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ABSTRACT  

Estimation of parameter values is an essential step in the application of catchment modelling systems. 

This step is time-consuming and requires considerable effort. While a variety of approaches have been 

developed to accelerate the process, the selection of an approach depends on the problem requiring 

catchment modelling, the dominant processes influencing the catchment response to storm events and, 

moreover, the number of parameters that need consideration.  This paper will propose a method to 

reduce significantly the number of parameters for a large catchment when a semi-distributed catchment 

modelling system is applied.  Past studies have reported on the use of a scaling parameter to adjust 

parameter values from their initial values, introduced herein is the use of a scaling parameter together 

with a variation coefficient.  This enables the spatial variation of changes in parameter values across 

the catchment to be considered. A case study was conducted for a 14,000 km2 catchment to assess the 

validity of this approach where the focus of the catchment modelling was the prediction of a design 

flood statistic.  This catchment was divided into 155 subcatchments with 5 sensitive parameters per 

subcatchment.  Hence, a total of 775 parameters needed to be considered.  Using the proposed approach, 

the number of parameters considered during the calibration was reduced to 8 coefficients which was 

reasonable for a calibration and validation process that also enabled an estimate of the parameter 

variability.  

Keywords: catchment modelling system, flood estimation, parameter estimation,  

INTRODUCTION  

Model parameters and their values are an essential component for the operation of a catchment 

modelling system; a catchment modelling system is a system of hydrologic and hydraulic models 

representing the important catchment processes. These parameters may have a physical significance, or 
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they may be empirical.  Nonetheless, the estimation of parameter values is a key prerequisite for 

operation of the catchment modelling system.  Estimation of the parameter values can be conducted by 

direct physical interpretation, measurements at an appropriate scale or fitted during the calibration and 

validation process.  

There have been many studies that have investigated the calibration and validation process in flood 

estimation (Ballesteros et al., 2011, Kundu et al., 2016, Monnier et al., 2016, Rashid et al., 2016, Viviroli 

et al., 2009, Yucel et al., 2015, Zhang et al., 2016) and the importance of the calibration metric on the 

resultant values (Amir et al., 2013, Cameron et al., 1999, Cheng et al., 2014, Cu and Ball, 2016, Liu 

and Sun, 2010). Also estimation of parameter value uncertainty has been conducted as part of the 

estimation of prediction uncertainty (Beven and Freer, 2001, Blasone et al., 2008, Del Giudice et al., 

2013, Dung et al., 2015, Fan et al., 2016, Franz and Hogue, 2011, Halbert et al., 2016, Jin et al., 2010). 

In general, the number of parameters requiring evaluation has provided a constraint on many practical 

applications of the techniques developed in these studies. As outlined later, this study aims to mitigate 

this limitation.   

In the calibration process, the number of parameters that need to be calibrated depends on the model. 

The more complex the catchment modelling system, the more parameters that need consideration as 

reported in, for example, MIKE by DHI (2011), Podger (2004), and US Army Corps of Engineers 

(2010).  The number of parameters to be calibrated has posed a problem for large catchments where the 

parameter values may vary significantly across the catchment and where the adoption of a single value 

based on a catchment average value may be not appropriate. An approach that allows variation of 

parameter values across a large catchment is the division of the catchment into a number of 

elements/grid squares or subcatchments (distributed/semi-distributed system). The resultant catchment 

modeling system enables detailed modelling of catchment storage at local level and improves the runoff 

routing process (Singh & Frevert 2006). However, the number of parameters that need consideration in 

these distributed/semi-distributed systems increases dramatically and poses a problem in estimation of 

acceptable model parameter values. 

The choice of optimisation and sampling algorithms has a role in estimation of parameter values. 

