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Abstract

Real world Structural Health Monitoring (SHM) systems consist of sensors in the scale of
hundreds, each sensor generating extremely large amounts of data, often arousing the issue
of the cost associated with data transfer and storage. Sensor energy is a major component
included in this cost factor, especially in Wireless Sensor Networks (WSN). Data compres-
sion is one of the techniques that is being explored to mitigate the effects of these issues.
In contrast to traditional data compression techniques, Compressive Sensing (CS) - a very
recent development - introduces the means of accurately reproducing a signal by acquiring
much less number of samples than that defined by the Nyquist’s theorem. CS achieves this
task by exploiting the sparsity of the signal. By the reduced amount of data samples, CS
may help reduce the energy consumption and storage costs associated with SHM systems.
This paper investigates CS based data acquisition in SHM, in particular, the implications of
CS on damage detection and localization. CS is implemented in a simulation environment
to compress structural response data from a Reinforced Concrete (RC) structure. Promis-
ing results were obtained from the compressed data reconstruction process as well as the
subsequent damage identification process using the reconstructed data. A reconstruction
accuracy of 99% could be achieved at a Compression Ratio (CR) of 2.48 using the exper-
imental data. Further analysis using the reconstructed signals provided accurate damage
detection and localization results using two damage detection algorithms, showing that CS
has not compromised the crucial information on structural damages during the compression
process.
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1. Introduction

Transmitting and maintaining large amounts of data in SHM systems have been issues ad-

dressed in recent researches due to the large scale real-world structures in use. Traditionally,

uncompressed structural response signals are acquired by each sensor and transmitted to a

central server for processing and damage decision making. This task unnecessarily consumes

one of the most valuable resource in a WSN-based SHM system - energy, and also wastes

memory space of sensor nodes in both wired and wireless systems. In a wireless-based SHM

system, such wastage results in reduced system lifetime and increased maintenance costs,

since data transmission in a WSN is carried out at the cost of limited battery power of

sensors. For both types of systems, transmitting a lot of data also increases the network

traffic and collisions, reducing the reliability of data communication process. Even though

memory is becoming cheaper, even the newest version of the most widely used commercially

available sensor node - Imote2 - has only a combined memory of 64 MB. This amount of

memory will barely be sufficient to a network as large as the SHM system installed on Tsing

Ma, Ting Kau and Kap Shui Mun bridges in Hong Kong [1, 2]. This system, known as the

”Wind And Structural Health Monitoring System” (WASHMS) consists of approximately

800 sensors and operates 24 hours a day, 7 days a week, where each sensor node measures

temperature, strains in structural members, wind speed deflection and rotation of the kilo-

metres of cables in the bridges and any movement of the bridge decks and towers, generating

an enormous amount of data [3].

There have been numerous proposals to mitigate the effects of these issues including

decentralized data processing in SHM [4], power saving strategies [5] and data compression

techniques [6]. In traditional data compression techniques, compression is applied on the

already sampled signal. However, this usually leads to wastage of processing power and

memory as the important information in most signals is carried only by a few samples

compared to the total number of samples. The novel concept of CS appears a potential
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alternative to solve this issue. By exploiting the sparsity of the signal, CS provides the means

of accurately reconstructing the signal with much less number of acquired samples than

that defined by the Nyquist’s theorem [7, 8]. This concept is believed to have tremendous

potential in the field of WSNs [7]. In fact, already there have been a few attempts to use

this method in WSNs in the literature [9, 10, 11]. Being an application of WSN, SHM may

also benefit from the compressing abilities of CS. With CS used for data acquisition in SHM

systems, the energy and storage costs associated will be vastly reduced [2]. Thus, CS can be

an area with high potential for research and development in the field of SHM. A preliminary

study on the feasibility of adopting CS for SHM was presented in [12].

In this paper, CS based data acquisition in SHM is explored, in particular for damage

detection and localization. The attempt is to preserve the energy and storage associated with

SHM systems through data reduction, without losing the confidence of accurate decision-

making. The effectiveness of CS for data compression in SHM is analyzed using a set of

experimental data from a series of impact tests carried out on an RC slab. Promising

results were obtained from this application in terms of CRs and reconstruction accuracy.

Further analyses on the reconstructed signal using two damage detection and localization

algorithms (the ARD method [13] and the Wiener filter based method [14, 15]) provided

successful damage detection and localization results. The main contributions of this paper

are as follows:

• Proposing the use of CS based data acquisition for reliable SHM.

• Successful reconstruction of the compressed responses.

• Comparison of the data compression performance using CS and other compression

techniques.

• Successful damage detection and localization using the reconstructed responses.
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The remainder of this paper is organized as follows: First, the current work in literature on

the applications of CS are discussed. Then the theory of CS is presented followed by the

application of CS on the available experimental data. The success of the CS based data

acquisition is analyzed using the achieved CRs and the accuracy of signal reconstruction in

terms of a frequency content based metric that was developed in this study. Next, a brief

comparison is carried out between two other data compression techniques and CS. Finally,

damage detection and localization results using the CS reconstructed data are presented

followed by the conclusions.

