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Photonic systems such as arrays of coupled waveguides 
are well suited to emulating quantum mechanics with periodic 
lattice potentials, allowing the investigation of many physical 
phenomena in a convenient experimental setting. Usually, 
photons will “hop” only between neighboring lattice sites 
at a rate given by a purely real coupling coefficient, thus 
limiting the rich physics enabled by long-range coupling with 
complex coupling coefficients. Here we suggest and experi-
mentally realize a spectral photonic lattice that can be config-
ured to realize a wide variety of complex-valued coupling 
parameters over arbitrary lattice separations. In this system, 
a weak signal propagates across discrete frequency channels, 
driven by nonlinear interaction from stronger pump lasers. 
Our approach allows the experimental investigation of new 
discrete lattice physics—as an example, we demonstrate 
two novel instances of the discrete Talbot effect. © 2017
Optical Society of America

OCIS codes: (190.4223) Nonlinear wave mixing; (190.4370) Nonlinear 
optics, fibers.

from B to A. Broken TRS is of considerable importance in topo-
logical physics, but is challenging to implement in optics, requir-
ing, for example, a periodic modulation of the lattice [4].
Photonic lattices utilizing dimensions other than space potentially
allow greater freedom to realize these novel features and explore
their effects; for instance, discrete spectral components of optical
waves can couple to each other driven by nonlinear frequency
conversion [5], photon–phonon interactions [6,7], and fast
modulation [8]. Discrete spectral components have also been
widely investigated in the context of parametric amplification,
for instance, for frequency comb generation [9–11]. In contrast,
here we aim to realize conservative dynamics with no overall
amplification.

Here, we suggest and develop experimentally a tight-binding
spectral photonic lattice, where lattice sites are represented by
discrete frequency channels, which are coupled together by non-
linear frequency conversion. In such a system, controllable long-
range and complex coupling are made possible by shaping the
spectrum of the optical pump. Our scheme promises flexibility
to implement different Hamiltonians with non-trivial band struc-
tures, particularly those breaking locality of coupling and TRS,
opening up opportunities to experimentally investigate new
physical effects in discrete lattices. As an example, we demonstrate
a spectral analogue of the discrete Talbot effect, a self-repetitive
imaging effect observed in diffractive systems with periodic input
states [12,13]. We find two ways in which novel instances can be
found that have not been possible in spatial lattices. First,
displaced images can be formed such that they appear to be propa-
gating in frequency with a particular direction, arising from the
breaking of TRS by complex-valued hopping. Second, whereas
previously it was thought that an image would occur only when
the input was periodic every N � 1, 2, 3, 4, or 6 lattice sites [13],
we show that altering the band structure with non-local coupling
can lead to the Talbot effect occurring with other periodicities,
and experimentally demonstrate the N � 5 case.

We consider a co-propagating signal and pump, whose spectra
consist of discrete components separated in angular frequency by
Ω. In a Kerr nonlinear medium, the signal can be up- or down-
shifted by a multiple ofΩ in a coherent conversion process known

Discrete lattice dynamics play an important role in various 
branches of physics, from condensed matter to topological 
photonics [1]. In spatial photonic lattices, such as an array of 
evanescently coupled waveguides, the interactions are usually 
dominated by nearest-neighbor (local) coupling, though the 
use of a 2D geometry can introduce next-nearest-neighbor cou-
pling into a 1D lattice [2,3]. Longer range coupling is relevant in 
some electronic systems, and the addition of controlled non-local 
coupling provides more degrees of freedom to tailor the dispersion 
relation or band structure of the lattice. Spatial photonic lattices 
also usually have real-valued coupling coefficients. Complex-
valued coupling coefficients cause waves propagating through 
the lattice to accumulate a momentum-direction-dependent 
phase that breaks time-reversal symmetry (TRS), i.e., moving 
from lattice site A to B imparts a different phase shift to moving
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as four-wave mixing Bragg scattering (FWM-BS) [14], depicted
in Figs. 1(a) and 1(b). FWM-BS is in principle noiseless and has
attracted attention in quantum optics, for manipulating the
frequency of single photons [15–19], as well as in classical com-
munications and all-optical switching [20]. We assume that the
signal and pump move at the same group velocity and group-
velocity dispersion can be ignored, achieved by placing them
equidistant in frequency to either side of a zero dispersion wave-
length. This results in a broad phase-matched bandwidth for
FWM-BS. Other nonlinear processes, such as parametric ampli-
fication of the signal by the pumps, should be phase mismatched
to avoid introducing gain and noise into the signal.

The signal-envelope dynamics along propagation distance z
can be described by a set of amplitudes an at frequency compo-
nents Ωn, which evolve according to coupled-mode equations
(detailed derivation is provided in Supplement 1):

dan
dz

� i
X�∞

j�1

�cjan�j � c�j an−j�; (1)

where cj � c�−j � 2γ
P

mAm�0�A�
m−j�0� is the jth order coupling

coefficient, γ is the effective nonlinearity, and Am�z� are the com-
plex amplitudes of the envelope of pump spectral components.

