi, 2007, Matida et al., 2004) as well as the 

upper airways compared to microparticle deposition case (Zhang and Kleinstreuer, 2011b). A 

Lagrangian particle-tracking scheme is used to investigate the particle TD in the 17-generation 



airways. Both Euler-Euler (E-E) and Euler-Lagrange (E-L) approaches are usually used for 

nanoparticle simulation. An E-E approach is used to solve convection-diffusion equations while 

an E-L approach solves particle trajectory equation. Shi et al., 2008; Shi et al., 2004; Zhang and 

Kleinstreuer, 2004; Zhang and Kleinstreuer, 2011a, all used the E-E method for nanoparticle 

modelling; whereas Aminfar and Motallebzadeh, 2012; Jayaraju et al., 2008; Kalteh et al., 2011; 

Longest and Xi, 2007 used E-L methods for nanoparticle simulation. The E-E approach treats both 

the continuous and the disperse phase as interpenetrating fields and usually neglects the particle 

inertia by considering the particle flow field effects and models particles as a dilute chemical 

species (Longest and Xi, 2007). The E-E method is suitable for  tracking a large number of 

particles, however, inertial effects need to be introduced (De La Mora and Rosner, 1981). The E-

L method tracks the individual particle trajectory by considering inertia, electrostatic effects, 

diffusivity, and near wall terms directly (Longest et al., 2004). Despite better computational 

efficiency and higher resolution of the particle field of the E-E method, the present study uses the 

E-L approach as it also considers dp≥100nm.  An ANSYS 17.2 (FLUENT) solver-based Discrete 

Phase Model (DPM) is used to monitor the DEPM impact on the lung surface. The details about 

the air and particle transport equation discussions are reported in Appendix B.  

Velocity inlet and pressure outlet boundary conditions were used. Zero pressure was set at all the 

outlets of the 17-generation model (Gemci et al., 2008; Koullapis et al., 2016; Luo and Liu, 2008; 

Sohrabi et al., 2017). At the wall surface of the anatomical model, a no-slip boundary condition 

was used (Luo and Liu, 2009). The Euler-Lagrange approach was used to solve the continuum gas 

phase and the disperse particle phase in DPM. SIMPLE, pressure-velocity coupling scheme and 

standard pressure spatial discretization were used. Second-order upwind momentum and energy 

spatial discretizations were used; and a hybrid initialization technique was used to initialise the 



solution. The diesel exhaust particle with a density of 1100 kg/m3 was considered; the particles 

were injected uniformly from the tracheal inlet surface area. All of the particles were injected at 

once. The tracking parameter length scale of 0.00005 was used in the present model (Inthavong et 

al., 2016).     

The Lagrangian approach allows calculation of single particle trajectories using a force balance. 

Since the particulates occupy less than 1 percent of the volumetric fraction compared to the 

continuous phase, it is reasonable to consider the particulate phase as dilute in the human 

pulmonary airways. Based on Crowe et al. (2011) equations, the value for the momentum response 

time and collision time ratio in the study was 0.00041, which reasonably indicated that this is a 

one-way coupling problem.  

A SGI Altix XE Cluster with 212 computational nodes and 960xE5-2680v3@2.5GHz 64bit Intel 

Xeon processor cores (12 core processors) was used for this numerical study. Each simulation of 

the present study took a minimum of 1,550 hours (CPU time) in the high performance computing 

unit. A total of 12 to 24 CPU’s were used for each simulation. 

Model Validation  

The present 17-generation digital pulmonary lung model has been validated comprehensively with 

various published experimental data and CFD results. The present nanoparticle simulation results 

have been compared with the analytical solution in a straight pipe of different length, and the 

experimental data of a double bifurcation model. The present large-scale digital airway model has 

also been validated with various published CFD results.  

Fig. 1 shows the nano-particle DE compared to the analytical results in a straight pipe of a different 

length (Gormley and Kennedy, 1948; Ingham, 1975). The numerical result for a wide range of 



nanoparticle (5≤dp≤100) deposition shows good agreement with the published analytical 

solutions.  