2. Related work

CS is a quite recent development in communication and data processing technologies

which has been recently introduced to WSNs. CS has the potential to serve as alternatives

to both Nyquists rate sampling and data compression techniques. Being a novel concept,

applications of CS are largely under-explored in the field of sensor networks. Only a limited

number of studies exist on CS in SHM applications in the literature. Bajwa et al. introduced

the concept of CS for WSNs [9]. This work discusses the power-distortion trade-off associ-

ated with the data acquisition through CS in a centralized WSN, and the latency involved

in the information retrieval. Then, a distributed matched source-channel communication

scheme is proposed for the estimation of sensed data at the fusion center or the central

server. Feng et al. investigate the problem of sensor localization in WSNs and proposes

a novel method called Compressive Sensing for Manifold Learning [10]. The measurement

matrix for data acquisition is chosen to be the pair-wise distance matrix on which CS is

applied. This pair-wise measurement matrix is constructed by each node measuring the dis-

tance to all its neighbouring nodes. A central node retrieves the compressive measurements

and reconstructs the full matrix in order to construct the location map of the sensors. This

work shows the high accuracy of the achieved localization results even though the distance
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measurement matrix is reconstructed at the central node with only a limited number of

samples from the original measurement. The communication cost reduction associated with

the method is also proven. A distributed algorithm for sparse signal recovery is introduced

by Ling and Tian [11]. While a fraction of the sensors are turned off by a sleeping strategy,

compressive sampling is performed on the awake sensors. These sensors collaborate with

their active neighbours through one-hop communication to recover the compressed mea-

surements and iteratively improves the local estimates until reaching a global maximum.

The performance of this algorithm is illustrated in terms of scalability and optimal data

acquisition.

Cortial et al. discuss the application of CS in structural damage detection [16]. They

demonstrate the effectiveness of the application by using CS data to successfully locate the

damage in a F-16 fighter jet simulation. Bao et al. investigate the performance of CS for

compression of vibration data obtained from an actual SHM system [2, 17]. Reconstruction

of the signal is done using both wavelet and Fourier orthogonal bases. Their results show

that the CRs achieved using CS in this case are not very high. They account this poor result

to the fact that the vibration data of civil structures used for SHM are not naturally sparse

in the chosen bases. In their later work Bao et al. apply CS to recover lost data in a WSN

used in SHM. Their results show that the signal recovery is good when the signal is sparse

regardless of continuous or random packet loss and noise, demonstrating the significance

of sparsity for CS [18]. Wang and Hao were the first to propose a damage identification

scheme based on CS for SHM [19]. Mapping damage identification as pattern classification

problems, they construct a feature matrix based on the sparse representation results of time

domain structural responses. They demonstrate the success of the method using numerical

and experimental data. However, the application of this method to complex large civil

structures could be a challenging task as the time taken to train the model on damage

cases may be too high. Mascarenas et al. address the challenges of extracting information
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on damage condition from large heterogeneous sets of data from structures and the cost-

effective collection of relevant data, respecting the limitations of the system in their work

[20]. They propose a two-stage CS framework with potential to solve both these challenges.

They evaluate the implementation of the compression filter named smashed filter for damage

classification in the structure with successful results. Yang and Nagarajaiah present a novel

algorithm for both locating and assessing structural damage using Blind Source Separation

(BSS), sparse representation and CS [21]. In this algorithm they first extract modal features

of the structure blindly using an unsupervised Complexity Pursuit (CP) algorithm and then

use the sparse nature of the classification network established based on CS to classify damage.

In a later study they work on denoising of structural responses through a new technique

named Principal Component Pursuit (PCP) which is inspired by CS [22]. In [23] they

propose a new method output-only modal identification of structures using a combination

of BSS and CS and show that the method can accurately identify the modes using low-rate

sampling than that required by the Nyquist theorem.

As the theory states, when applied appropriately, CS can be expected to acquire under-

sampled structural responses from sensors in an SHM system and accurately reconstruct

them at the central server. This will save sensor energy spent on data transmission, save

sensor storage space and data maintenance costs by reducing the amount of data, while

still enabling accurate reconstruction of the data providing the ability to process the data

at convenience. This overall picture, as well as the successful application of CS in recent

researches in communication and networking inspired the application of CS for SHM.

3. Compressive Sensing for Structural Health Monitoring

Traditional sampling exploits the band-limitedness of a signal, sampling it at twice (or

more) as fast as its bandwidth (the Nyquist rate), to ensure accurate reconstruction [24].

CS exploits the sparsity of a signal during its sampling [7]. The concept of CS [2, 7, 9, 8] is
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summarized in the following section using this principle of sparsity.

3.1. Compressive sensing

The applicability of CS for successful data compression can be explained with the aid of

two principles: Sparsity and Incoherence, which are important in the understanding of the

theory of CS.

Sparsity: Many natural and man-made signals are sparse or compressible in the sense that,

there exists a base Ψ where the representation in Equation (1) has just a few large coeffi-

cients and many small coefficients. In other words, they have a concise representation when

expressed in an appropriate basis Ψ. Another word to explain this situation is redundancy

of a signal when expressed in an appropriate basis.

Incoherence: This states the idea that a signal having a sparse representation in Ψ, must

be spread out in the domain in which they are acquired. An example is the impulse response

in the time domain, which spreads out in the frequency domain.

A real-valued, finite length, one-dimensional, discrete time signal can be expressed as

x(t), t = 1, 2, ..., n in < where n is the signal length. In this study, x(t) is the data to be

compressed (e.g. acceleration, strain) and can be represented in terms of a basis of n × 1

vectors ψi, i = 1, 2, ..., n. For convenience, the basis is assumed to be orthonormal. Some

Wavelet families, Fourier basis and cosine transforms are examples for possible bases for the

data. The n×n basis matrix Ψ = [ψ1, ψ2, ..., ψn] is then formed by arranging the vectors ψi

as columns. With Ψ−1 = ΨT and the vector x = [x(1), x(2), ..., x(n)]T ∈ <n, n number of

sampled values of x(t) can be expressed as:

x =
n∑

j=1

αjψj or x = Ψα, (1)

where, the basis coefficients αj are given by α = ΨTx.
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By a linear projection of x, a vector y of length m(< n) can be acquired as follows:

y = Φx = ΦΨα = Θα, (2)

where, Φ is the m× n measurement matrix and Θ = ΦΨ is an m× n matrix.

