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Abstract The main difference between various formalisms
of non-monotonic reasoning is the representation of non-
monotonic rules. In default logic, they are represented by
special expressions called defaults. In default logic, com-
monsense knowledge about the world is represented as a set
of named defaults. The use of defaults is popular because
they reduce the complexity of the representation, and they
are sufficient for knowledge representation in many natu-
rally occurring contexts. This paper offers an incremental
process to acquire defaults from human experts directly and
at the same time it provides added semantics to defaults by
adding priorities to defaults and creating additional relations
between them. The paper uses an existing incremental frame-
work, NRDR, to generate these defaults. This framework is
chosen as it not only enables incremental context driven for-
mulation of defaults, but also allows experts to introduce their
own domain terms. In choosing this framework, the paper
broadens its utility.
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Introduction

The development of knowledge-based information systems
is typically iterative. It spirals towards the final system with
commonly observed development phases of: requirement
definition, analysis, design and implementation [2,28]. The
process often gets bogged down during the design stage
as concrete models are not readily available and modeling
from scratch may be too expensive. This problem is stul-
tified using incremental approaches based on interactions
between an expert and a data stream input [9]. The perfor-
mance of an evolving prototype is improved with iterative
development. This merges the design, implementation and
maintenance phases. In this paper, we expand the scope of
incremental approach to enable the generation of default
theories that proved a powerful representation that enables
non-monotonic reasoning [17,18,20,27]. In default logic,
commonsense knowledge about the world is represented as a
default theory (D, W) where D is a set of named defaults, and
W is a set of axioms of the theory. D and W are expressed as
first order sentences. D provides extension for the theory not
derivable from W. Defaults can be used to reduce the com-
plexity of the knowledge representation. They have proved
popular and sufficient for knowledge representation in many
naturally occurring contexts [18,20].

To construct default theories incrementally, we assume
availability of streams of data as a source of knowledge
to assist in development of knowledge base. This is not an
overly strong assumption and it is commonly made in var-
ious applications e.g. [1,3]. Furthermore, using this stream
incrementally, we aim to develop default theories that corre-
spond to taxonomic structures. As a basis towards this, we
use the knowledge base development framework that gen-
erates Nested Ripple Down Rules knowledge bases [6,21].
This knowledge base is then systematically converted into
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a set of default theories. The choice of this framework is
made, not only to accommodate the incremental processing,
but also to enable experts to introduce their own terms when
they conceptualise their domain knowledge. Indeed, human
expertise is believed to be holistic in nature, in that the mean-
ing of their domain concepts cannot be absolutely taken in
separation from the rest of their domain knowledge. These
explanations constitute the NRDR knowledge base which
is then systematically converted, with the expert introduced
terms, to a collection of inter-related default theories. The
systematic conversion is developed in this paper and is a key
contribution. The rest of the paper is organised as follows:
Sect. “Related work and background” describes related work.
Section “RDR and NRDR incremental processes’ highlights
the technical details of NRDR that will provide the basis
of the incremental construction of default theories. Section
“Systematic conversion of NRDR to default logic” provides
the systematic framework to convert NRDR to default theo-
ries. This consists of both, the static representation and the
dynamic knowledge acquisition process. Section “Discus-
sion and conclusion” concludes the paper.

Related work and background

The appeal of incremental knowledge bases development
is that it simplifies the knowledge engineering (i.e., in the
analysis phase). Moreover, knowledge maintenance is also
a simplified process. This combines an evolving prototyp-
ical performance, with iterative development. This inspires
the incremental construction of default theories in this paper.
It is essentially a form of case-based reasoning where past
classification scenarios are used as basis for generating new
solutions. A particularly popular approach of interest in this
paper is Ripple Down Rules (RDR) [16]. Knowledge main-
tenance in RDR is simplified with an interface that guides a
domain expert in developing the knowledge bases and incre-
mentally refining them as required. Much empirical research
has been done with RDR involving development of medium
to large size knowledge bases. It is generally popular in medi-
cal knowledge-based information systems [13]. It also proved
successful in building many useful applications over the past
two decades, e.g. call management [32], mechanical engi-
neering [7], medical systems [15,22], Chess [5].