Fig. 2 shows the nano-particle DE compared with experimental results of a double bifurcation 

model (G3-G5) of Kim (2002). The present results were validated for the first and second 

bifurcation of G3-G5 generations. The current model has also been compared with the CFD results 

of Zhang and Kleinstreuer (2004) for a different inlet Reynolds number (Re = 200, 500 and 1000). 

Fig. 2(a) shows comparison of nano-particle deposition for the first bifurcation; and Fig. 2(b) 

shows the deposition comparison for the second bifurcation. The present nano-particle DE shows 

good agreement with the published experimental data for both bifurcations.  

Table. 1: Percentage variation comparison between flow rate in different lobes with available 

published data (Cohen et al., 1990; Horsfield et al., 1971) 

Total Flow Distribution (%) 

Region Cohen et al. (1990) 7.5 lpm  Present 7.5 lpm Horsfield et al. (1971) 

Left lower 24.5 25.14 24.9 

Left upper 14.9 15.34 20.5 

Right lower 32.1 36.17 23.2 

Right middle 8.3 11.01 9.6 

Right upper 20.2 12.48 21.7 

Left lung 39.4 40.48 45.4 

Right lung 60.6 59.66 54.6 

 



Table 1 shows the total flow rate distribution percentage comparison across five different lobes of 

the entire anatomical lung model with the benchmark published data (Cohen et al., 1990; Horsfield 

et al., 1971). Table 1 shows the total flow distribution at 7.5 lpm flow rate. The available published 

measurement for 7.5 lpm flow rate (Cohen et al., 1990) shows excellent agreement for total flow 

distribution at the right and left lung of the present study. At 7.5 lpm flow rate, the percentage of 

the flow distribution at the left lung is 40.48 percent, the right lung is 59.66 percent. Total flow 

distribution comparison with the benchmark published measurement shows good agreement, 

indicating that the present CFD model is sufficiently accurate.  

DE trend comparison at the different lobes of the 17-generation digital airway model with the 

analytical MPPD model is shown in Fig. 3. The analytical model shows higher deposition at the 

left lower lobe and the lower deposition at the right middle lobe, which is also similar to the DE 

of the present CFD model. The DE trend of the remaining lobes of the 17-generation airway model 

also shows good agreement with the DE trend of the MPPD model.  The five-lobe analytical model 

is used for the DE of the MPPD model (Yeh and Schum, 1980). The overall DE trend of the 

analytical MPPD model supports the DE trend of the present CFD model and eventually proves 

that the present model is sufficiently accurate to predict lobar deposition for the ultrafine particle.   

In summary, good agreement between the current results and the published results indicates that 

the current model is sufficiently accurate to predict the nanoparticle TD in the 17-generation 

model.  

Results and Discussions 

The current study accounts for ultrafine particle TD in a 17-generation lung model and performs a 

comprehensive ultrafine particle TD in a lung model under conditions of sleeping, resting, and 



light activity. 7.5 lpm, 9 lpm, and 25 lpm flow rates are considered for these three conditions, 

respectively, based on the ICRP 1994 standard (ICRP and Protection, 1994). The present large-

scale model considered a wide range of ultrafine particles (1≤nm≤1000) to predict smaller 

diameter particle deposition in the deeper airways.  

Pressure-gradient in the bifurcating branches of the human lung is important for the total 

respiratory process; the bifurcating airways cause resistance in order to transport air throughout 

the respiratory process (Chovancová and Elcner, 2014). Understanding the pressure-drop 

throughout the five different lobes of the pulmonary airways is essential for pharmaceutical aerosol 

particle TD in the pulmonary airways. Because of the complex anatomical structure of the 

pulmonary airways, airway resistance in the five different lobes should be different. Five randomly 

selected path lines along five different lobes of the 17-generation anatomical model can be found 

in Appendix C.  

Fig. 4 shows the pressure-drop variation along the five selected path lines for five different lobes 

of the 17-generation model. The pressure-drop has been conducted for three different flow rates. 