Sincem < n in Φ, recovering the original response x of length n from themmeasurements

in y is ill-posed. If the signal x is known to be sparse in the basis Ψ, i.e., many of the

coefficients in α are zero, then under certain conditions, α can be reconstructed exactly by

solving the following convex optimization:

α̂ = arg min ‖α̃‖1 such that, Θα̃ = y. (3)

where, ||α̃||1 is the l1 norm of α̃.

Given that; 1) the signal x is s-sparse (it has at most s non-zero entries) and 2) the

matrix Θ obeys the Restricted Isometric Property (RIP) described below, α can be precisely

recovered by solving Equation (3).

The RIP [8] states that, there exists an isometric constant δs for the matrix Θ, where δs

is defined as the smallest number such that for all s-sparse vectors vs, the following condition

holds:

(1− δs)‖vs‖22 6 ‖Θvs‖22 6 (1 + δs)‖vs‖22. (4)

Therefore, the s-sparse signals can be exactly recovered by solving the optimization in

Equation (3), if Θ satisfies Equation (4). In other words, suppose that Ψ is an orthonormal

basis (for simplicity) such as a wavelet basis or a Fourier sinusoids basis. Then, a measure-

ment matrix Φ needs to be constructed such that, the matrix Θ(Θ = ΦΨ) obeys Equation

(4).

In CS, Φ is selected as a random m× n matrix, such as:
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1. by sampling independent and identically distributed (i.i.d.) entries φi,j from a normal

distribution with zero mean and 1/m variance

2. by sampling i.i.d. entries φi,j from a symmetric Bernoulli distribution (P (φi,j = 1/m))

3. by sampling n column vectors uniformly at random on the unit sphere of <m

4. by sampling a random projection P and normalizing; Φ = n/mP

The matrix Φ obtained from either of the above methods obeys the RIP with overwhelm-

ing probability given the following condition is fulfilled [7].

m >
cs

log10(n/s)
, (5)

where, c is a specified constant depending on each instance.

When the above condition is satisfied, the matrix Θ also obeys the RIP with m ≥

cs/ log10(n/s) regardless of the orthonormal basis matrix Ψ. And it also becomes incoherent

with Ψ. Therefore, the perfect reconstruction of an s-sparse response signal x of length n is

possible independently of its basis Ψ, if the ratio n/m does not exceed c−1(n/s) log10(n/s).

This makes n/m a measure of sparsity of the signal x [2].

As a summary, the ultimate aim is to obtain a compressed signal y through a linear

projection of x as shown in Equation (2), and be able to accurately reconstruct x by solving

the convex optimization in Equation (3). In CS, this is rendered possible by selecting the

measurement matrix as described above, given that the constraint in Equation (5) is fulfilled.

Then, the original signal x can be reconstructed using the measured signal y by solving the

convex optimization given in Equation (3).

3.2. Compressing noisy signals

When responses are contaminated with noise, those signals may not be naturally sparse

in any basis. Therefore, de-noising the response is required to make the signal sparse. In
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such a case, the measured signal y can be represented as follows:

y = Φx+ e, (6)

where, e is the error associated with noise, which is uncertain and bounded as ‖e‖2 6 ε with

ε being a chosen bound on the size of the measurement error.

The basis coefficients α can then be reconstructed by solving the following convex opti-

mization:

α̂ = arg min ‖α̃‖1 such that ‖Θα̃− y‖2 6 ε, (7)

where, |Θα̃− y||2 is the l2 norm of Θα̃− y.

Similar to the optimization in Equation (3), Equation (7) also has a unique solution for

α̂ which can be used to represent the data. But in this case, since the unknown noise is only

assumed to be bound on its norm, the exact recovery of the original response x cannot be

guaranteed [2]. Having discussed the theory of CS, the focus will now be on adopting CS

for data acquisition in SHM systems, which will be discussed in the following sections.

4. Experimental evaluation

In order to verify the effectiveness and accuracy of the process, a set of experimental data

is used from a series of experiments carried out on an RC slab. These data will be briefly

described in this section before proceeding to the details of CS application: CS requirements

and how the data fits with the requirements, data compression with CS and analysis of the

reconstruction. The simulation work in this paper has been carried out using MATLAB.

4.1. Experimental setup

A two span RC slab has been used as the test specimen in this experiment [25]. Each

span of the slab was loaded with a two-point loading system as shown in Figure 1a, which
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was also connected to the supports in order to reduce the effect on the supports. Damages

were created on the slab by incrementally loading it via a static load test in 13 loading levels

while monitoring damage locations and lengths. A dynamic load test was carried out on

the slab using an impact hammer, in order to record structural responses. The slab was

equipped with nine sensors evenly distributed along the length of the slab on its central axis.

A data acquisition system was used to acquire six acceleration measurements at each loading

stage at 500Hz sampling rate giving six test samples of structural responses, each of length

4100. Figure 1b illustrates the crack damages created on the slab and their propagation

along the slab with increasing levels of static loading. These experiment records show three

main areas of damage starting from the right span propagating through the middle support

area to the left span. These damage areas are identified as damage zones for the purposes of

this paper. A sample measurement and its frequency spectrum obtained using Fast Fourier

Transform (FFT) is illustrated in Figure 2.

