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Abstract—The paper presents a review of the spatial prediction
problem in the environmental monitoring applications by utiliz-
ing stationary and mobile robotic wireless sensor networks. First,
the problem of selecting the best subset of stationary wireless
sensors monitoring environmental phenomena in terms of sensing
quality is surveyed. Then, predictive inference approaches and
sampling algorithms for mobile sensing agents to optimally
observe spatially physical processes in the existing works are
analysed.

I. INTRODUCTION

Environmental issues such as pollution of land, water and
air, drastic climate change, natural disasters, and resource
depletion have topped the agenda in recent years. These are
crucial not only to governments but also to environmental
scientists. Therefore, it would be prudent to monitor spatially
correlated environmental phenomena so as to ameliorate the
knowledge and understanding of their economic, environmen-
tal, and health impacts and implications. For instance, deter-
mining distributional patterns of ecological phenomena can
be utilized to design resource-specific exploitation plans [1].
Better understanding of physics underlying occurrence process
of earthquakes [2] can generate early vital hazard warnings
to society. Results from observing sulphur dioxide SO2 in
the air [3], which may affect the respiratory system, should
be given to alert community council to reduce burning of
sulphur-containing fuels in factories. In the agricultural field,
monitoring nitrogen density in the soil can be used to regulate
farm inputs that leads to mitigation of environmental pollution
due to over-application of nitrogen fertilizer [4]. In addition
to concerns mentioned above, there is required ubiquitous ob-
servations of temperature, humidity, rainfall, soil ingredients,
and mono-nitrogen oxides NOx in natural and built-up habi-
tats [5], [6]. Nonetheless, since environmental measurements
are a single scalar quantity that is only locally valid, it is
required to make predictions about the process at unmeasured
locations by using observations [7]–[9]. Therefore, there are
currently strong motivations to monitor, model and predict
the environmental field of interest that is often represented as
complex phenomena. More particularly, if sensing equipment
is effectively used in monitoring, modelling and predicting the
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spatial phenomena, which is referred to as adaptive sampling,
results from visually representing the physical field are useful
in making decisions regarding environmental issues.

The typical task of wireless sensor networks (WSN) [10]
consists of gathering measurements of a spatial field over
a region of interest. However, for instance in a stationary
wireless sensor network (SWSN), multiple wireless sensor
nodes co-located within the vicinity of a phenomenon in
a dense SWSN may generate similar data samples. This
over-sampling problem has the potential to cause a sizeable
redundancy in sensed data, data collection and analysis of
long-term monitoring to be very expensive. Consequently, it
is crucial to select the most informative subset of stationary
wireless sensor nodes out of all potential ones, which should
participate in the sensing task. The selection procedure is
known as a sensor selection problem in which the resulting
prediction is required to conform requirement of the highly
sensing quality in realistic applications.

Nevertheless, if the networks of stationary wireless sensors
are deployed in a changing environment, the stationary wire-
less sensor locations selected by a sensor selection algorithm
are no longer the most informative over time. Hence, a wire-
less sensor network incorporating mobile robotic platforms
is desirable. With a set of networked mobile sensor nodes,
the mobile robotic wireless sensor networks (MRWSNs) are
capable of providing services required not only for monitoring
but also for exploring the environment. Effectively utilizing the
MRWSNs to observe and predict the environmental fields is
widely considered as a sensor placement problem.

This paper is to summarize all approaches in literature
proposed to address the problems of sensor selection and
sensor placement.

II. SENSOR SELECTION IN SWSNS

A. Criteria for Sensor Selection

In statistics, selecting observations has been considered
as an experimental design problem [11]–[14]. The design
objective is to derive the deployment of sensing devices by
the use of model uncertainty, which could be formulated by
complicated statistical techniques. The optimality criteria were
constructed based upon the properties of the inverse moment
matrix. For instance, D-optimality considers the determinant



[15], A-optimality examines the trace and E-optimality calcu-
lates the maximum eigenvalue [12].