RDR theoretical research has been more limited. Ear-
lier such research was focused on automatic construction
of RDR knowledge bases, e.g. [23,29]. Later and more rele-
vant research to our work here, is concerned with analyzing
the knowledge acquisition process itself or formalizing the
resultant knowledge in order to assess its representational
capacity, e.g. [14,24]. Our work extends this second cate-
gory of research to map not only the RDR knowledge base to
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default logic rules, but also the incremental process of gen-
erating RDR to one of generating default logic statements.

The main difference between various formalisms of non-
monotonic reasoning is the representation of non-monotonic
rules. In default logic, they are represented by special expres-
sions called defaults. A default dlooks as follows: d = (« :
B)/y where « is the prerequisite for the default d to be con-
sidered. y is the consequent which is believed if believing the
justification g is consistent. Normal defaults with 8 = y are
popular because they reduce the complexity of the represen-
tation, and they are sufficient for knowledge representation
in many naturally occurring contexts. To develop defaults
incremental, we assume the availability of streams of data as
a source of knowledge to assist in development of knowledge
base. However, this is not an overly strong assumption, vari-
ous applications make such assumptions, e.g. [3]. To control
the complexity of reasoning with defaults, sequencing the
reasoning process by placing priorities on defaults has been
proposed in [12]. In using an RDR-based approach to incre-
mentally construct a set of interacting defaults, we follow a
similar approach. We resort to prioritising the defaults to stop
them from interacting beyond the semantics of an RDR tree.

Another key contribution of this paper is that it provides
incremental construction of defaults to accommodate the
expert’s natural tendencies in introducing intermediate terms.
Left to their own nature, human experts introduce intermedi-
ate concepts when articulating their knowledge. These terms
are context driven and enable experts to express themselves
as they explain (justify) their expertise. Experts articulation
of such terms may depend on previous articulation of other
terms, which may not yet be made explicit or completely
defined. Hence, interactions between intermediate concepts
makes the knowledge base evolution more complex. It can
create inconsistencies. This has been a focus of many mod-
elling tools and much knowledge representation research
[19]. The knowledge representation framework Nested Rip-
ple Down Rules (NRDR) [6,21] allows an expert to give
his/her explanations using his/her own terms and provides
a process to control the inconsistencies as the knowledge
base evolves. The terms are operational while they are still
incompletely defined. The NRDR framework relies on rep-
resenting each term as a separate RDR knowledge base to
allow experts to deal with exceptions, and to refine definitions
of their terms. In this sense, NRDR allows the incremen-
tal construction of multiple hierarchical ontologies. These
ontologies simplify the relationships between the concepts,
but however they remain quite an effective tool for knowledge
reuse in software development. They have been advocated in
information systems development generally [10,25,26] and
complex systems in particular [11,30,33].

In the next section, we detail both of the frameworks, RDR
and NRDR. To construct default theories with expert inter-
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mediate terms, we create a process that mirrors the NRDR
process. Hence, NRDR incremental process is described first.

RDR and NRDR incremental processes

Developing an RDR knowledge base relies on direct inter-
actions with a domain expert. The resultant knowledge base
is a collection of interconnected simple rules organised in a
binary tree structure where every rule can have two branches
to two other rules: A false and a true branch (an exception
branch) (Fig. 1). When a rule applies a true branch is taken,
otherwise a false branch is taken. The root node condition is
always satisfied and, therefore, has only a true-branch. It has
the form “If true then default conclusion”. The classification
begins at the root. If a ’true-branch’ leads to a terminal node 7,
and the condition of # is not fulfilled then the conclusion of the
rule in the parent node of 7 is taken. In other words, if the con-
clusion of an exception rule (‘true-branch’ child rule) is sat-
isfied, it overrides the conclusion of its parent rule. If a *false-
branch’ leads to a terminal node ¢, and the condition of ¢ is not
fulfilled, then the conclusion of the last rule satisfied ‘rippling
down’ to ¢ is returned by the knowledge base. The described
conditional branching is repeated until a leaf node is reached.
The knowledge base is guaranteed to return a conclusion as
at least the default rule is satisfied ‘rippling down’ to .
RDR incremental construction is based on the idea that
when a knowledge-based system makes an incorrect conclu-
sion, a new rule r that is added to correct that conclusion
should only be used in the same context in which the mistake
was made [16]. This context is represented by the sequence
of rules that were evaluated leading to a wrong conclusion
which caused the addition of r. Rules are actually never cor-
rected or changed because corrections are contained in rules
added on to the end. Rules are attached to sequences of rules
describing the context of their application. A new rule is
always added as a leaf node. An added rule r satisfies the
case for which the original sequence failed, and it excludes