4.2. Compressive sensing pre-requisites

For feasible reconstruction of the signal, CS requires the data to be compressed, to

be sparse in some basis. Therefore, the first step in adopting CS for data acquisition in

SHM systems is to analyze the experimental data for their sparsity. Several commonly used

methods such as the wavelet transform, Fourier transform and Discrete Cosine Transform

(DCT) were initially applied on the structural responses. However, the responses exhibited

no sparsity in either of the above bases. This can be further examined looking at the zoomed

portion of the signal - from data point 3000 to 3050, in the 4100 length original sample shown

in Figure 2a. It can be seen in this figure that although the magnitude of the signal appears

to be zero in the latter part of the sample, it always has a negligibly small but non-zero

value. Nevertheless, looking at the signal, it can be reasonably considered that most of the

information in this structural response is carried by only a few data points. In other words,

most of the data points appear to be negligibly small such as noise. Therefore, de-noising
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techniques were adopted in order to make the signal sparse in some basis.

Wavelet de-noising technique was selected to de-noise the signal in this case due to its

simplicity and versatility [26, 27]. Wavelet de-noising is also the most common method used

for signal de-noising [26, 27]. There are two main de-noising techniques used in wavelet de-

noising: Soft thresholding and Hard thresholding. With Soft thresholding, the signal points

are either shrinked to fit the selected threshold or killed (made ’0’). In Hard thresholding,

the signal points are either retained as it is or killed [2, 26, 27].

Several methods exist for the determination of the threshold in the de-noising process,

such as the principle of Stein’s unbiased Risk Estimator, Minimax thresholding and Universal

threshold [28, 29]. MATLAB offers four methods for selecting threshold: a) Stein’s Unbi-

ased Risk (rigrsure), b) Heuristic variant of the Stein’s technique (heursure), c) Universal

threshold (sqtwolog), d) Minimax threshold (minimaxi).

Due to its compression abilities and also because of its popular use in CS applications in

the literature [2, 7, 8], wavelets were selected as the preferred basis functions for this study.

Further, Daubechies wavelet family was selected due to its sophistication compared to other

wavelet families in use [30]. Figure 3 shows a comparison of the original signal and the

de-noised signals with different threshold selection methods indicated above. These results

were obtained using Hard-thresholding, which is a choice that will be justified later in the

section. It should be noted that although the complete signal of length 4100 is used in all

the actual analyses throughout this study, only the first half of it that contains the impulse

response (a length of 2050) is plotted in most of the graphs included in this paper for better

clarity.

The de-noised signals using the above mentioned threshold selection methods show fol-

lowing sparsities (number of non-zero points) in the Daubechies wavelet basis: 1) rigrsure, s

=110, 2) heursure, s = 23, 3) sqtwolog, s = 23, 4) minimaxi, s = 40. The de-noised signals

using these threshold selections are illustrated in the last four plots of Figure 3 compared

12



with the original signal in the first plot. It is evident from Figure 3 that de-noising has

considerably reduced the noise associated with the signal. From this analysis, Stein’s Un-

biased Risk method is chosen for threshold estimation as it gives the highest sparsity value

above (rigrsure with s = 110). This is also visible in the Figure 3, where the rigrsure figure

is the closest representation of the original signal shown in the first figure, as opposed to

the rest of the de-noised figures. The reason for this choice is that for post-processing work

such as damage detection, as much information as possible from the original signal has to

be retained through the compression process.

Figure 4 shows a comparison of the hard-thresholding and soft-thresholding techniques

compared with the original signal. The Stein’s Unbiased Risk method for threshold estima-

tion as chosen previously, was used in this analysis. It can be seen from this figure how Hard

thresholding retains more information than Soft thresholding. Since in this application the

actual information of the signal should be retained as much as possible without shrinking

for post-processing purposes such as damage detection and localization, Hard thresholding

technique was selected for the wavelet de-noising process. With knowledge of the signal

sparsity from the de-noising process, compression of the signal can now be carried out. The

results of the compression and the reconstruction processes will be discussed in the next

section.

4.3. Signal compression and reconstruction

As the de-noised structural response using Stein’s Unbiased Risk threshold selection and

Hard thresholding technique exhibited sparsity in the Daubechies wavelet basis, accurate

signal reconstruction should now be feasible. However, due to the noise term involved in the

signal, the measurement signal to be acquired in the current scenario resembles Equation

(6) and the convex optimisation problem to be solved is of the form shown in Equation (7).

The bound on the measurement noise ε is ideally estimated by taking the norm of the noise

measured either using a sensor that is not programmed for CS or by prior knowledge. In
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this study, it was initially estimated by optimizing the accuracy of reconstruction (discussed

later in this section). However, the reconstruction quality of the signal was found to be

independent of this choice in the current analysis which simplifies the situation, as knowledge

of the complete signal would not be available in a real-world CS scenario.

When the sparsity of the de-noised signal is known, the measurement matrix Φ of Equa-

tion (6) can be selected. As mentioned in Section 3, in CS, this measurement matrix is

required to be random in order to accurately reconstruct the compressive sampled signal.

It also needs to fulfil the condition in Equation (5) in order to satisfy the RIP in Equation

(4), again for accurate reconstruction of the signal. Therefore, as a start, the length of the

measurement sample m was chosen to be twice the value of sparsity (m = 2 × s) fulfilling

the condition in Equation (5). The m×n measurement matrix is obtained by sampling i.i.d.

entries from a normal distribution with zero mean and 1/m variance.

Using the sparsity of 110 from the chosen de-noising technique, the compressed length

becomes m = 220. CR is defined as the ratio between the lengths of the original (uncom-

pressed) signal and the compressed signal. The CR of the current scenario is n/m = 18.64.

Subsequently, compression of the signals with m = 3× s,m = 4× s,m = 5× s,m = 10× s

and m = 15 × s will also be examined pertaining to the constraint defined by Equation

(5), resulting in CRs of 12.42, 9.32, 7.45, 3.73 and 2.48. Figure 5 illustrates the compressed

signals at these six compression levels. In the framework of this study, the compressed signal

is obtained by a linear projection of the original data using the chosen measurement matrix,

since the original data is already available. However, in an actual system, the signal needs

to be obtained directly in the compressed form at sampling. For this, the measurement

matrix needs to be built into the sensor before sensor installation, which is not discussed

in this study. It can be seen from Figure 5 that as the compressed length increases, more

information from the original sample is retained in the compressed signal at the cost of CR.