Several optimisation and sampling algorithms have been developed, for example: the Shuffled Complex 

Evolution algorithm (Thyer et al. 1999; Vrugt et al. 2003), the three-phase simulated annealing 

algorithm SA-SX (Thyer et al. 1999), a genetic algorithm (Ebrahim et al. 2016; Fang & Ball 2007), 

Monte Carlo (Martin & Ayesa 2010), Markov Chain Monte Carlo (Blasone et al. 2008; Cheng et al. 

2014; McMillan & Clark 2009; Vrugt et al. 2013), Bayesian technique (Hutton et al. 2014; Muleta et 

al. 2013; Smith et al. 2015).  These search algorithms, in general, require the generation of a large 

number of parameter sets from the feasible parameter space to perform the search for parameter values 

that result in the best simulation of the catchment response. The number of parameters to be evaluated 
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influences the number of parameter sets needed to assess simulation of catchment response. As many 

modelling systems require individual parameter values for each subcatchment (or grid element) the 

result is a huge number of parameter sets and an unacceptable computational burden.  

As initial parameter values can be estimated based on available catchment information, the introduction 

of multiple coefficients (one coefficient per parameter category) for adjustment of parameter values 

from their initial values has been reported in several studies. For example, a multiple coefficient (mean 

coefficient) has been applied to shift parameter values across the catchment by Jin et al. (2010),  Houska 

et al. (2014), and US Army Corps of Engineers (2010). A limitation of these studies was the assumption 

that parameter values across the catchment uniformly decreased/increased as the coefficient value 

changed. Hence, the relationship between parameter values at individual points remained constant. 

Another optimization approach for parameter estimation is a singular value decomposition approach 

(SVD) which allows estimation of combinations of correlated parameters rather than the individual 

parameters based on the initial estimated parameter values. This approach has been reported in a number 

of groundwater simulation studies (see, for example, McCloskey et al., 2011; Tonkin and Doherty, 

2009, Schilling et al., 2014). However, a limitation of the SVD approach is that it deals with linear 

systems. Hence, while the SVD approach has achieved merits in simulating groundwater systems, it has 

not been applied for flood estimation where the system response tends to be non-linear. 

The focal point of this paper is the presentation of an approach aimed at generating parameter values 

for calibration of a semi-distributed non-linear flood model of a catchment. The basis of the approach 

is the use of mean and variation coefficients. The purpose of the mean coefficient is to produce a 

consistent shift in parameter values across the catchment (see Jin et. al., 2010). On the other hand, the 

purpose of the variation coefficient is to introduce a random variation into the parameter values after 

application of the mean shift. The inclusion of the variation coefficient enables parameter values 

upstream and downstream of gauging stations to vary.  

Application of this approach significantly reduces the number of parameters that need consideration in 

a semi-distributed system. In addition, the sensitivity of parameter category is assessed as the variation 

coefficient changes the ranges of parameter values across the catchment during the calibration process. 

A case study for a catchment in Vietnam is presented where a semi-distributed catchment model was 

applied.  The objectives of the catchment modeling in this study were the estimation of design flood 

statistics. Hence, as discussed by Cu and Ball (2016), the focus of the study is the replication of flood 

statistics rather than the replication of individual flow hydrographs.  
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METHODOLOGY  

The catchment modelling system used in this study was the semi-distributed model HEC-HMS.  US 

Army Corps of Engineers (2010) describe this model as a numerically based model with semi-

distributed parameters.  The software consists of several options for selection of a loss model, a rainfall 

model and for runoff generation and channel routing.  Presented in this paper will be an example of the 

application of the SCS curve number as the loss model, a kinematic wave approach for runoff generation 

and the Muskingum-Cunge technique as a routing model to translate flood waves along channel reach 

elements.  US Army Corps of Engineers (2000) report details of the model physics, structure and 

parameterisation.  Using these process models, the catchment modelling system requires values for 10 

parameters for each subcatchment. These parameters are shown in Table 1.  