RO: If true then W\ — R4: If b and c then
default — 1 — 1 conclusion 4

R5: If d then
conclusion 5

R1: If a then
conclusion 1

R2: If e then
conclusion 2

N\

R3: If f then

R6: If g then
conclusion 3

conclusion 6

Fig. 1 A classification RDR tree. A case to be classified starts at the
root default node and ripple down to aleaf node. The conclusion returned
is the conclusion of the last satisfied rule to the leaf node

all cases covered by its predecessor rule. Corrections entered
by the expert are always guaranteed to be valid, because of the
way conditions of new rules are chosen. RDR modifications
are simple enough for the expert to directly do it.

From RDR to NRDR 1In explaining their knowledge, experts
tend to introduce new terms. The RDR framework how-
ever does not accommodate such intermediate explanations.
When asked to explain such intermediate concepts, experts
may oversee a definition of the concept in some contexts
outside the current situation which they are explaining. They
fail to provide a complete explanation that always covers their
use, instead they provide an operational definition sufficient
for the purpose of explaining the context on hand. The NRDR
framework extends the RDR framework to enable experts to
introduce intermediate terms. Every new term is represented
as anew concept that is defined as a separate simple RDR tree
to discriminate input objects into two sets of mutually exclu-
sive classes: Positive objects belonging to the class indicated
by the expert concept, and negative objects falling outside it.
Expert introduced concepts (or classes) can in turn be used
as higher order attributes (conditions) by the expert to define
other concepts. The elementary level is the level of explana-
tory domain primitives. The entry point in NRDR is typically
the highest level RDR tree.

As the expert developing an NRDR knowledge base
invents new concepts, s/he makes implicit assumptions about
any concepts that s/he introduces, in that s/he has a certain
disposition about what these concepts mean and when they
do actually apply. Such assumptions are extended in terms
of new rules to the RDR trees representing these concepts.
Alternatively, old assumptions are modified by adding excep-
tions to rules in the old representation. The expert expects
his/her assumptions to hold to future unseen cases as much as
they do for the already seen case. This expectation translates
into a predictive capability of the rules that s/he enters. Such
expectation of concepts to hold to unseen cases—simply
because they have features that apply to seen cases—implies
a subtle inductive hypothesis used by the expert. This raises
the following question: while concepts are introduced in a
particular context how are they used outside the context of
their introduction, i.e., how do we project these new predi-
cates (NRDR concepts) beyond their initial context of use.
This is answered in two parts: Firstly the projection itself of
concepts is assumed incomplete and open for modifications
to capture any new contexts. Secondly, an NRDR knowledge
base is holistically maintained, i.e., other concept definitions
are checked and may be modified when a single concept is
being updated.

Similar to the RDR framework, the incremental construc-
tion of an NRDR knowledge base driven by disagreements
with a domain expert. However, the hierarchical structure
of NRDRs makes it harder to keep the entire knowledge
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Fig. 2 A simple example of Nested Ripple Down Rules. In the above,
an update in concept A2 can cause changes in the meaning of rules C1.1/,
C1.2, and Al.1 of the knowledge base

base consistent when a single concept definition needs to
be altered (Fig. 2). During knowledge acquisition, given a
case x that requires an NRDR knowledge base to be modi-
fied, the modification can occur in a number of places. For
example—referring to Fig. 2 say case x satisfies conditions
Al and B1 in rule C1.1 but the expert thinks that case x
is not C1. Hence, the knowledge base needs to be modi-
fied to reflect this. A rule can be added as an exception for
the RDR tree describing C1, or alternatively, the meaning of
attribute A1 can be changed by updating the definition A1,
or A2 inrule Al.1; and so forth. The number of possibilities
depends on the depth of the concept hierarchy in the knowl-
edge base. A more serious maintenance issue is dealing with
inconsistencies due to localised updates in the hierarchical
knowledge base. For instance, if the expert updates the mean-
ing of Al by changing the meaning of attribute A2 in rule
Al.1, s/he may inadvertently cause a change in the meaning
of rule C'1.2 that contains A2. Generally, when a condition X
is defined in terms of lower order RDR, and X is repeatedly
used in different rules, the update of X—by adding an extra
rule or an exception to an existing rule—has an effect every-
where it is used. This may cause inadvertent inconsistencies
with respect to past classifications. In simple RDRs, a cor-
ner stone case is associated with every rule. The rule is the
justification for the classification of this case [16]. In NRDR,
every rule has a set of corner stone cases. This set contains all
cases that a rule classified correctly under verification of an
expert. Their classifications must always hold as the knowl-
edge base evolves. Cases can travel between sets of corner
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stone cases because of interactions within an NRDR knowl-
edge base. Checking for inconsistencies when a concept C
is modified requires access to all cases previously classi-
fied by C. Following every knowledge base update, these
cases are classified again. A case x is inconsistent if the new
classification differs from the old classification. During the
discovery of x, because of the nested structure of the RDR’s
some lower order concept descriptions are found about x. To
repair the inconsistency of the knowledge base with respect
to the case, some of those concepts describing it, may also
need to be updated. This may in turn cause more inconsisten-
cies to occur. Hence, the process of checking inconsistencies
is also recursive. In [9], we presented why the number of
inconsistencies is too small to have a major impact to the
cost of the total knowledge acquisition process.