At reconstruction, the receiver or the central server in case of an SHM system, has

14



knowledge of the utilized measurement matrix and the sparse basis. In order to solve the

modified convex optimization problem in Equation (7), CVX, a package built on MATLAB

for specifying and solving convex problems [31] is utilized.

Figure 6 illustrates the reconstructed structural responses from compressed signals m =

2×s,m = 3×s,m = 4×s,m = 5×s,m = 10×s and m = 15×s, and their frequency spectra.

Once again, only the first half of the signal is plotted here for clarity. It can be seen in this

figure that the reconstruction improves with increasing compressed sample length. That is,

as the CR decreases, the reconstructed signal better resembles the original signal, as can be

expected. A similar variation can be seen with the frequency spectra. From these results,

reconstruction from the compressed signal of length m = 15× s (CR of 2.48) resembles the

original signal best. It can be predicted from this trend that, with an increased number of

compressed samples (within the constraints of Equation (5)) the quality of the reconstructed

signal will improve with better resemblance to the original signal. However, this will reduce

the CR, thereby reducing the advantage provided by the compression. Therefore, the CR

and the reconstruction quality presents a trade-off.

Analyzing the accuracy of the reconstruction is vital when validating a data compression

technique, as the important information carried by the signal should not be compromised by

the compression process. Especially in SHM measurements, retaining the frequency content

of the measurements is crucial as they carry important information required for structural

condition analysis in the data post-processing. Therefore, a reconstruction accuracy metric

RACS to quantify the accuracy of the reconstructed signal in this analysis is computed as

follows:

RACS = corrcoef(|fft(xOrig)|, |fft(xCSrecon)|), (8)

where, xOrig is the original signal and xCSrecon is the CS reconstructed signal with ’fft’
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indicating the fast Fourier transform.

corrcoef(x, y) =

∑M
k=1(x(k)− µx).(y(k)− µy)

‖x− µx‖.‖y − µy‖
,

is the correlation coefficient of data samples x and y, where M is the data length with

k = 1, 2, ..,M and µx and µy are the means of x and y respectively.

Figure 7 shows the reconstruction accuracy RACS of the reconstructed signals from

Figure 6, compared to a reference RACS value of ′1′. This reference value RACS = 1

results from a perfect signal compression-reconstruction process where the reconstructed

signal matches the original signal perfectly, and is obtained by comparing the reconstructed

signal with itself. In Figure 7, the RACS values of the reconstructed signals from different

compressed signals lengths are plotted. It is clear from this figure that with an accuracy

with RACS = 0.9777, reconstruction from the sample of length 10× s (CR = 3.73) is a very

good representation of the original signal, and the15× s (CR = 2.48) signal reconstruction

is even more so with an almost perfect accuracy with RACS = 0.9923.

Signal compression and reconstruction with varying de-noising thresholds are analyzed

next in order to observe the effects of the threshold estimation methods on the CS process.

The threshold estimation criteria discussed previously, a) rigrsure, b) heursure, c) sqtwolog

and d) minimaxi are considered in this analysis. Figure 8 illustrates the compressed samples

obtained by compressing the de-noised data. It can be seen how the Stein’s Unbiased Risk

(rigrsure) has more length - and thereby more information - compared to the other three

techniques. A compressed length of 10×s which depends on the sparsity (s) of the de-noised

signals from each of the above threshold selections is used in this analysis.

The corresponding reconstructed data and their frequency spectra are shown in Figure 9.

As with the earlier figure of the reconstructed data, only the first half of the signal is plotted

for better clarity of the graph. It can be seen how the Stein’s Unbiased Risk (rigrsure)
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thresholding enables better reconstruction compared to the other three methods. A similar

observation can be gained from the frequency spectra, where the reconstruction from Stein’s

Unbiased Risk method resembles the original signal’s spectrum better than the rest. Further,

out of the other three methods, Minimax threshold (minimaxi) has better results compared

to the Heuristic variant of the Stein’s technique (heursure) and the Universal threshold

(sqtwolog) methods. Figure 10 illustrates the reconstruction accuracy results of this analysis

using the RACS given in Equation (8). Compared to the reference value RACS = 1 resulting

from a perfect reconstruction, Stein’s Unbiased Risk method (rigrsure) has shown a very

good accuracy with RACS = 0.9777. The Minimax threshold (minimaxi) has also shown a

reasonable accuracy with RACS = 0.8609.

Further into the analysis, Figure 11 shows the combined CS-reconstruction accuracy

results from the two previous discussions. The RACS is plotted against the de-noising

sample length (or the CR), and the four different threshold estimation methods. It can

be seen that each of the de-noising methods exhibit similar results with varying CR. That

is, as the compressed length increases, de-noised signals from all four threshold estimation

methods can be reconstructed with better accuracy at the cost of CR. Stein’s Unbiased Risk

(rigrsure) method for threshold estimation proves to be the most effective in this process in

terms of the reconstruction accuracy.

Nevertheless, as the most essential task required by an SHM system is monitoring and

deciding on the structural condition, the data available for post-processing and decision-

making should be reliable enough. Therefore, if the important information embedded in the

original signal is not lost in the process of compression and reconstruction, the compression

technique can be considered as good enough to be employed in an SHM system for decision

making. This possibility will be explored using damage detection and localization algorithms

in Section 5.
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4.4. Sensor energy and memory space saving with compressive sensing

Energy is not an issue for a wired sensor network as the sensors could have a never ending

supply of power through the connecting cables. However, limited energy of wireless sensors

is a major issue which has attracted the attention of researchers worldwide. Research is still

on-going for a sustainable solution to this problem. Limited sensor memory space can be

an issue to both these network types. However, since the sensors could be programmed to

transmit the data continuously to the central server in a wired network, sensor memory space

can be freed often, making its impact somewhat less in a wired network. Nevertheless, the

cost associated with data transmission and management is a problem for any such network.