Table 1: Model parameters and potential ranges 

Source: (US Army Corps of Engineers 2000) 

 Models Parameters Range 

1 Loss models Curve number 20 – 90 

2 

Kinematic wave (Overland flow 

planes) 

Typical length  

3 Representative slope 0.0001 – 1 

4 Overland-flow roughness coefficient 0.35 - 0.8 

5 Area represented by plane  

6 

Musking-Cunge routing 

(The main channel) 

Main channel length  

7 Description of main channel shape Rectangular 

8 Channel slope 0.0001 – 1 

9 Channel width  

10 
Representative Manning’s roughness 

coefficient 
0.035 – 0.08 

The spatial discretisation of HEC-HMS relies on the disaggregation of the catchment into 

subcatchments; each subcatchment will have 10 parameters. As the number of subcatchments increases, 

the number of parameters increases in direct proportion; X subcatchments will produce 10*X 

parameters.  This large number of parameters can cause problems during the calibration process.  

Reductions in the number of parameters can be achieved by sensitivity analyses reported by Al-Hamdan 

(2009); Eslamian (2014); Kousari et al. (2010); US Army Corps of Engineers (2000). While this results 

in a more feasible calibration process for catchments with low numbers of subcatchments, the 

calibration process remains complicated with dimensionality remaining a problem when the number of 

subcatchments is large. 

This paper proposes a method to reduce the number of parameters requiring calibration when the 

number of subcatchments is large.  Two coefficients namely a mean coefficient (K1) and a variation 

coefficient (K2) will be used to change values of parameters in each parameter category across the 

catchment during the calibration process.  The purpose of the mean coefficient is linear shifting of 
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parameter values across the catchment, while the variation coefficient aims to change the variation of 

these parameter values between subcatchments; the capacity to vary the relationship of parameter values 

between subcatchments is particularly useful when there is more than a single gauging station in the 

catchment. Hence, adjustment of parameter values during the calibration process is achieved via 

amendment of these two coefficient values.  

For example, if the catchment was divided into X subcatchments, there will be X curve numbers (CN) 

values across the catchment.  Noting that the initial value of the CN for subcatchment i is CNi,0 and the 

mean values of the initial CN values for all N subcatchments is 𝐶𝑁0
̅̅ ̅̅ ̅, a new CN value at subcatchment 

i for step j (CNi,j) is calculated by the following equation:  

𝐶𝑁𝑖,𝑗 = 𝐾1[ 𝐶𝑁0
̅̅ ̅̅ ̅ + (𝐶𝑁𝑖,0 −  𝐶𝑁0

̅̅ ̅̅ ̅) 𝐾2]    

Using this approach, the change in CN values at each new generation parameter set for all 

subcatchments is obtained by adjustment of K1 and K2.  Therefore, instead of a need to amend X values 

of CN to generate a new parameter set, there is a need for adjustment of only 2 coefficients, namely K1 

and K2.  

The study system consists of (X*10) parameters classified into 10 categories. Through application of 

this approach, only20 coefficients (2 coefficients for 10 categories of parameter) needed to be 

considered in the calibration and validation process and this number was reduced further to 8 

coefficients. This is discussed in the next sections.    

TEST CATCHMENT   

The Ba river, Vietnam was chosen as a test catchment for the study being presented herein. This river 

is located in South Central Vietnam.  The catchment area is 13,900km2 and the total length of the river 

is 347km with its headwaters in Kon Tum province and ultimately flowing into the South Sea at Tuy 

Hoa in Phu Yen Province (VKH KTTV&MT 2010).  

The catchment is located in a tropical monsoonal climatic regime.  The main features of this climate 

regime are extraordinarily rainy wet seasons and pronounced dry seasons.  Foehn wind and tropical 

cyclones strongly affect the area during the wet season.  A distinct cyclone season occurs later in the 

summer period from September to December, sharply peaking in October (VKH KTTV&MT 2010). 