Systematic conversion of NRDR to default logic

We first discuss the strong relationship between RDR and
default theories. We also characterised default theories that
can be mapped to RDR trees. We then discuss the relation-
ship between default theories and NRDR. We discuss how
the policies presented in the previous section translate to con-
straints on default theories that can be mapped to NRDR. We
will show how default theories, that can be mapped to NRDR,
are less constrained than theories which can be mapped to
RDR. That is, the set of default theories that can be mapped
to NRDR is larger than the set of those that can be mapped
to RDR.

RDR formalism and default logic

A widely used example of a normal default is:
MC(’;L:C—W This is interpreted as “For every x, if x is
a bird and it is consistent to believe that x can fly, then it is
believed that x can fly”. So, if all we know about Tweety is
that it is a bird then we are permitted to believe that it flies.
However, if we learn that Tweety is a penguin, and we know
penguins don’t fly, it is inconsistent to believe that Tweety
flies, and the application of the default is blocked. Ripple
Down Rules do not map straightforwardly to a set of defaults.
Normal defaults have conflicts when their prerequisites are
not mutually exclusive. Their consequents can be contradic-
tory. Exception rules are never mutually exclusive and have
always—by definition—contradictory conclusions (conse-
quents). To overcome this, we attach priorities to defaults
representing Ripple Down Rules trees.

Ripple Down Rule methodology overlaps maintenance
and use of the knowledge base. A Ripple Down Rule knowl-
edge base is useable, and gets used while incomplete. A Rip-
ple Down Rule knowledge base k grows non-monotonically.
That is some of the premises derivable from the knowledge
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base may get overridden by future rules: After an expert
enters a new rule r we denote the knowledge base by k.
The addition of r is one of possible two scenarios:

e risadded as an exception rule. Hence, some conclusions
of its parent are no longer possible.

e r is added as a new rule—i.e. r is attached to the outer
false link. Hence, some conclusions of the default rule
no longer apply.

In both cases, conclusions which are no longer possible,
apply to cases in the domain of r. So, adding a new r retracts
some premises in k. That is premises of k' ¢ premises of k
(i.e. growth of k is non-monotonic).

Every Ripple Down Rule knowledge base has a default
rule, which has “True” as a condition. Being the root node,
the default conclusion of the default rule is taken when the
knowledge base fails to give a conclusion. Therefore, the rea-
soning in an RDR knowledge base shows default reasoning
in two respects:

1. The default rule is taken when all rules on the outer false
link chain fail.

2. When a rule fires, its conclusion is taken only if it has no
exceptions. Otherwise its conclusion is taken by default
if none of its exceptions fire.

The second aspect of the default behaviour in an RDR
knowledge base is equivalent to saying that exception rules
have a higher priority than their parents. When they fire, their
conclusions supersede that of their parents. This is enforced
by the tree-like structure of an RDR knowledge base. When a
case is being classified by an RDR knowledge base, the case
filters down (ripples down) to a leaf node [, if the condition
of [ is satisfied the conclusion of / is taken; otherwise, the
conclusion of the last satisfied rule s on the path to /. So,
the structure of the RDR tree gives / a higher priority than
s. A rule of depth n has a lower priority than a rule of depth
n + 1. When two rules have the same depth, the rule with the
lower rank has the higher priority (i.e. the rule higher up in
the false link chain has a higher priority). Further, the default
rule (i.e., the root node of an RDR tree) has the lowest prior-
ity. Note, priorities of rules are implicit within the structure
of a Ripple Down Rule tree. They are captured during the
knowledge acquisition process.