Hence, a discussion on the ability of CS for sensor energy and memory saving is presented

in this section.

It is said that transmitting one bit through wireless communication may consume as

much energy as executing a few thousand instructions in a processor [32, 33]. It is clear

that the transmission energy increases with increasing data amount to be transmitted. As

defined previously, CR is the ratio between the original signal length and the compressed

signal length. It is a fact that some control information are added to a data packet before it

is transmitted to the central server. However, compared to a data sample of length 4100 as

with this analysis, CR could be considered a good indicator of the energy savings in the data

transmission process. For sensor memory saving, CR is an obvious indicator. Therefore, for

the purpose of this discussion, CR is used as an approximate indicator of both sensor energy

and memory saved in the CS process.

Figure 12 shows how the CR changes - and hence the sensor energy and memory savings

change - with varying compressed data sample lengths and CS reconstruction accuracies.

The x-axis represents length of the compressed data sample in terms of the sparsity of the

signal s, similar to the previous discussions. The fist y-axis on the left hand side of the plot

represents the sensor energy/memory saving with respect to the energy/memory consumed
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by the uncompressed signal. This is presented in terms of the ratio between the energies

consumed (ex: 20∗ in Figure 12 means 20 times the energy consumed by the original signal).

The second y-axis on the right hand side represents the CS reconstruction accuracy of the

signal in terms of the RACS metric introduced in the previous section. As can be seen in

the figure, the RACS increases with the increasing compressed length which was already

observed and discussed in a previous section. The sensor energy/memory saving decreases

with increasing compressed sample length as can be expected. When the compressed length

is 15 × s with an almost perfect reconstruction of the original signal (RACS = 0.9923,

Figure 7), CS still achieves an energy/memory saving of approximately 2.5 (CR=2.48). In

other words, more than 50% of the energy/memory is saved in this scenario compared to

the uncompressed signal. In all the other compressed lengths shown in the figure, more

energy/memory is saved than the above example. This is however, at the cost of accuracy of

reconstruction. For example, at compressed length 2×s, the energy/memory saving is nearly

19 times the uncompressed signal transmission (CR=18.64), which is approximately a 95%

energy/memory saving. But the CS reconstruction is poor at this point with RACS = 0.7025

(Figure 7).

Although the energy/memory saving decreases with increasing compressed sample length,

in this study, CS has been able to save more than 50% sensor energy/memory with an impres-

sive reconstruction accuracy of 99% at CR=2.48. Thus, the application of CS for compressed

data sampling in SHM systems shows promise in saving energy and memory space in sensors.

4.5. Comparison with other compression techniques

The main advantage of using CS for data compression is that in CS, the data is acquired

in an already compressed form right at the moment of sampling, eliminating the need to first

sample the signal at a higher rate, store it in the sensor and then process it for compression.

This saves sensor energy for sampling and processing as well as sensor memory for data

storage. As mentioned previously, the energy spent on data transmission by a wireless sensor
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is much more than that spent on data processing [32, 33]. Therefore, the CR that can be

achieved by a compression method is also an important deciding factor. In this section,

the performance of CS for data compression and reconstruction are compared against a few

other commonly used compression techniques. For this analysis, the basic method of wavelet

compression is chosen using different wavelet families and levels. Wavelet compression is a

widely used technique for image compression [34]. In this analysis the signal is denoised and

wavelet decomposed at different levels using different wavelets. Then the decomposed signal

compression and compared against the original signal.

The CR and the CS-reconstruction accuracy RACS for the compression techniques being

compared are tabulated in Table 1. In this case for representing the results we have chosen

Symlet2 wavelet decomposition at level 2 and Daubechies2 wavelet decomposition at level 10

which resulted in the best CR of all wavelet types and decomposition levels that were evalu-

ated. In terms of the CR, CS shows competitive results against the two wavelet compression

techniques as tabulated. Both wavelet techniques have achieved CRs in the same league as

10×s signals in CS. However, the reconstruction accuracies of both wavelet methods are one

which indicates perfect reconstruction whereas CS only give a near-perfect reconstruction

with RACS is 0.99Therefore, it can be concluded from these results that the traditional com-

pression techniques have performed better in terms of reconstruction accuracy while giving

slightly less CR compared to CS.

In addition to the quantitative analysis above, a visual comparison of the reconstruction

quality of the two wavelet compression techniques against the original signal are illustrated

in Figure 13. It shows the reconstructed signals and their frequency spectra. This figure

shows that the reconstructed signals from the two wavelet techniques are almost the same

(if not exactly the same) as the original signal. These results show that traditional loss-

less compression techniques can achieve equal or better signal reconstruction accuracy than

CS under same conditions. The advantage in CS only comes in the case when exact or
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near perfect reconstruction can be achieved, it will save sensor memory and energy com-

pared to traditional compression techniques, as in CS the samples are already achieved in a

compressed manner.

5. Damage detection and localization

The main purpose of a real-world SHM system is accurate detection and localization

of damages in the structure. Achieving both of these tasks with sufficient accuracy has

been a challenge faced by researchers for many years [4]. Accomplishing such a task with

a reconstructed signal from a set of under-sampled data can be even more difficult. This

section focuses on achieving these tasks - i.e. accurate damage detection and localization

using the reconstructed data from under-sampled CS data. This analysis uses the de-noised

data from Stein’s Unbiased Risk threshold selection with Hard thresholding and a CR of

3.73.