Fig. 4 shows the pressure-drop variation for 7.5 lpm, 9 lpm, and 25 lpm flow rates, respectively.  

The overall pressure-drop for different lobes shows a non-linear behaviour throughout the 17-

generation. The pressure-drop at the right lower lobe shows fluctuation at the 4th-5th generation.  

Fig. 5 shows the 1-nm diameter nanoparticle deposition pattern in the 17-generation airway model 

for the different flow rates. The overall deposition pattern shows that the Brownian motion is 

effective for smaller diameter particles and lower flow rates. Note that Brownian motion is the 

random microscopic motion of the gas molecules, and gas molecules collision cause the diffusion. 

The effect of the Brownian motion increases with the decrease in particle diameter and flow rates. 



Under sleep conditions (Fig. 5a, 7.5lpm flow rate), higher numbers of 1-nm diameter particles are 

deposited at the tracheobronchial airways than under resting conditions (Fig. 5b, 9 lpm flow rate). 

During conditions of light activity (25 lpm flow rate), ultrafine particle deposition is noticeably 

lower in the tracheobronchial airways than under sleeping and resting conditions. The deposition 

scenario of the 1-nm diameter particle is found to be inversely proportional to the flow rates. The 

overall deposition pattern for the 1-nm diameter particle also satisfies the general assumption of 

Brownian motion of the ultrafine particle. The overall deposition pattern shows that Brownian 

motion is dominant in the upper airways, depending on the lower flow rates. The DE of the 

ultrafine particle decreases with increased diameter as the diffusive capacity of the particle 

decreases with the increase of the diameter. On the contrary, the DE of the ultrafine particle at 

higher flow rate decreases because of its lower residence time. The deposition scenario of the 1-

nm diameter particle satisfies the general assumption of diffusion and shows higher deposition at 

the upper airways. The DE of the ultrafine particles increases with increased diffusion parameter. 

The diffusion parameter, ∆ is a function of inhalation flow rate, geometrical dimension, and the 

particle properties, which can be defined as; 
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is nano-particle diffusivity, L is the length of the domain, and Q is the flow rate. For 1-

nm particle, the diffusivity value is 0.0534 cm2/s; the diffusion parameter value for 1-nm diameter 

particle is calculated for different flow rates. Table 2 shows the diffusion parameter value for 

conditions of sleep, rest, and light activity in the present study.  

Table. 2:  Diffusion parameter value for different physical conditions 



 7.5 lpm 9 lpm 25 lpm 

Diffusion Parameter 

(∆) 

0.00369 0.003075 0.001107 

 

Table 2 shows that diffusion parameter value decreases with increased flow rate for the 1-nm 

particle, which also supports the higher deposition during sleeping conditions. A comprehensive 

deposition pattern for 10-nm and 50-nm diameter particle is also investigated.  

Fig. 6 shows deposition concentration comparison at the left and right lung for different diameter 

particles. The overall deposition density curve shows the particle deposition concentration in 

different parts of the left and right lung for different physical condition. The deposition density 

curve shows the deposition hot spot for different diameter ultrafine particles in the right and left 

lung. Fig. 6(a) shows the deposition hot spot for the 1-nm diameter particle in the upper portion of 

the tracheobronchial airways. Higher numbers of 1-nm diameter particles are deposited at the 

tracheal parent tube and the right upper lobe. Figs. 6(b, c, d) show that the deposition 

concentrations of 10-nm, 50-nm, and 1000-nm respectively diameter particles in the right lung are 

higher at the middle and lower lobes. For the left lung however, the deposition concentration is 

higher at the left lower lobe. 