The coupling coefficients are in general complex numbers,
with a phase determined by the phases of the pumps; this can
be utilized to break TRS [8]. This can be understood through
the effect of couplings on the band structure of the lattice for
eigenmodes an�z� � expfi�kn� β�k�z�g:

β�k� �
X�∞

j�1

�cjeijk � c�j e−ijk � � 2γ
X

m≠l
Am�0�A�

l �0�ei�m−l�k: (2)

Here, k � Ωt , and varies between −π and π. It is surprising to see
time t playing the role of wavenumber in the band structure, but
this follows from treating the signal frequency as its position in the
lattice, since time is the reciprocal space of frequency. In general,
the pumps have differing phases and β�−k� ≠ β�k�, which breaks
TRS. Note that we are treating steady-state fields in this system,
and the Schrödinger equation is written in terms of propagation z,
hence the time mentioned in this context is essentially
propagation distance.

The experimental setup is shown in Fig. 2(a). To produce
multiple pump and signal frequencies that are mutually phase

stable, a single mode-locked laser with bandwidth ∼25 nm is
filtered into the required frequencies using a spectral pulse
shaper (SPS; Finisar WaveShaper 4000S). The pump frequencies
are amplified and their power is controlled by a variable attenuator.
A second SPS is used to recombine the signal and pumps while
removing spontaneous emission from the amplifier, as well as to
impart phase shifts to the different frequencies as required.
FWM-BS occurs in a 750 m length of highly nonlinear fiber
(HNLF). TheHNLFhas a zero dispersionwavelength at 1551 nm,
so FWM-BS is well phase matched when the signal and pumps
are evenly spaced to either side of this wavelength [21]. Hence, the
pumps were placed around 1540 nm, with a Ω � 2π × 100 GHz
frequency separation (∼0.8 nm) between the channels, and the
input signal was placed at 1562 nm. The phase-matched band-
width for the signal is estimated to be greater than 2π × 2 THz,
limited by the third-order dispersion of the HNLF.

First, we realize spectral discrete diffraction in a synthetic lat-
tice with nearest-neighbor coupling, using two equal-amplitude
pumps at neighboring spectral positions, A1 � A2. The measured
spectra for this initial configuration are presented in Fig. 2(b),
with the vertical axis showing increasing pump power. We note
that increasing the power of all pumps uniformly increases all of
the cj uniformly, and so is equivalent to varying the time of the
evolution, allowing the dynamics to be observed without the need
to change the fiber length. The result shows the expected discrete
diffraction pattern. In Supplement 1 we provide simulation re-
sults alongside experimental measurements showing good agree-
ment with theory [22], and the fidelity between the measured and
ideal spectrum remains >95% over the range of the evolution.
Figure 2(c) shows the calculated band structure for this system,
which has the usual cosine shape.

Then we implement a lattice with non-local coupling by intro-
ducing a third pump frequency, with amplitude A4. We choose a
lower power for the third component, jA4j ≃ 0.15jA1;2j, creating
second- and third-order hopping coefficients c3 ≃ c2 ≃ 0.15c1.
The spectral evolution becomes highly dependent on the phase
of this third pump, despite its lower power, as shown in

Fig. 1. (a) FWM-BS in a χ�3� waveguide. A pair of pumps can up- or
down-shift the signal in frequency. (b) With multiple pumps present
(left), the evolution of the signal (right) is governed by multiple hopping
coefficients across the lattice, depending on the amplitudes of pairs of
pumps. Fig. 2. (a) Experimental setup. MLL, mode-locked laser; SPS, spectral

pulse shaper; EDFA, erbium-doped fiber amplifier; Att., variable attenu-
ator; DL, tunable delay line; HNLF, highly nonlinear fiber; OSA, optical
spectrum analyzer. (b) Measurement result with only two pumps. The
dynamics of the evolution are apparent as the total average pump power
P is varied. (c) Calculated band structure.
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Figs. 3(a)–3(d). For phases of 0 or π relative to the other pumps,
the evolution remains symmetric, but either signal intensity can
be diverted into the propagating lobes to the left and right of the
diagram [Fig. 3(a)], or it can remain more localized in the central
three frequency channels [Fig. 3(c)]. For phases of π∕2 or for
3π∕2 rad [Figs. 3(b) and 3(d)], the evolution becomes asymmet-
ric; this asymmetry is also reflected in the calculated band
structure, and is connected to the breaking of TRS.

Next, we demonstrate a spectral discrete Talbot effect, where a
periodic input pattern is recovered after a certain period of
evolution. Whereas a discrete Talbot effect was previously
demonstrated using optical waveguide arrays [13], it was funda-
mentally limited only to certain periodicities due to local
coupling. We show how to overcome this restriction by engineer-
ing non-local coupling, enabling self-imaging of other spectral
patterns.