Two damage detection and localization techniques are used in this analysis: 1) ARD

method [13], which uses time-series models estimated from the structural responses, 2)

Wiener filter based method, from the work described in [14, 15].

The ARD method is a statistical time-series based structural damage detection method

which makes use of the Auto-Regressive (AR) model [13]. In this method, the structural

response data is first fitted to an AR model with a suitable model order. The AR coefficients

from this model are used in the damage detection process. A damage detection index called

D index computed using the undamaged data’s AR coefficients and the current data’s AR

coefficients is used for damage detection. This D index is represented as:

D =

p∑
i=1

(φy
i − φx

i )2, (9)

where, p is the AR model order and φy
i and φx

i are the ith AR model coefficients of the current
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data y (from unknown state of the structure) and reference data x, respectively. The AR

model order p, is determined by exploring the autocorrelation function of the model residual

errors [35, 36].

For damage localization, Fisher criterion f is computed using the above D indexes for

each sensor as follows:

f =
(µcurr − µref )2

σ2
curr + σ2

ref

, (10)

where, µcurr and µref are the means of D indexes of the current (online) data and of the

reference data respectively. σ2
curr and σ2

ref are the variances of the same.

The second method, which is based on the Wiener filter, determines the optimum Wiener

filter for the structural response in question, and uses the Mean Square Error (MSE) of the

filter coefficients as its Damage Sensitive Feature (DSF). MSE values computed from the

unknown structural responses are averaged and compared against the respective reference

value for damage detection. This DSF is represented in terms of the error of the optimum

Wiener filter e(n) as follows:

Wiener filter MSE = E[e2(n)], (11)

where e(n) = d(n)− y(n) with d(n) being an estimation of the desired signal expected from

the Wiener filter and y(n) being the resulting noise-reduced filter output which is targeted

to be an estimation of d(n), respectively.

In the Wiener filter method, the damage localization is carried out at sensor pair level

utilizing the spatial information associated with the sensors unlike in the ARD method.

Cross-correlation function (CCF) coefficients are computed from the Wiener filter MSEs of

a sensor pair, and the variance of these coefficients is used as the damage location indicator.
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5.1. Damage detection

Figure 14 illustrates the damage detection results using the ARD method. Due to the

similarity of the results of all sensors, the results of only one sensor are presented here. The

mean of the D indexes computed from structural responses of three loading stages repre-

senting the three damage scenarios shown in Figure 1b of the experiment records described

in Section 4.1 are plotted against the damage scenario. Similar damage detection results

obtained from the original data (without CS) are also plotted here for reference (Figure

14a). Considering the CS-reconstructed data in Figure 14b, the mean D indexes from the

damaged structure in all three damaged scenarios show a clear increase compared to the

reference mean D index. This marks successful positive damage detection in all three cases.

Compared with the results from the original data in Figure 14a, D indexes from the CS-

reconstructed data show a loss in magnitude. This can be due to the information lost during

the data de-noising process, which shows the implications of the practical situation in con-

trast to an ideal set of data. However, it is evident that equally-good and clear damage

detection results have been achieved using CS-reconstructed data.

Figure 15 shows the damage detection results of the Wiener filter method using original

data and the CS-reconstructed data. As with the ARD method, presented here are only

the results from one sensor due to the similarity shown by all other sensors in their damage

detection results. The mean value of the Wiener filter MSE of the reference structure as well

as the damaged structure are plotted in Figure 15. Three mean-MSE values representing the

three damage scenarios in Figure 1b, show a clear difference from the reference mean-MSE

value in Figure 15b. This indicates successful damage detection in all three cases using

the CS-reconstructed data. Further, damage detection results of the same sensor using the

original data illustrated in Figure 15a shows that CS-reconstructed data can be relied-upon

for equally accurate damage detection. Similar to the ARD comparison, the magnitude

reduction of the Wiener filter MSE values of CS-reconstructed data compared to those of
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the original data can be a consequence of information loss during the wavelet de-nosing

process.

5.2. Damage localization

Figure 16 illustrates the damage localization results from the ARD method. The com-

puted Fisher criterion is plotted against the sensor number for damage localization. Figure

16a, Figure 16b and Figure 16c show the localization results of One damage zone, Two

damage zones and Three damage zones respectively as per the experiment records in Figure

1b. Figure 16a has located damage in Sensor 8 agreeing with the experimental records that

indicate crack damages in the right span of the structure where Sensors 6 to 8 are located

(Figure 1b). Sensors 5 to 8 indicate damage in Figure 16b which represents Two damage

zones localization results. In experiment records of two damage zones, the right span and

the mid support area of the structure where Sensors 6 to 8 and Sensors 4 to 6 are located

respectively, are damaged (Figure 1b). Therefore, the localization of damage in Sensors 5 to

8 in Figure 16b can be considered as accurate in localizing the two damage zones compared

with the experiment records in Figure 1b. Similarly, three damage zones are accurately

located in Figure 16c, most prominently by Sensors 8, 5 and 1, in right span, mid support

area and left span of the structure, respectively. Therefore, comparing with the experimen-

tal records, it is evident that the damage locations have been accurately detected using the

CS-reconstructed data in all three damage scenarios using the ARD method.