During a thunderstorm, the maximum 24-hour rainfall can be as much as 228mm (19/11/1987) at Pleiku 

station, 628.9mm (03/10/1993) at Tuy Hoa station and 579mm (04/10/1993) at Son Hoa station (HMDC 

2012). Flooding is a common phenomenon in the Ba River catchment.  The largest recorded flood peak 
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at the Cung Son gauging station is 20,700m3/s. Shown in Table 2 are some recorded peak flood flows 

at different locations across the basin. 

Table 2: Flood flow observation period of Ba River 

Source (HMDC 2012) 

TT Gauge River Flv (km2) Observation years Observation period 

1 An Khe Ba 1350 35 1977-2011 

2 Cung Son Ba 12410 35 1977-2011 

3 Song Hinh Hinh 747 13 1980-1992 

Input data 

Rainfall Model and Method of Fragments for Rainfall Disaggregation 

Rainfall data: Daily rainfall data are available at 26 stations across the catchment (see Figure 1 for 

locations of gauges).  The daily rainfall records at almost all of these stations are available for more 

than 30 years covering the period 1980 – 2011.  However, there are only 12 stations recording hourly 

rainfall with periods of record ranging from 14 to 33 years.  Only 4 gauges have hourly rainfall records 

more than 30 years from 1976 to 2011.  

The limitation of temporal rainfall was improved by using the Method of Fragments to generate hourly 

rainfall from daily rainfall data.  Details of this are presented by Ball & Cu (2014). As a result, consistent 

rainfall at hourly time steps at 26 stations has been generated for the period from 1980 to 2011.  Gridded 

rainfall was used in the model; this gridded was generated by implementation of an Inverse Distance 

Weight method.  

Flood flow data 

Flow data are observed at 3 stations within the catchment, namely Cung Son, An Khe and Song Hinh. 

Two gauges, Cung Son and An Khe have discharge data in hourly and 6-hourly intervals for more than 

30 years. This 30-year period is from 1980 to 2011.  At the Song Hinh gauge, flood flows were available 

only for 13 years from the period from 1980 to 1992 with discontinuous measurement (HMDC 2012).   
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Figure 1: Distribution of meteorological stations across Ba basin 

(After KTTV&MT, 2010) 

 



8 

 

Flood flow statistics at two gauges, namely An Khe and Cung Son, were used to calibrate the model.  

These flood flow statistics were estimated using the FLIKE software (Kuczera 2016).  The observed 

annual maximum series (AMS) was extracted and fitted with a Log-Pearson III (LP-III) distribution 

using FLIKE.  Figure 2 and Figure 3 illustrate the flood frequency curve and the associated confidence 

limits at two gauges Cung Son and An Khe respectively.  Most probable values () and standard 

deviation () for each of the LP-III parameters for the An Khe and Cung Son gauges are shown in Table 

3 and Table 4. 

 

Figure 2: Flood frequency curve at Cung Son gauge  

(After Cu & Ball,2016) 

 

Figure 3: Flood frequency curve at An Khe gauge 

 (After Cu & Ball, 2016) 
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Table 3: Parameters (, ) at An Khe gauge 

N Parameters 
Most Probable 

value () 

Standard 

deviation () 

1 Mean (loge flow) 7.0422 0.09018 

2 Loge [Std dev (loge flow)] -0.74320 0.15064 

3 Skew (loge flow) -0.56875 0.45883 

Table 4: Parameters (, ) at Cung Son gauge  

N Parameters 
Most Probable 

value () 

Standard 

deviation 

() 

1 Mean (loge flow) 8.6703 0.11562 

2 Loge [Std dev (loge flow)] -0.7487 0.20568 

3 Skew (loge flow) - 0.70998 0.61295 

 

APPLICATION OF THE METHOD IN CALIBRATION PROCESS 

Catchment modelling system 

As the catchment is large (catchment area of 13,900km2), subdivision of catchment was needed.  The 

subdivision into 155 subcatchments is shown in Figure 4.  During calibration, each subcatchment 

requires values for 10 parameters. The total system, therefore, requires estimation of 1550 parameters. 

