
Elsevier required licence: ©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



 1 

 

 

Avoid being the turkey: How Big Data analytics 

changes the game of strategy in times of ambiguity 

and uncertainty 

Mark van Rijmenam, University of Technology Sydney, Australia 

Sydney City Campus, PO Box 123 Broadway, NSW 2007, Australia 

Mark.vanRijmenam@student.uts.edu.au (corresponding author) 

Tatiana Erekhinskaya, Lymba Corporation, United States 

901 Waterfall Way, Building 5, Richardson, TX 75080, United States 

tatiana@mail.lymba.com 

Jochen Schweitzer, University of Technology Sydney, Australia 

Sydney City Campus, PO Box 123 Broadway, NSW 2007, Australia 

Jochen.Schweitzer@uts.edu.au 

Mary-Anne Williams, University of Technology Sydney, Australia 

Sydney City Campus, PO Box 123 Broadway, NSW 2007, Australia 

Mary-Anne.Williams@uts.edu.au 

 

 

Keywords: big data, dynamic capabilities, strategy, data analytics 



 1 

 

 

Avoid being the turkey: How big data analytics 

changes the game of strategy in times of ambiguity 

and uncertainty 

 

 

 

 

 

 

 

 

 

Keywords: big data, dynamic capabilities, strategy, data analytics  



 2 

Abstract 
 

In order for organisations to remain competitive in times of ambiguity and uncertainty, there 

is a need to detect and anticipate unknown unknowns, also called ‘black swans’. When these 

are ignored they may lead to competitive struggles. In this paper, we build on this view and 

suggest that big data analytics can provide necessary insights to help change strategy 

making. Research suggests that ambidextrous organisations should focus on developing and 

maintaining their dynamic capabilities. Following on from this, we take a dynamic 

capabilities perspective and propose a theoretical framework to explain the intricacies of big 

data analytics. This framework explains the ability of organisations to detect, anticipate and 

respond strategically in ambiguous and uncertain business environments. For a meta-

synthesis of 101 cases of big data analytics, we employ a multi-method approach that 

incorporates Natural Language Processing, semantic analysis and case analysis, allowing 

extraction and analysis of structured information from unstructured data. Overall, we find 

evidence of big data analytics helping to detect, anticipate and respond to industry 

disruption. We offer six propositions about the relationships between the levels of data 

analytics capabilities and strategic dynamic capabilities. We find that descriptive data 

analytics improves the capability of an organisation to understand the business context 

(sensing) and that predictive data analytics aids in the realisation of business opportunities 

(seizing). This study contributes to an understanding of big data analytics as a dynamic 

organisational capability that supports strategic decision-making in times of ambiguity and 

uncertainty. We conclude by suggesting areas for further investigation, particularly in regard 

to the strategic application of prescriptive data analytics.  
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Practitioner points 
 

• Big data analytics can be observed as dynamic strategic capability; when 

implemented well, it can add value to an organisation. 

• Descriptive analytics and prescriptive analytics can be valuable tools to help 

organisations better understand uncertain and ambiguous competitive environments 

and inform strategic decision-making processes. 

• The novel approach of extracting structured information from unstructured data, using 

semantics and Natural Language Processing (NLP), can offer new insights for 

organisations.  

Introduction 

In many business settings accelerated change is the only constant [1]. Organisations that wish 

to remain competitive must focus on excellence in day-to-day business operations and on 

detecting, anticipating and responding to disruptive changes [2, 3], and they must do so while 

demonstrating industry leadership and managing shifting stakeholder behaviours [4]. This 

ability, coined ‘organisational ambidexterity’ [5, 6], is especially important when facing 

environmental ambiguity or uncertainty [7, 8]. Environmental ambiguity refers to situations 

in which relationships are unclear and organisations face ‘unknown unknowns’ [8] or 

unidentified risks. Uncertainty refers to a changing environment, in which a lack of 

information makes it difficult to determine the causes and effects of change [8]. 