Recently, research attention to the sensor selection has
concentrated on selecting observations in order to maximize
the quality of parameter estimation [16]–[18] with a special
focus on linear models that are often coupled with a stochastic
measurement error term. The sensor selection metric can
be formulated in a Bayesian framework [19] in which it
is supposed to have the knowledge prior to carrying out
the experiments. In equivalent words, combining the prior
probability distribution of the parameter space with the obser-
vations, the design criteria can be derived. The sensor selection
criteria are also defined based upon scalar functions of the
Fisher information matrix or the Bayesian Fisher information
matrix [18]. However, in the context of spatial prediction,
the design objective frequently concerned is the quality of
sensing, which is described as the accuracy of prediction or
the uncertainty at unobserved locations of interest, after the
observations are made. This requirement has been utilized to
develop information-theoretic criteria [20]–[24].

B. Algorithms for Sensor Selection

In terms of sensor selection algorithms, one can simply
process all direct enumerations of

(
n
k

)
possible choices and

pick the best subset of k sensors out of n potential ones
having the minimal prediction error. It can be seen that this
straightforward approach has practical implications depending
on the values of n and k and thus motivates more structured
methods. In [25], the global optimization techniques such
as branch and bound were employed to exactly solve this
problem. Nevertheless, since the sensor selection problem,
which can be viewed as a combinatorial optimization problem,
is NP-hard [26], [27], these accurate approaches are often
computationally intensive [28], even with modest values of
n and k, and not attractive in real world solutions.

In an effort to improve the model parameter estimation,
there have been some interesting methods proposed. For
instance, in [16], Joshi et al. proposed the heuristic method
based on convex optimization [11] for the sensor selection
problem. The heuristic approach in [16] utilizes a relaxation
technique to convert a discrete optimization problem of sensor
selection into a continuous optimization problem. Gupta et
al. [29] in their work represented a stochastic sensor selec-
tion algorithm that selects sensor locations randomly by the
use of a probability distribution. Maximum information in
the estimation of the state variables can be obtained by a
mixed-integer semi-definite program approach [22]. In [17],
a binary particle swarm optimization technique was employed
to choose a subset of sensors so that the error in parameter
estimation is minimized.

Based on Bayesian experimental design, the information-
theoretic approaches such as entropy [30] or mutual infor-
mation [31], [32] were proposed to consider the prediction
uncertainty of the random variables at unobserved locations
in space. The greedy heuristic algorithms based on these
information-theoretic models together with Gaussian processes

proposed by Cressie [33] can obtain near-optimal solutions for
the sensor selection problem. These algorithms were demon-
strated in the works [7], [20], [26], [34], [35]. The premise
behind the entropy approach is to minimize the uncertainty of
conditional entropy of unobserved locations, given observa-
tions. Under Gaussian assumption, Ko et al. [26] proposed a
greedy suboptimal algorithm by reorganizing the maximization
of joint entropy of a chosen set as maximizing the determinant
of the covariance matrix of random variables at chosen loca-
tions. However, as shown in [36], the entropy method tends
to pick locations along the border of interested space causing
sensed information waste. To address the drawbacks of the
entropy approach, the work in [20] and our previous works
in [21], [37] proposed a new method based on the mutual
information. In this method a subset k from potential n sensor
locations is selected such that the mutual information between
the selected subset and the rest of the sensor locations is
maximal. In the context of the sensor selection problem, this
maximum mutual information is obtained indirectly.

The greedy approximation [38], [39] is a simple, but of-
ten used, algorithm for combinatorial optimization problems
which can be directly applied in the sensor selection problem.
By building up a solution piece by piece, the greedy approx-
imation algorithm may complete the computational tasks in
a few seconds. In every iteration, one sensor is chosen and
moved to the selected set. Once a sensor is moved to the
selected set it is impossible to remove it from the selected set
during later iterations. Nevertheless, this prime disadvantage
of the algorithm voids the solution to reach optimal values.
Another prominent heuristic algorithm to solve combinatorial
optimization problem is the genetic algorithm. The genetic al-
gorithm imitates the evolutionary process of nature in which a
solution deputizes for the organisms’ genetic string. Yao et al.
[40] in their work illustrated the use of the genetic algorithm
to solve the sensor placement problem. Such an approach,
however, can be very expensive for some computational costs
when going over a population of individuals [41].