The catchment modelling system was run with an hourly time step for the period from 1980 to 2011 to 

generate flow sequences for subsequent flood frequency analysis.  The objective function for assessing 

the calibration of the system was based on the capacity of the generated flow sequence to replicate the 

flood flow statistics at two gauges, An Khe and Cung Son; in other words, the objective function used 

during calibration was reproduction of the LP-III statistics obtained for the AMS extracted from the 

recorded data at the two gauging stations. These  flood flow statistics were the mean, standard deviation 

and skewness of the assumed LP-III distribution and the standard variation of these LP-III parameters 

(see Table 4 and 5). This study used a GLUE approach in selection of accepted parameter sets; 

acceptance was based on a threshold of one standard deviation for each of the LP-III parameters at the 

two gauges (see Tables 5 & 6).   

Preliminary Subcatchment Parameter Estimation 

Initial model parameter values were estimated using various sources such as land use and land cover 

maps, the DEM, and soil maps.  In this case, applying SCS method (US Army Corps of Engineers 

2010), the initial estimate of the curve number map was developed using a combination of soil and land 
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cover maps.  In a similar manner, initial estimates of the roughness coefficients for the sub-catchments 

were obtained using the slope and land cover maps.  Maps of these parameter values were developed in 

a gridded format at a horizontal resolution of 2000m consistent with the rainfall grid data.  Once the 

value of parameters had been estimated for individual grids, the average value for each sub-catchment 

was determined.  An example of the initial values is shown in Figure 4 where the initial  CN values at 

each subcatchment are illustrated.   

  

Figure 4: Catchment delineation, stream network and Subcatchment Curve Number 

Parameter consideration  

While computational requirements have become a less limiting constraint, a large number of parameter 

sets is required to  estimate values of 1550 parameters. 

Sensitivity analyses of HEC-HMS model parameters have been reported by, for example, Al-Hamdan 

(2009),  Eslamian (2014), Kousari et al. (2010), and US Army Corps of Engineers (2000).  From 

analysis of these studies, it has been found that there are 5 parameter categories that are sensitive and 

need to be considered during the calibration process. These categories are the  subcatchment Curve 

Number, subcatchment representative length, subcatchment representative slope, subcatchment 
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overland-flow roughness coefficient and channel reach Manning’s roughness coefficient.  As a result, 

only 775 parameters in the catchment modelling system need to be calibrated. Application of the mean 

and the variation coefficients as proposed herein for the 5 sensitive parameter categories reduces the 

number of parameter significantly from 775 to only 10 coefficients.  

Within the 5 sensitive parameter categories, the Curve Number is the dominant parameter for predicting 

the runoff depth from the given rainfall while the the rainfall and runoff processes across the 

subcatchment surfaces and the channel reaches in the catchment are described by the remaining four 

parameters. Among these parameters, the the catchment lag is characterized by the subcatchment slope, 

the representative subcatchment length and the subcatchment roughness.  

Application of a variation coefficient (K2) for all the parameters influencing runoff processes will result 

in noise or accumulation of adjusted values. Therefore, selection of one variation coefficient for each 

process in rainfall-runoff model was preferred. As a result, the variation coefficient was applied to three 

parameters, namely Curve Number, Catchment Roughness and Channel Roughness. The number of 

parameters, therefore, was reduced to 8 coefficients; these coefficients were K1 for curve number (K1 – 

CN); K2 for curve number (K2 – CN); K1 for subcatchment slope (K1 - Slope); K1 for subcatchment 

length (K1 - length); K1 for subcatchment roughness (K1 – Catchment roughness); K2 for subcatchment 

roughness (K2 – Catchment roughness); K1 for channel Manning (K1 – Channel Manning) and; K2 for 

channel Manning (K2 – Channel Manning).  