Figure 17 illustrates the damage localization results of the three damages cases: One

damage zone, Two damage zones and Three damage zones in Figure 17a, Figure 17b and

Figure 17c respectively. The normalized CCF coefficient-variance of the Wiener filter MSE

values of sensor pairs are plotted against the sensor pair number. In this study, the sensors

are paired with their adjacent sensors due to the linearity of the structure (Figure 1a). All

sensors apart from Sensors 1 and 9 are paired with both its adjacent sensors (ex: Sensors

1-2, 2-3, 3-4 etc.), in order to accommodate as much spatial information as possible, making
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8 pairs of sensors altogether. Figure 17a, Figure 17b and Figure 17c have successfully

located: one damage zone in right span of the structure; two damage zones in right span

and mid-support of the structure; and finally three damage zones in right and left spans and

mid-support of the structure respectively. Therefore, it is evident from Figure 17 that the

method has successfully located damage in all three cases using the CS-reconstructed data.

Although the results of only three loading stages are presented here due to limited space,

all 13 loading stages of the experiment showed accurate damage detection and localization

results. The above results confirm that the ARD method and the Wiener filter method have

successfully detected and located damages in the structure using the CS-reconstructed signal.

Therefore, it can be concluded that the data compression and the reconstruction using CS

has not been carried out at the expense of the important information of the structural

measurements. In other words, CS has successfully captured the important information of

the original signal sufficient for damage detection and localization with the used damage

detection methods.

Application of CS for an SHM system requires pre-knowledge of the sparsity of the signal.

The measurement matrix has to be determined according to the sparsity and built-in to the

sensors prior to installation. Any SHM system has to undergo some pre-testing phases

before it is fully operational. Thus, in this pre-testing phase, the structural responses can be

acquired using the intended sensors and tested for their sparsity. The measurement matrix

can be determined accordingly. Once the sensors are installed and the SHM system is online,

the signal can be acquired in an already compressed form during sampling itself, which gives

the main advantage of saving sensor energy and memory space using CS for compressed

data acquisition. These data are first stored in the sensors as usual, and then transmitted

to the central server for processing and decision making.

The heavy computations such as convex optimization required for the reconstruction pro-

cess are carried out at the central server where the compressed data are received. Thereby,
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CS offers another advantage by not placing a computational burden on the sensors. Using

CS in an SHM system will not only provide very good reconstruction of the original struc-

tural response, impressive CRs and the above mentioned advantages, but also facilitates the

system with the means of collecting the full signal at the central server. This will enable

more studies and monitoring work to be carried out at convenience, without compromising

the important information contained in the structural responses.

6. Conclusions

CS is a recent breakthrough in communication technology that introduces the means of

reproducing a signal with a significantly lower number of acquired samples than the Nyquist’s

rate by exploiting the sparsity of a signal. Sampling the signal in an already compressed

form, CS saves sensor memory space and power spent on data storage and compression pro-

cesses. In this paper, CS is explored for its applicability in effective and efficient SHM using

experimental structural response data from an RC structure. Using CS with SHM measure-

ments, successful reconstruction of the signal was achieved with reconstruction accuracies

as good as 99% at considerable compression levels. Since CR is a direct indication of energy

and memory saving in the system, these results suggest that CS could be used for energy

efficient and memory efficient SHM. Further analysis were carried out on the reconstructed

signal for accuracy in structural damage identification. These analyses resulted in successful

damage detection and localization in the structure using two structural damage identifica-

tion methods: the ARD method and the Wiener filter method. Thus, it can be concluded

that in this study, data compression through CS has retained the important information of

the structural responses required for damage decision making. The success of this study is

a good indication that CS has much potential in the development of efficient and effective

SHM systems.
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Table 1: Comparison of CS performance against wavelet compression using Fixed and Huffman encoding.

Comparison Compressive sensing Wavelet
feature (’rigrsure’ threshold) compression

2× s 3× s 4× s 5× s 10× s 15× s Sym2 Lv2 Db2 Lv10
Signal length 220 330 440 550 1100 1650 2620 2070
CR 18.64 12.42 9.32 7.45 3.73 2.48 1.56 1.98
Reconstruction

0.7025 0.8207 0.8600 0.8879 0.9777 0.9923 1.0000 1.0000
accuracy (RACS)
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(a) Static test and sensor locations.

(b) Damage scenarios.

Figure 1: Experimental setup and damage scenarios.
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Figure 2: A sample of the structural impulse response and its frequency spectrum.
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Figure 3: Original signal compared with the denoised signals using different threshold selections (Hard
thresholded).
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Figure 4: Original signal compared with the denoised signals using Hard and Soft thresholding (threshold
selection using Stein’s Unbiased Risk method).
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Figure 6: Reconstructed signals with different compression ratios, and their frequency spectra.
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Figure 7: Reconstruction accuracy for different compression ratios.
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Figure 8: Compressed signals with different de-noising thresholds.
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Figure 9: Reconstructed signals with different de-noising thresholds and their frequency spectra.
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Figure 10: Reconstruction accuracy with different thresholding techniques.
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Figure 11: Reconstruction accuracy with different thresholding techniques and sample lengths.

2*s 3*s 4*s 5*s 10*s 15*s
0 

5 

10

15

20

En
er

gy
/m

em
or

y 
sa

vi
ng

Compressed sample length
2*s 3*s 4*s 5*s 10*s 15*s

0.7

0.8

0.9

1  

R
A

C
S

Figure 12: Sensor energy and memory saving with CS application.
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Figure 13: Reconstructed signals with different compression techniques and their frequency spectra.
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Figure 14: Damage detection using the ARD method with Original data and CS-reconstructed data.

38



Ref. One D Two D Three D
0

20

40

60

(a) Original data

Ref. One D Two D Three D
0

10

20

30

40

(b) CS-reconstructed data
Damage scenario

W
ie

ne
r f

ilt
er

 M
SE

Figure 15: Damage detection using the Wiener filter method with Original data and CS-reconstructed data.
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Figure 16: Damage localization using the ARD method.
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Figure 17: Damage localization using the Wiener filter method.
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