In what follows, we sketch an algorithm which maps an
RDR knowledge base to a default theory. The mapping pre-
serves the default behaviour of RDR rules.

Mapping RDR to a default theory

In a Ripple Down Rule tree 7', a rule r can be rewritten as
| — u. If r is the lowest priority rule in 7 (i.e. the default

rule), then it can be rewritten as the following default d:

. I[(x) :u(x)
o u(x)

d

where x is a case being classified. Rules in RDR are applied
in context. To convert a rule r at depth n to a default, we
must consider the path from the root node to r. The default
d corresponding to r would then become:

_a:p

B

where « is a conjunct of all the conditions of rules which
fired on the way to r (the true links) and the conjunct of every
condition negation of every rule which did not fire (the false
links). B is the conclusion of r. The priority of this default is
n, where n is the depth of r.

Every rule in the RDR tree is converted into a default
according to the above. The default rule will have the lowest
priority (its depth is 0). The set of axioms with which the
defaults must remain consistent is given by the database of
all past seen cases. In implementations of RDR [15], this was
only the set of corner stone cases. RDR trees as used within
NRDR are maintained consistent with respect to all past seen
cases (see “Discussion and conclusion” in the previous sec-
tion).

For every rule r in an RDR tree, the corresponding default
is constructed by considering the path from the root node to
r. Its priority is given by the depth of the added rule. The
added default is unique because the path to every leaf node
in an RDR tree is unique. Moreover, when the priority of
a number of defaults is the same, these defaults will have
mutually exclusive prerequisites. This is consistent with the
behaviour of an RDR tree, where the conclusion of a single
rule is taken.

We outlined how an RDR tree can be mapped to a set of
prioritised defaults which apply in mutual exclusion. That
is for a given instance, exactly one default applies in the
reasoning process. The mutual exclusion of defaults during
reasoning is guaranteed by both: the way prerequisites of
defaults are derived, and their priorities.

In the next section, we characterise default theories that
can be converted to RDR trees. We also outline how those
default theories are mapped to RDR trees.

d

Mapping a default theory to an RDR tree

In an RDR tree, paths in the tree apply in mutual exclusion.
In the previous section, we mapped every path to a default.
Hence, to apply the corresponding reverse process to a default
theory (D, W), whereby every default corresponds to a path
in the corresponding RDR tree, defaults in D must apply
in separation. Further, because we defined rules in an RDR
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Fig. 3 Conversion steps from a Rules from defauits with priorities:
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theory. Step 2 Subsumption

relations between rules from

these groups are determined to A sultably prioritised

~0000

OO -
ol | O
ol |

form the RDR tree T set of defaults D

tree to have propositional value conclusions, we also restrict
the default theories that can be converted to RDR trees to
have propositional value consequences. This translates to the
following set of constraints which must apply to the default
theory (D, W) for it to be convertible to an RDR tree:

1. Every default must be a normal default (see before for
definition of normal defaults).

2. For every default d = %, B € V where V is the
set of class values (conclusions) which are propositional
values.

3. Every default d € D must have a priority n. Dur-
ing inference, defaults with higher priorities are chosen
before defaults with lower priorities, which are chosen
only if none of the higher priority defaults are applica-
ble.

4. Any two defaults in D with equal priorities must have
mutually exclusive prerequisites. That is, given two
defaults: d| = % € Dand dy = ‘%52 €
D with equal priorities, then we have mutual exclusion
between o and ap. That is, @1 A ap = False.

5. Forany two defaults: d; = “'—lﬂ' andd, = @282 we have:
B> is not required to compute «. That is, if W| — a5 then
WA{B1}| — a2.

6. Exactly one default, dgefaur, has the lowest priority.
dgefault applies only when all other defaults in D do not
apply, and it has an empty prerequisite. That is:

::Bdefault

ddefault =
ﬂdefault

For a given default theory (D, W) which satisfies the
above six constraints, we now outline guidelines to convert

(D, W) to an RDR tree T'. These are:

1. The default d with the lowest priority min is converted
into the following default rule which forms the root node
of T:

If True then Byetaulc
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The equivaient RDR tree T

2. Defaults with priority min + / form a first false link chain

on the first exception level in 7. Order of rules in this
chain is irrelevant because defaults have mutually exclu-
sive prerequisites. Defaults with same priorities >min+ 1
are also converted to rules in 7, and they form separate
false link chains of rules within subsequent exception
levels of T'(see step 1 in Fig. 4.3).