Calibration process 

The calibration process was developed using a GLUE approach (Beven and Freer, 2001; Blasone et al., 

2008; Jin et al., 2010) with constraints imposed that the parameter values must lie within acceptable 

ranges.  The approach included the generation of 600 parameter sets (samples) at every iteration with 

each parameter set consisting of 775 parameters. The parameter sets which produced AMS statistics 

within the threshold of the LP-III parameters for the historical data (Table 5 and 6) were selected as 

acceptable parameter sets.  

Table 5: Threshold of parameters (, ) at An Khe 

N Parameters 
Most Probable value 

() 

Threshold 

Min Max 

1 
Mean (loge flow) 7.0422 

6.95202 7.13238 

2 Loge [Std dev (loge 

flow)] 
-0.74320 

-0.8938 -0.5925 

3 
Skew (loge flow) -0.56875 

-1.0275 -0.1099 
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Table 6: Threshold of parameters (, ) at Cung Son gauge  

N Parameters 
Most Probable 

value () 

Threshold 

Min Max 

1 Mean (loge flow) 8.6703 
8.55468 8.78592 

2 
Loge [Std dev (loge 

flow)] 
-0.7487 

-0.95438 -0.5430 

3 Skew (loge flow) - 0.70998 
-1.32293 -0.0970 

The generation of model parameter sets was through adjustment of the K1 and K2 coefficients applied 

for each parameter category. Using CN as an example, the process was:  

Step 1: Estimation of initial parameter values;  

Step 2: Calculate mean of initial CN values of 155 subcatchments ( 𝐶𝑁0
̅̅ ̅̅ ̅); 

Step 3: Randomly generate values of coefficients K1_CN and K2 _CN within acceptable range following 

uniform distribution; and  

Step 4: Calculate the new values of CN at subcatchment i for sample j (𝐶𝑁𝑖,𝑗) by application of the 

following equation: 

𝐶𝑁𝑖,𝑗 = 𝐾1_CN[ 𝐶𝑁0
̅̅ ̅̅ ̅ + (𝐶𝑁𝑖,0 −  𝐶𝑁0

̅̅ ̅̅ ̅) 𝐾2_CN] 

where 𝐶𝑁𝑖,0  is the initial value of CN at subcatchment i. 

Using this approach, the change in CN values for 155 subcatchments will be conducted by adjustment 

of K1 _CN and K2_CN.  Hence, instead of amending 155 CN values to generate a new parameter set, 

adjustment of only 2 coefficients K1_CN and K2_CN is needed.  

The same steps were applied for the other parameter categories. The adjustment of 775 parameter 

values, therefore, was conducted via 8 coefficients.  For this case study,  600 parameter sets were 

generated by by random combination of the 8 coefficients. 

To highlight the advantage of application of variation coefficient in non-linear shifting parameter values 

across the catchment, the approach was tested at 2 gauges An Khe located at upstream catchment area 

and Cung Son at catchment outlet. Two cases studies were conducted for comparison including:  

1. Application of only mean coefficients (variation coefficient equal 1 for all 600 parameter sets) 

2. Application of both mean and variation coefficients  
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RESULTS 

Case 1: Application of only mean coefficient 

Within 600 parameter sets generated by application of only mean coefficient, 100 parameter sets were 

found to produce LP-III parameters of AMS fitted within confident limits of the frequency curve at the 

upstream gauge An Khe. At the downstream gauge (Cung Son), 43 acceptable parameter sets were 

found. However, only one parameter set ( 

 

(a) 

 

(b) 

Figure 5, Table 7) resulted in acceptable  AMS statistics at both the upstream and downstream gauges 

. 