III. SENSOR PLACEMENT IN MRWSNS

In the wireless sensor network and robotic research commu-
nity, mobile robotic sensor nodes have attracted much recent
attention due to their vital impact on applications such as
surveillance, environmental monitoring, wildlife detection and
urban search and rescue operations [42]. The mobile ability
of robotics can be utilized to improve performance in WSNs
such as node localization, data collection, data aggregation and
detection and reaction of failed nodes.

With robots embedded in the sensor network, mobile robotic
wireless sensor nodes provide a considerable benefit to con-
nectivity, cost, reliability, and energy efficiency throughout
the network as compared with a stationary wireless sensor
network [43], [44]. Furthermore, the mobility of wireless
sensors allows enhancement of the connectivity in a sparse
WSN [45], [46]. However, the most widely utilized advantage
of mobile robots in the WSNs is to efficiently improve data
collection [47]–[50]. The combination of the new paradigm



brings in new opportunities to reduce and better distribute the
energy usage within the network. Particularly, mobile agents
have the potential to decline the number of hops in data
transmission, which justifies the reduction of energy used to
transmit the data and avoids the funnelling effect in centralized
WSNs.

A. Sensor Placement in WSNs

The term sensor placement has been used in various contexts
of the WSNs. For instance, in the work by Fletcher et al. [51],
an algorithm named Randomized Robot-assisted Relocation
of Static Sensors (R3S2) is proposed to utilize mobile robots
for the purpose of servicing the WSNs. Specifically, in R3S2,
robots travel around the network to discover sensing holes
that are not being covered due to unpredictable node failure,
then move redundant sensors to the uncovered area. Similarly
to the work [51] in terms of servicing systems, authors in
[52] examine robot task allocation and robot task fulfilment in
wireless sensor and robot networks. For example, the network
will organize a group of robots to achieve a desired goal, while
other moving robots will recharge batteries on the nodes in
the regions of the network. Moreover, there are algorithms
proposed in [53], [54] for placement of relocatable nodes in
order to improve network connectivity. Considering a large-
scale static WSN, [55], [56] propose approaches that also
employ mobile robots to detect and report failed sensors and
then replace these broken nodes.

B. Sensor Placement for Environmental Monitoring

In the context of monitoring spatial environmental fields, the
sensor placement problem for predicting the spatial phenom-
ena has been investigated, which has considerably contributed
to a number of interesting approaches and algorithms. In [57],
[58], locational optimization had been proposed in optimizing
the mobile sensor network locations with respect to a known
event probability density in the spatial environment. However,
physical processes are not known a priori, and a density
function can be only established when measurements are to
be taken. Leonard et al. [59] employed a linear model to
predict an ocean field and proposed a performance metric that
minimizes uncertainty in a model estimate of the sampled field
to derive a parameterized family of paths for the mobile sensor
networks. By combining with coverage control [57], Martı́nez
[60] derived a distributed prediction scheme based on a nearest
neighbour interpolation approach for field estimation in mo-
bile sensor networks. The primary disadvantage of the linear
models in both [59] and [60] is that the model parameters
must be known a priori. In terms of the compressive sensing
framework, Huang et al. [61] maximized the entropy of next
measurements to find the next most informative positions for
networked mobile sensors to reconstruct an unknown sensing
field. By defining a graph whose vertices and edges are
considered as a single robot’s visiting locations and moving
paths, respectively, a path planning algorithm for a mobile
robot was proposed in [62] so as to maximize information
gained from measurements of a spatio-temporal phenomenon.

Ouyang et al. [63] utilized a Dirichlet process mixture of
Gaussian processes to model the continuous-valued spatial
field and then proposed a decentralized multi-robot Bayes-
optimal active learning policy for multiple robotic sensors
so that the most informative partitions of a non-stationary
phenomenon are to be sampled. The policy is then resolved
by a greedy algorithm. The works in [64], [65], La et al.
used consensus filters to propose a distributed sensor fusion
algorithm for multiple mobile sensor nodes to automatically
adjust their movements to obtain quasi uniform confidence of
estimating and mapping a scalar field. By utilizing a Kalman
filter for a downsampled system, [66] has developed the
optimal sampling strategies in order to balance the estimation
quality and the sensor network lifetime.