Fig. 7 shows a comprehensive lobar deposition density comparison for a wide range of ultrafine 

particles under different physical conditions. Fig. 7(a) shows the deposition density comparison 

for different diameter particles in the right upper lobe. The deposition-density curve clearly shows 

that the middle portion of the right upper lobe is the deposition hot spot for ultrafine particles. The 

deposition density curve shows a significant amount of 1-nm diameter particles deposited in the 



middle of the right upper lobe. Fig. 7(a) also depicts that the deposition concentration in the right 

upper lobe decreases with increases of the nanoparticle diameter and flow rate. Fig. 7(b) compares 

deposition density in the right middle lobe of the 17-generation bifurcating model. The density 

curve shows different hot spots for various diameter particles in the right middle lobe under various 

flow rates. Fig. 7(c) compares the deposition density in the right lower lobe of the 17-generation 

anatomical model. The overall deposition density curve displays different hot spots for various 

flow rates. The density curve shows higher deposition at the upper portion of the right lower lobe 

for 1-nm particles; however, the deposition hot spot is in the middle of the right lower lobe for 10-

nm and 50-nm diameter particles. Fig. 7(d) shows the deposition density comparison in the left 

upper lobes; and the overall deposition shows a similar deposition pattern like the right upper lobe. 

Fig. 7(e) shows the deposition density comparison in the left lower lobe; and the density curve 

clearly shows the unlike deposition behaviour, irrespective of particle diameter and flow rate. The 

comprehensive lobar deposition density comparison for a 17-generation lung model shows 

different deposition hot spots for different lobes. The lobar deposition density comparison, as a 

function of different deposition parameter, could fill the lack of nano-particle deposition data for 

a whole lung model. The unlike deposition concentration data in the different lobes could help to 

determine the relevance of the clinical and biological findings. The size-specific ultrafine particle 

deposition information during different physical conditions will increase the understanding of the 

potential health risk estimations.   

The nano-particle DE comparison in the different lobes of the 17-generation anatomical model at 

different flow rates is shown in Fig. 8. The DE in the different lobes of the right and left lung is 

unlike irrespective of particle diameter and flow rates. Overall DE comparison shows higher 

deposition concentration in the right lower lobes and lower deposition concentration in the left 



upper lobes. Figs. 8(a, b, c) clearly show distinct lobar deposition for different diameter particles 

at different flow rates. Parkash (1977) investigated that the lung cancer carcinomas, mostly formed 

at the right lung rather than the left lung, and more precisely at the lower lobes instead of the upper 

lobes of the pulmonary airways. The diesel exhaust particles and cigarette smoke are carcinogens, 

but not all ultrafine particles are designated as carcinogens. The inhaled toxic and ultrafine 

particles can reach the terminal bronchioles of the deeper airways and depending on their residence 

time these ultrafine particle can develop cancer arising carcinomas. In this regard, more 

comprehensive lobar deposition investigation is necessary to predict and preclude the presence of 

lung cancer. The present 17-generation digital airway model allows comprehensive nanoparticle 

deposition data at the different lobes, which could potentially increase understanding of lobar 

deposition and, more specifically, transport of nanoparticles to the targeted drug delivery system.        

Conclusions 

The present 17-generation digital anatomical model illustrates comprehensive ultrafine particle 

TD throughout the possible entire branching pattern of the human lung. The present numerical 

model considers ultrafine particles ranging from 1≤nm≤1000 diameter for sleep, resting and light 

activities physical condition. A comprehensive validation has been performed and the following 

conclusions are drawn from the present study: 

 The percentage distribution of total flow rate in the right lung is about 1.5 times higher than 

at the left lung for this study. More specifically, the flow rate at the lower lobes of the right 

and the left lung is higher than in other lobes.  



 The pressure drop along the selected path of the five different lobes shows a non-linear 

trend for different flow rates. The pressure drop at the right lower lobe shows more 

fluctuations compared to the other lobe. 

 Particles diameter of dp≤10nm are deposited at the tracheobronchial airways. On contrary, 

particles greater than 10-nm in diameter are deposited at the terminal bronchioles of the 

anatomical model.   

 The ultrafine particle deposition density curve shows the deposition hot spot at the left and 

the right lungs for different deposition parameter. More specifically, different lobar 

deposition hot spots were observed for different diameter particles.  