Table 7: Calibrated coefficients – case 1  

Coefficient Value 

K1 – CN 0.796 

K1 - Slope 0.273 

K1 
– Catchment length 1.097 

K1 – Catchment roughness 0.913 

K1 – Channel manning 1.725 

The 20 best parameter sets at each gauge station were selected  for testing the suitability. Whilst the 

best 20 parameter sets at An Khe gauges – Case 1a (Figure 6a) resulted in a good fit at the An Khe 

gauge, they overestimated the flow quantiles at Cung Son gauge (Figure 6b). Conversely, the best 20 
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parameter sets at Cung Son gauge – Case 1b - produced a good fit at the Cung Son gauge (Figure 7b) 

but underestimated the flow quantiles at An Khe gauge (Figure 7a).  

 

(a) 

 

(b) 

Figure 5: Frequency analysis of simulated AMS against observed frequency curve at An 

Khe (a) and Cung Son (b) gauge – Case 1. 

 

 
(a) 

 

 
(b) 

Figure 6: Frequency analysis of AMS at An Khe (a) and Cung Son (b) gauge, case 1a.  

 

(a) 

 

(b) 

Figure 7: Frequency analysis of AMS at An Khe Son (a) and Cung Son (b) gauge case 1b.  
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Case 2: Application of Both Coefficients 

The same methodology to Case 1 was used to select suitable parameter sets; 600 parameter sets were 

generated. Compared with Case 1, 24 parameter sets resulted in acceptable fits at the upstream An Khe 

gauge and 95 parameter sets resulted in acceptable fits at the downstream Cung Son gauge. However, 

in this case, 23 parameter sets resulted in acceptable fits at both gauges. Acceptable coefficients of the 

system are shown in Table 8. Consideration of  Figure 8 reveals a good fit at the An Khe station and a 

tendency to overestimate flow at the Cung Son gauge.  Overall, it was considered that there is a good 

fit between the simulated AMSs and the recorded AMS at the two gauges. 

 
(a) 

 
(b) 

Figure 8: Frequency analysis of simulated AMS against observed frequency curve at An 

Khe (a) and Cung Son (b) gauge– Case 2. 

Table 8: Calibrated coefficients – case 2 

Parameter 

Set - N 

K2 – 

CN 

K2–

CN 

K1 – 

Slope 

K1 – 

Catchment 

Length 

K1 – 

Catchment 

roughness 

K2 – 

Catchment 

roughness 

K1 – 

Channel 

Manning 

K2 – 

Channel 

Manning 

1010 0.70 1.95 0.84 1.93 1.91 1.12 1.59 1.46 

1071 0.79 0.19 0.18 2.90 0.95 4.24 0.87 1.43 

1081 0.76 0.15 0.95 1.39 2.37 0.77 1.94 4.40 

1116 0.81 1.80 0.61 1.28 2.66 4.40 2.50 0.26 

1118 0.87 0.87 0.52 2.56 2.03 3.03 1.20 1.03 

1217 0.87 1.29 0.70 1.68 1.07 2.90 2.08 4.75 

1246 0.70 1.24 0.83 2.63 1.49 0.22 2.06 0.55 

1248 0.82 0.39 0.77 1.52 0.97 3.11 1.99 3.72 

1261 0.56 0.25 0.72 1.16 2.70 1.72 2.47 4.32 

1266 0.67 0.63 0.95 2.58 2.23 3.19 1.76 4.21 

1270 0.55 0.59 0.42 1.72 1.08 2.67 1.22 4.08 

1293 0.69 1.73 0.88 2.04 1.62 0.37 1.93 3.70 

1303 0.56 1.86 0.79 1.85 1.76 2.67 2.99 4.86 

1353 0.62 1.01 0.55 2.39 1.38 4.54 1.16 3.03 

1392 0.56 1.13 0.82 2.28 1.22 0.79 1.48 1.02 

1398 0.66 1.71 0.85 2.23 1.70 2.79 2.55 4.19 

1424 0.79 1.19 0.53 2.88 0.90 3.63 2.79 4.83 

1439 0.65 1.40 0.79 1.93 2.43 2.90 1.05 3.89 



16 

 