In terms of statistics, the spatially environmental phenom-
ena are efficiently and effectively modelled by the Gaussian
processes (GPs). Therefore, Suh et al. by their work [67]
represented an environmental monitoring navigation strategy
for a sensing robot, in which the information gain along the
robot’s trajectory is maximized. Considering a team of sensing
agents, Graham et al. described the random field models by
tools from geostatistics, that is Kriging, and proposed to utilize
either a known [68] or an unknown [69] covariance function.
The sensor network includes static computing nodes and mo-
bile sensing agents taking measurements of a random process.
The static nodes compute the gradient of variance and send
control commands to robotic sensors. Nevertheless, in [70],
maximizing joint entropy of measurements in a distributed
fashion was investigated to consider the adaptive sampling
paths, where motion coordination was designed based upon
Voronoi partitions.

Popa et al. proposed extended Kalman filter [71] and non-
linear extended Kalman filter [72] based adaptive sampling
approaches to optimally estimate the parameters of distributed
variable field models. These schemes also aim to decline
the uncertainty in the knowledge of a linear-in-parameters
field distribution (linear model). Choi et al. [73] introduced
a Kalman filter based technique to learn the parameters of a
physical spatio-temporal process model and then presented cri-
teria to navigate mobile sensors throughout an environment in
order to maximize a specified performance. In [74], the authors
delineated an objective function of a trajectory optimization
problem for robotic wireless sensors as a deterministic optimal
control problem. In other words, the objective function is
imposed on minimizing the variance of the estimate of the
environment, which is eventually resolved by a dynamic pro-
gramming algorithm. Euler et al. in their work [75] introduced
a sampling navigation scheme for a group of unmanned aerial
vehicles to simultaneously observe multiple concentration
levels of an atmospheric plume. The authors incorporated
the estimations of the concentration into the uncertainty at
these levels to find out the optimal sampling locations. Wu
et al. [76] proposed a switching scheme for a team of
mobile sensors to switch between individual exploration and
cooperative exploration as they were exploring an unknown
environment. It is proposed that the density field is defined



by mapping uncertainty, it changes with every measurement
taken; a symmetry-preserving coordinated motion strategy for
sensing agents was delineated in [77] to provide optimal
measurements.

Cortés in [78] developed a distributed Kriged Kalman filter
for robotic wireless sensors to predict the field of interest.
A consensus algorithm is implemented on new measurements
to calculate state predictions of the field. A gradient based
controller was designed to drive the mobile wireless sensors
to take optimal samples so that the variance of the estimate
error is decreased. In [79], Oh et al. proposed a distributed
learning algorithm for robotic sensing systems, called cross
validation. In this proposition, each mobile sensor learns
model parameters using its own measurements and sends the
learned parameters to other sensors to validate until all mobile
sensors share the best fitness results.

Xu et al. primarily used the GP regression for estimating and
predicting the generally scalar field and designed optimality
criteria based on the Fisher information matrix [80] and
the average of the prediction error variances [81], [82] for
the optimal sampling paths of the MRWSNs. A maximum
likelihood recursive filter is proposed to learn unknown model
parameters for the covariance function as well as the basis
functions. More specially, in [82], a theoretical foundation of
the GP regression with a subset of measurements is derived for
the MRWSNs. Based on this proposition, a gradient descent
based algorithm is delineated to manage the sensing robot
coordination. The authors in [83] introduced the Bayesian
optimization based technique for the purpose of choosing the
much more relevant informative locations for the MRWSs in
the GP modelled field. Moreover, a new utility function based
on travelled distances of the MRWSs was also proposed to be
used indirectly in trade-off between the exploration and the
exploitation of the mobile sensors. In our previous works [84],
[85], efficient approaches based on the conditional entropy
and posterior variances were proposed to design near-optimal
sampling paths for the mobile robotic sensors, where it is more
important that the solutions were proved to be bound.