 At 7.5 lpm flow rate, 1-nm diameter particle DE is higher at the right lower lobe, whereas 

1-nm diameter particle DE is lower at the left upper lobe. For the same flow rate, DE of 

particles greater than 10-nm is higher at the left lower lobe. At 9 lpm flow rate, particles 

with a diameter greater than 50-nm are mostly deposited at the right upper and left lower 

lobes. At 25 lpm flow rate, 50-nm diameter particle DE is higher at the right lower lobe, 

whereas 50-nm diameter particle DE is lower at the left upper lobe.  

The advanced first ever ultrafine particles modelling up to 17-generation of a bifurcating model 

will increase the knowledge of the pharmaceutical aerosol TD in the terminal bronchioles. The 

inclusive pressure-drop analysis throughout the 17-generations along five selected line in five 

different lobes, will advance the understanding of the health risk assessment of patients with 

respiratory diseases. The comprehensive particle deposition density analysis in different lobes 

would increase the lobar deposition knowledge and might be an important step to overcome the 

lack of the ultrafine particle deposition data in the terminal bronchioles. The present findings 

would potentially help the targeted drug delivery system design and increase the efficiency of the 



drug delivery to the specific positions in the pulmonary airways. The current study together with 

more specific case studies, would increase the clinically and biologically relevant knowledge of 

the zone-specific drug delivery into the terminal bronchioles and the alveolar sac region of the 

whole lung model. These models could potentially lead to the improvement of novel therapies for 

the different respiratory diseases. More specially, the comprehensive lobar deposition model could 

be useful in the design of a zone-specific drug delivery device for lung cancer patients. A 

comprehensive ultrafine polydispersed particle TD for a whole lung model will be examined next.  
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Appendix  

A. Geometry and Meshing 

The present 17-generation digital airway model exhibits strong asymmetry and multi-fractal 

properties. The branching pattern and carinal angle throughout the 17-generation anatomical 

model are highly asymmetric. The anatomical graph data of the digital reference model is derived 



from the high-resolution CT imaging of an in vitro arrangement, with specifically adapted image 

processing algorithm to portray and segment the bronchi. The digital airway model contains 1452 

bronchi, up to the 17-generation Horsfield order, including the central and lower tracheobronchial 

airways. The tracheal inlet area of the current model was 162.68 mm2, and the tracheal inlet 

diameter 14.4 mm.  

B. Air Flow Pattern 

Fig. A1 represents the velocity magnitude contours at a randomly selected cross-section area of 

the 17-generation bronchial tree model. Fig. A1(a) and Fig. A1(b) present velocity magnitude 

contours for 7.5 lpm and 25 lpm flow rates, respectively. Overall, velocity magnitude contour 

shows that the flow rate in the right bronchus is greater than that in the left bronchus. The different 

diameters of the right and left bronchus tubes, different lengths, and the highly asymmetric 

structures, influence the flow rate; the right lung reaches maximal velocity in both cases. At 7.5 

lpm flow, maximum velocity is 1.030 m/s, and maximum velocity is 3.139 m/s at 25 lpm flow 

rate. In the right lung, the maximum velocity develops at lower bronchus G2 and the right lower 

lobes. The randomly selected cross-sectional planes are parallel to the tracheal inlet of the 17-

generation model.  

B. Mathematical Formulations 

The following mass and momentum equations respectively were solved to calculate air flow. 
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where Sm is the mass source term. 
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where, p is fluid static pressure, g


  is body force due to gravity, μ is the molecular viscosity, I is 

the unit tensor, and F


is body force due to external force (particle-fluid interaction). A pressure-

velocity coupling scheme, SIMPLE was used to solve the DPM particle movement. A parabolic 

inlet condition for laminar flow (White, 2003) was used  
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where R is the airway inlet radius.                                      

To model the nano-particles, Brownian motion was considered. An appropriate particle motion 

equation (Inthavong et al., 2009) was solved to calculate the individual particles.  
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where DF is the drag force per unit particle mass, and cC is the Cunningham correction factor. The 

specific correction factor values were used for different diameter particle. λ is the mean free path 

of the gas molecules. The Brownian force amplitude is defined as 
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S
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                                                                           (A5) 



where ζ is the unit variance independent Gaussian random number, ∆t is the particle time-step 

integration. The spectral intensity (S0) by a Gaussian white noise random process is defined as 
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T is the fluid absolute temperature, kB is the Boltzmann constant, ρg is the gas density.  