1462 0.73 1.16 0.32 1.92 1.72 3.46 1.07 3.62 

1463 0.73 1.92 0.30 1.12 2.45 2.28 1.60 2.02 

1467 0.57 0.83 0.24 2.12 2.32 3.78 1.68 4.95 

1481 0.72 0.88 0.52 2.08 1.71 0.43 2.01 4.34 

1508 0.60 1.09 0.19 1.17 0.82 4.95 2.52 2.04 

 

Table 9 shows the results of a correlation test between coefficients of the system. As can be seen from 

this table, all values of the test were less than 0.80. This indicates that the use of a variation coefficient 

enabled non-linear shifting of the parameter values during the calibration process.     

 
(Case 1) 

 
(Case 2) 

Figure 9: Spatial distribution of Channel Manning values across the catchment (initial 

values vs. calibration values) 

Table 9: Correlation between coefficients 

 Coefficient 
K2 – 

CN 

K2 – 

CN 

K1 – 

Slope 

K1 – 

Catchment 

Length 

K1 – 

Catchment 

roughness 

K2 – 

Catchment 

roughness 

K1 – 

Channel 

Manning 

K2 – 

Channel 

Manning 

K1- CN  1        
K2 – CN -0.030 1       
K1 – Slope -0.007 0.134 1      
K1 – 

Catchment 

Length 0.122 -0.10 0.038 1     
K1 – 

Catchment 

roughness -0.08 0.135 0.232 -0.339 1    
K2 – 

Catchment 

roughness 0.089 -0.08 -0.575 0.011 -0.176 1   
K1 – 

Channel 

Manning -0.058 0.268 0.279 -0.272 0.006 -0.051 1  
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K2 – 

Channel 

Manning -0.203 -0.21 0.133 -0.071 0.009 0.004 0.258 1 

 

The spatial distribution of parameter values across the catchment is plotted in histogram.  An example 

of this is the distribution of Channel Manning values for Case 1 and Case 2. Figure 9 - case 1 shows the 

distribution of the initial parameter values and the calibration values of Channel Manning parameter in 

Case 1. As can be seen from Figure 9 - case 1, the values of Channel Manning increased after calibration 

from 0.034 to 0.058. For Case 2 (see in Figure 9 – case 2) the proposed approach resulted in shifting of 

the parameter values and a change in the value frequency.  This indicates that the calibration approach 

using a mean and variation coefficient enables not only adjustment of the parameter values across the 

catchment but also allows a change in the density distribution of the parameter values. 

 

CONCLUSION AND DISCUSSION 

Using the mean and variation coefficients, the number of model parameters reduced significantly from 

755 to 8 coefficients. Adjustment of the parameter values using these coefficients enables changes in 

the model parameter values over the catchment. This improves the feasibility of the calibration process 

and the identification of suitable parameter values.  

Comparing the proposed approach with the case of a linear shift in the parameter values across the 

catchment, the application of mean and variation coefficients resulted in a significant improvement in 

the calibration process resulting in an increase in number of accepted parameter sets. This implies that 

the method could enhance model parameterisation, especially in cases of large catchments dealing with 

a large number of parameters and multiple gauging stations. 

While the acceptable ranges of model parameters have been reported in many studies (for example, Al-

Hamdan 2009; American Society of Civil Engineers 1949), the acceptable ranges of the coefficients are 

specified for each case study and depend on the initial values of the model parameters. Therefore, there 

is a need to carefully analyse the initial condition of modelling system to identify suitable ranges of the 

coefficients.  

A limitation of this study is that no validation process was possible as all available data was used during 

the calibration process. The method used a continuous simulation approach to generate the flow 

sequence for flood frequency analysis. This requires long time observations of flow and rainfall for 

conducting the AMS estimation. For this case study, Ba River, a 32 year  simulation period from 1980 

to 2011 was used. This limits the option for splitting the observation period into calibration and 
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validation segments. In addition, the splitting observation period will result in shorter AMS records and 

wider confidence limits.  
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