IV. GAUSSIAN MARKOV RANDOM FIELD FOR SENSOR
PLACEMENT

With respect to the GP model, the computational issues have
always been a bottleneck, since the computational complexity
of factorizing dense covariance matrices is cubic in dimension,
which is known as ”the big n problem” [86]. In the context
of statistics, this challenge has been dealt with by a reduced-
rank approximation of the Gram matrix [87], a sparse greedy
approach [88], and a sparse GP [89]. Recently, [82] proposed
an approach to diminish the computational complexity of a
large dense covariance matrix by shortening mobile sensor ob-
servations. The disadvantage of this method is that the model
parameters need to be known in advance. Other efforts are to
represent a continuously spatial process by a discretely indexed
Gaussian field. In other words, [90]–[93] have attempted
to enhance the computational complexity in modelling the
spatial field by replacing the GP by a computationally efficient

Gaussian Markov random field (GMRF) [94]. The GMRF
is considerably specified by a sparse precision matrix that
makes it substantially advantageous to effective computation.
The sparsity property of the precision matrix is constituted
by a conditional independence concept in which conditional
distribution of every random variable only depends on its
neighbours. As a consequence, the sparsity of the precision
matrix allows the GMRF to have received more and more
attention for resource-constrained MRWSNs as compared to
the standard GP [74], [95]–[99]. In their work [74], Ny et
al. introduced an estimator by the use of the Kalman filter,
where the sensor trajectory optimization problem based upon
an information criterion is in turn a deterministic optimal
control problem. In addition, [95] represented an approach
in which the physical phenomenon of interest is regularly
discretized and modelled by a GMRF. In this proposition,
the hyperparameters of the GMRF model are supposed to be
known and chosen with a support. The authors in [98] intro-
duced a new class of a GP built on a GMRF for modelling the
spatial process. Nonetheless, this technique proposes a model
with a known precision matrix. More interestingly, Jadaliha
et al. [96] investigated the GMRF to tackle the simultaneous
localization and spatial prediction problem in a fully Bayesian
fashion. These authors also considered localization uncertainty
of the mobile sensing agent in the spatial prediction utilizing
the GMRF in another work [97]. However, the approaches
proposed by the works [95]–[98] are limited to a representation
of a regular lattice, which requires the model parameters to be
known a priori.

V. CONCLUSIONS

In this paper, a detailed literature review on the spatial pre-
diction by the utilization of the WSNs has been given. Various
criteria for the sensor selection problem in the SWSNs have
been proposed, which have been then addressed by different
approaches, in the literature. Many other methods to resolve
centralized and distributed spatial prediction issues and to find
the sampling paths for the MRWSs in the sensor placement
problems have been introduced. Some disadvantages of the
existing techniques have been also analysed.
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[92] L. Hartman and O. Hössjer, “Fast kriging of large data sets with
Gaussian Markov random fields,” Computational Statistics and Data
Analysis, vol. 52, pp. 2331–2349, 2008.

[93] F. Lindgren, H. Rue, and J. Lindström, “An explicit link between
Gaussian fields and Gaussian Markov random fields: The stochastic
partial differential equation approach,” Journal of the Royal Statistical
Society (Series B), vol. 73, pp. 423–498, 2011.

[94] H. Rue and L. Held, Gaussian Markov random field: Theory and
applications. Chapman and Hall - CRC Press, London, England, 2005.

[95] Y. Xu, J. Choi, S. Dass, and R. Maiti, “Efficient Bayesian spatial
prediction with mobile sensor networks using Gaussian Markov random
fields,” Automatica, vol. 49, pp. 3520–3530, 2013.

[96] M. Jadaliha and J. Choi, “Fully Bayesian simultaneous localization
and spatial prediction using Gaussian Markov random fields,” in Proc.
American Control Conference, Washington DC, USA, June 2013, pp.
4599–4604.

[97] M. Jadaliha, Y. Xu, and J. Choi, “Efficient spatial prediction using
Gaussian Markov random fields under uncertain localization,” in Proc.
ASME Dynamic Systems and Control Conference, Florida, USA, October
2012.

[98] Y. Xu and J. Choi, “Spatial prediction with mobile sensor networks
using Gaussian processes with built-in Gaussian Markov random fields,”
Automatica, vol. 48, pp. 1735–1740, 2012.

[99] L. V. Nguyen, S. Kodagoda, R. Ranasinghe, and G. Dissanayake,
“Mobile robotic wireless sensor networks for efficient spatial prediction,”
in Proc. 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Chicago, IL, USA, September 2014, pp. 1176–1181.