The Saffman’s lift force is used  (Li and Ahmadi, 1992), which is a generalization of the Saffman 

expression (Saffman, 1965).  
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where K=2.594 and  ijd is the deformation tensor. 

C. Results and Discussion 

Fig. A2 shows the five randomly selected path lines along five different lobes of the 17-generation 

anatomical model.  

Limitations of the study 

The human breathing pattern is very complicated depending on the conditions related to different 

physical activities.  Breathing includes a cycle of inhalations and exhalations. Under normal 

conditions, breathing rate is automatically controlled by homeostasis but over breathing or under 

breathing can provoke different medical problems.  Particle transport and deposition predictions 

for a large scale model are complex from different aspects. The authors endeavoured  to make the 

total approach less complicated by considering only inhalation effects in the present study and did 



not consider exhalation effect. In almost all of the published in silico and in vivo studies parabolic 

or uniform inlet velocity condition were assumed in the models. In reality, the inlet velocity profile 

is quite complicated because of flow properties and geometrical asymmetricity. To avoid 

complicated inlet condition, a fully developed parabolic inlet velocity was used in the present large 

scale model. The authors also assumed zero pressure at the 17-geneartion outlet.  In reality, there 

is a small pressure difference at the outlet of the terminal airways for a whole lung model. The 

present model considered first 17 generations of the pulmonary airways. Therefore, open outlet 

condition (zero pressure) is used at the outlet. 
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Figure Captions 

Fig. 1:  DE comparison with analytical results of Gormley and Kennedy (1948) , Ingham (1975) 

in a straight pipe of different length at 1 m/s inlet velocity 

Fig. 2: Nano-particle DE comparison with the experimental data of Kim, 2002 and the CFD 

results of Zhang and Kleinstreuer, 2004, in a double bifurcation model (G3-G5), (a) first 

bifurcation, and (b) second bifurcation.  

Fig. 3: DE trend comparison at the different lobes of the 17-generation model with the analytical 

Multiple-Path Particle Dosimetry (MPPD) model: (a) present CFD model results and (b) analytical 

MPPD model results.  

Fig. 4: Pressure drop variation along five selected path lines for five different lobes with different 

flow rates, (a) 7.5 lpm, (b) 9 lpm, and (c) 25 lpm  

Fig. 5: Respiratory deposition pattern of 1-nm particle up to the 17-generation of the digital 

asymmetric airway model: (a) 7.5 lpm flow rate, (b) 9 lpm flow rate, and (c) 25 lpm flow rate. 

Fig. 6: Particle deposition concentration comparison in the left and right lung under sleeping, 

resting and light activity conditions for (a) 1-nm, (b) 10-nm, (c) 50-nm, and (d) 1000-nm diameter 

particles  

Fig. 7: Deposition density comparison with different lobes as a function of particle diameter and 

flow rates, (a) right upper lobes, (b) right middle lobes, (c) right lower lobes, (d) left upper lobes, 

and (e) left lower lobes 

Fig. 8: DE comparisons for nanoparticles of various diameters at different lobes of the right and 

the left lung, (a) 7.5 lpm flow rate, (b) 9 lpm flow rate, and (c) 25 lpm flow rate  

 

 

 

 

 

 

 

 

 



Figure Captions: Appendix   

Fig. A1: Velocity contour across the 17-generation bifurcation airways for different volumetric 

flow rates, (a) 7.5 lpm, and (b) 25lpm  

Fig. A2: Pressure drop variation for five selected path lines along five different lobes 
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Fig. 8 
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