. To get the RDR tree Tequivalent to D,subsumption rela-

tions between rules from defaults of different priorities
are determined (see step 2 in Fig. 3). Rules converted
from defaults with priorities min + n are represented as
exceptions for equivalent rules of defaults with priorities
min + n — 1. The resultant tree T reflects relationships
between defaults with differing priorities (Fig. 3). In
determining these subsumption relationships, the fgllow—
1

ing must be observed: For two defaults d = *;= and

d, = ”‘73%, where priority(d;) < priority(dz): The rule
converted from d; is an exception of the rule converted
from d; if ajsubsumes ap thatis, if w U o2 | — ay.
Because defaults with same priority are guaranteed to
be mutually exclusive (see constraint 4 earlier), o can
only be subsumed by exactly one prerequisite of exactly
one default in a collection of defaults of equal priorities.
However, the subsumption restriction may lead to more
than one exception rule of the rule corresponding to a
default d;. In other words, a rule in 7' can be an excep-
tion for at most one other rule. But a rule can have more
than one exception rule, when this occurs, all generated
exceptions are linked in a false chain in which the order
is irrelevant because of the mutual exclusion constraint
(constraint 4 earlier).

Finally, the incremental knowledge acquisition process with
RDR corresponds to an incremental development of the cor-
responding default theory D. In D, if an expert disagrees
with the returned consequence of the chosen default with
priority n, s/he will need to add to the theory a new default
with a priority larger than n. This corresponds to adding an
exception rule to a corresponding RDR tree.
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This section completes a two-way mapping between RDR
trees and default theories. The significance of this map-
ping is in that, it shows that the RDR framework can
be seen to solve the problem of controlling the interac-
tions and conflicts between normal defaults. This is done
by implicitly assigning priorities to defaults during the
knowledge acquisition process. This implicit priority is
captured through the context of rules in the knowledge
base. The mapping from an RDR tree to a default the-
ory makes these priorities explicit. In characterising con-
straints on default theories that can be mapped to RDR
trees, we highlight the expressiveness limits of RDR trees.
NRDR expressive power is beyond those limits, and the
range of default theories that can be mapped to NRDR is
wider.

Mapping NRDR to default theories

An NRDR knowledge base is a collection of interacting
RDR trees. To convert an NRDR knowledge base K to
a default theory (D, W), every single RDR tree in K is
converted to a default theory according to the mapping
which was presented in Sect. “Systematic Conversion of
NRDR to default logic”. In doing this, every NRDR con-
cept ¢ is mapped to a set of prioritised defaults that have
the same consequence 8 € {c, ~c}. Note that the con-
clusions of all RDR trees within an NRDR knowledge base
are propositional values, therefore any consequence 8 has a
propositional value (see Definition 1 in Sect. 4.1.1 for seman-
tics of rules in an RDR tree). The complete set of resulting
defaults from K can be partitioned into a collection of sub-
sets of defaults, where defaults in a given subset have the
same consequence. The number of different consequences
(or subsets) corresponds to the number of different concepts
inK.

Priorities of defaults, generated during the mapping of
every NRDR concept (see Sect. “Mapping NRDR to default
theories”), ensure mutual exclusion when applying defaults
which have the same consequence. However during infer-
ence, defaults with different consequences can apply simul-
taneously. Given a subset of defaults in D which have the
same consequence, the default with the highest priority in
this subset is applied first. Analysis of what is permitted in
the inference process over D will be expanded in the next
section, where we analyse how the update policies and the
hierarchical structure of an NRDR knowledge base translate
into a number of constraints on the resultant default theory
(D, W). This analysis will also allow a characterisation of
a default theory which can actually be mapped to NRDR.
We also sketch how such a default theory, which follows
those constraints, can be mapped to an NRDR knowledge
base.

Mapping default theories to NRDR

To make our analysis of which default theories can be mapped
to NRDR succinct, we introduce the following definition:

Definition Given a set of defaults D, a stratum of D is a
proper subset of defaults S C D such that any two defaults in
S have the same absolute consequence ||, but different pre-
requisites. Further, given S is a stratum of D where defaults in
S have absolute consequence | 8|, Vd € D with absolute con-
sequence |B|, we have d € S. Where two defaults d; = %{31

and dp = @25 are said to have the same absolute conse-
quence, denoted by |B1]| or | B2],if B1 = B2 or B1 = ~Ps.