A periodic input signal that repeats every N lattice sites con-
tains only a discrete set of k components, km � 2πm∕N , with m
an integer such that −π < km ≤ π. The corresponding eigenval-
ues are labeled βm � β�km�. If the ratios of the separations
between βm are rational numbers, i.e.,

βi − β0
βj − β0

� pi
pj
; (3)

where fpig is a set of coprime integers, then, after some period of
evolution, the separate k components will come back into phase
and produce an image of the input signal. As shown in [13], for
the case of nearest-neighbor hopping, this will occur only if N is
in the set f1; 2; 3; 4; 6g. Initially, we realize a spectral version of
the discrete Talbot effect for N � 2; 3; 4. Here, only two pump
frequencies are used, and their separation has been decreased to
Ω � 2π × 50 GHz (∼0.4 nm), to allow more periods to fit into
the useful signal bandwidth.

The simplest non-trivial case isN � 2 [see Fig. 4(a)]; here, the
state can be described by two k components, k � 0; π. At around
0.1 mW pump power a phase difference of π has accumulated

between these k components, and the input sites are depleted
of signal. At around 0.2 mW, a phase difference of 2π has
accumulated, creating an image, then this pattern repeats. For
N � 3 [see Fig. 4(b)], a higher power of around 0.25 mW is
required to see an image, because the allowed k components
are more closely spaced in β�k� and take longer to accumulate
a 2π phase difference. The imperfections in this image could
be explained by errors in setting the amplitudes and phases of
the input state, or a consequence of dispersion in the nonlinear
fiber. Since pulsed pumps are used, cross-phase modulation from
the individual pumps causes broadening of the signal frequency
channels at higher powers. Similarly, for N � 4, as shown in
Fig. 4(c), an image can be seen at a pump power around
0.4 mW, and there is a clear displaced image at 0.2 mW.

Displaced images of the input occur when the relative phase
shifts between k components are equal to an integer multiple of k.
Here, a displacement of one lattice site corresponds to multipli-
cation by a factor exp�ik� in reciprocal space. For the cases
N � 2, 4, these displaced images can be seen in Fig. 4, occurring
halfway between the real images. However, for N � 3, it is nec-
essary to break TRS to obtain a displaced image. Figure 5(a)
shows the N � 3 case, but with a π∕2 phase shift applied be-
tween the two pump frequencies. This creates an asymmetric
band structure where the k components for N � 3 lie along a
straight line. The components of the state accumulate phase
differences proportional to k, and hence can form an image
displaced by one site at 0.15 mW pump power, then by two sites
at 0.3 mW.

Previously, the discrete Talbot effect has not been demon-
strated withN � 5 orN ≥ 7, because when there is only nearest-
neighbor hopping, these cases cannot satisfy the requirement of
Eq. (3). Here, we show that by inducing non-local hopping,

Fig. 3. Measurement results with the addition of a third pump, A4,
creating second- and third-order hopping jc3j ≃ jc2j ≃ 0.15jc1j. The
phase of the new pump is set to (a) 0, (b) π∕2, (c) π, or (d) 3π∕2.
Insets to the bottom right show calculated band structures. Fig. 4. Experimental demonstration of spectral discrete Talbot effect,

for input signals with periodicity (a) N � 2, (b) N � 3, and (c) N � 4.
Horizontal solid (dashed) lines mark the positions of real (displaced) im-
ages of the input. The band structures to the right of each measurement
are marked with the positions of the non-zero k components in each case
(orange dots).



this restriction can be lifted. We find that for N � 5, the
Talbot effect can be achieved by using three equally spaced
pumps, A1 � A3 � 2A2. This induces nearest-neighbor and
next-nearest-neighbor hopping at equal rates, such that β�k� ∝
�cos�k� � cos�2k��, and

βm � �β0∕4�f−1; −1; 4; −1; −1g; (4)

so an image can be formed. The experimental result is shown in
Fig. 5(b), and an image of the input signal is clearly seen at
0.17 mW of pump power. This approach could be extended
to larger N , with long-range hopping enabling flexible band-
structure engineering such that an image appears.

In future work, it should be possible to apply spectral photonic
lattices to single photons and correlated photons, so as to observe
quantum interference effects and entanglement. Currently
Raman scattering in the nonlinear fiber generates noise, which
limits single photon experiments; this could be reduced by mov-
ing the signal further from the pump in wavelength, by cooling
the fiber [19], or making use of another nonlinear medium with
more favorable properties.

In summary, we have demonstrated discrete spectral lattices
with tunable coupling Hamiltonians enabled by the FWM-BS
process. These can include non-local hopping and complex-
valued coupling coefficients, by controlling the frequency

separations and phases of the pump lasers. Complex-valued
coupling coefficients imply a direction-dependent phase shift that
breaks time-reversal symmetry and this system is in general non-
reciprocal [23]. The ability to tune long-range and complex
coupling coefficients provides considerable freedom to engineer
the band structure, which opens possibilities to investigate new
physics in lattice potentials.

Funding. Australian Research Council (ARC)
(CE110001018, DP160100619, FL120100029).
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Fig. 5. (a) Talbot effect combined with image shift for N � 3. A π∕2
phase shift between the pumps creates an asymmetric propagation in
which regular displaced images appear. (b) Talbot effect for N � 5,
which required first- and second-order couplings realized with three
pump frequencies.
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