A default theory (D, W) mapped from an NRDR K, is a
collection of strata where every stratum corresponds to a con-
cept definition. Every stratum is a prioritised set of defaults
which follow the constraints listed in Sect. 4.4.3. Briefly,
these are:

Every default must be a normal default (see Sect. 4.4.1).
Consequences for all defaults are propositional values.
Every default d € D must have a priority n.

Any two defaults in Dwith equal priorities must have
mutually exclusive pre-requisites.

11. For any two defaults: d; = % and dp = % : B2
is not required to compute «;. That is, if W| — a then
WA{B1}| — 2.

12. Exactly one default, dgefauli, has the lowest priority.

SN

For defaults in D from different strata, constraint 4 does
not apply, that is, defaults with same priority may apply. This
is completely consistent with semantics of NRDR knowledge
base. An NRDR knowledge base can give more than one
conclusion at any one time. Moreover, constraint 5 does not
apply for defaults from different strata of D. In other words,

given two defaults with different consequences d; = “;ff}‘

and dr) = % then: B, can be used to compute «1. How-
ever, a constraint, which corresponds to the prohibition of
recursion and circularity of concepts in an NRDR knowledge
base, applies to dependency between defaults from different
strata. To express this constraint, we introduce the notion of
a dependency graph for a set of defaults:

Definition A dependency graph G of a set of defaults D is
a directed graph, where every default in D corresponds to a

node in G, and if the application of d; = %f' is essential to

apply dr = “gfz , that is only W U {B1}| — a2 then there is
a direct link from the node corresponding to d to the node
corresponding to d; in G.
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Fig. 4 Conversion steps from a
prioritised default theory D to
an NRDR Knowledge Base

K. Step 1 is grouping the
defaults into a set of prioritised
strata of defaults. Step 2 is
converting each of the stratum to
an RDR tree (as shown in

Fig. 3). The result is a collection
of RDR trees forming the
NRDR knowledge base K

A prioritised

set of defaults

The constraint on defaults, which corresponds to prohi-
bition of recursion and circularity of concepts in an NRDR
knowledge base, can then be expressed as follows:

For a default theory (D, W) to be convertible to an NRDR
representation, then the dependency graph G of D must be
acyclic.

In summary, given a default theory (D, W)which follows
conditions 1 to 6 for all its strata, and the above constraint on
defaults from different strata, then (D, W)can be converted
to an NRDR knowledge base. The conversion is as follows:

1. Group defaults into strata.

Disllaie clloll auao
KACST3,061lg (ogll

@ Springer

-

~

An NRDR knowledge base
-

RDR tree 1

A collection of prioritised

srrata  of defaults

stratum 1

2 ?—C)**C)
= 3
| RDRuwee2 |
3%
-
-
RDR tree 3

2. Apply conversion of defaults to RDR trees—outlined in
chapter 4—to each stratum.

The above translation is illustrated in Fig. 4.

Discussion and conclusion

The translation of RDR to a default theory discussed does not
allow using more than one default during inference, which in
contrast is generally possible in a knowledge-based system
implementing a default theory. RDR imposes the maximum
possible restriction on interactions between defaults: No
interactions between defaults are actually possible. While
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this eases maintenance, it decreases the inference power
of the corresponding default theory. In this paper, we dis-
cussed how a default theory can be mapped to an NRDR
knowledge base. We highlighted restrictions on the corre-
sponding defaults. Inference restrictions still applied, but
these were much weaker than those imposed by the RDR
formalism. For example, the total mutual exclusion imposed
on defaults in RDR equivalent default theories no longer
applied. That is, much more powerful default theories can
be mapped from (and to) an NRDR knowledge base. In other
words, NRDR is a more powerful knowledge representation
scheme than RDR. The knowledge acquisition process with
Nested Ripple Down Rules as the underlying representation
has three distinct features: Firstly, it allows the expert to
introduce new domain terms during the knowledge acqui-
sition process. Secondly, these terms are operational while
still incomplete, e.g. they are always open for amendments.
Thirdly, the knowledge base is viewed as an interconnected
whole and multiple points of change are available during
maintenance.
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