Ambidexterity is achieved through so called dynamic capabilities that help organisations 

understand a changing and uncertain environment [9, 10], which, according to Teece [9], 

requires an analytical framework. Other scholars have suggested that data can assist 

organisations in understanding their environment [11, 12]. However, it is yet unclear whether 
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big data analytics is a dynamic capability that offers organisations a competitive advantage. It 

is this question that we aim to answer with our study.  

Already, Christensen and Raynor [13] have argued that a firm is in particular need of 

achieving organisational ambidexterity when it finds itself in an uncertain environment. Such 

an environment is characterised by newcomers that are creating better products and services, 

often by using fewer resources and leveraging technology. Ambidexterity requires 

organisations to recognise new information and to apply dynamic capabilities while focusing 

on internal and external challenges [5, 14, 15]. With the increasing diffusion of, emerging, 

digital technologies, incumbents are being forced out of business, especially in traditionally 

closed markets [16]. Businesses such as Blockbuster, Kodak and Borders serve as examples 

of once-successful companies that failed to respond to technological changes [17] such as 

online film distribution, digital photography and online book retailing. By contrast, 

newcomers such as Instagram, Netflix and Amazon have taken an entrepreneurial approach 

to leverage technological opportunities that were ignored or overlooked by others [18]. 

Christensen et al. [13] discussed how disruptive market innovations originate in low-end 

markets in which incumbents focus on the most profitable and demanding customers. They 

also develop in new markets in which disruptors aim to develop early footholds to turn ‘non-

consumers’ into customers. Therefore, to avoid a ‘Kodak moment’ or, in Taleb’s words [19], 

to avoid ‘being the turkey’1, it is vital to develop the capacity to quickly detect, anticipate and 

respond to market disruptions and competitive threats. 

                                                
1 Taleb [15, P40] uses the Thanksgiving turkey as metaphor for what can happen if an organisation fails to 
understand and prepare for a changing environment. ‘A turkey is fed every day and every feeding will firm up 
the bird’s belief that it is the general rule of life to be fed by friendly members of the human race ‘looking out 
for its best interests’.’ Until on the day before Thanksgiving, something unexpected happens to the turkey. 
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As ‘right answers can’t be ferreted out’ [20, P7], recognising technological market disruption 

in a complex context is no easy feat [21]. Often, disruptive innovations go unnoticed until it 

is too late [22]. Taleb [19] labelled such disruptors ‘black swans’—or unknown unknowns. 

These outliers have an extreme effect and retrospective predictability, but are unappreciated 

when they are first discovered. Black swans result from the interaction of chance, 

environmental circumstance and decisions made in an environment in which a lack of 

information limits an understanding of the consequences of those decisions—that is, an 

ambiguous and uncertain environment [23]. For example, the astronomer Clifford Stoll [24] 

famously predicted that the internet was a ‘fad’; yet, in hindsight, the internet has facilitated a 

ubiquitous capacity to communicate across time and space, and has become the catalyst for 

the creation of societies and businesses constructed around organisational and personal 

networks [25]. 

A black swan that is currently unfolding is the blockchain; its effect on global economies and 

organisations remains unknown, yet it has been predicted to greatly disturb economies and 

organisations [26, 27]. Some researchers suggest that entrepreneurial thinking allows 

organisations to better detect the emergence of black swans [28, 29]. Others, such as Taleb 

[19], have argued that, while access to more information may prevent organisations being 

surprised by black swans, information alone is not enough to enable adequate responses. 

Decision-making processes also affect the ability of organisations to anticipate and respond 

to disruption [19, 23]. According to Taleb [30], organisations that are able to recognise black 

swans are not fooled by randomness; they have processes and structures in place that are 

capable of dealing with ambiguity and uncertainty [7, 8] and are able to leverage 

opportunities to remain competitive [31]. Hence, disruption and opportunities that may flow 

from the occurrence of black swans are not impossible to predict [19]. In Hitt and Ireland’s 
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[32] view, recognising black swans is a matter of knowing where to look, having flexible 

processes in place, cultivating an entrepreneurial mindset and acting swiftly [33]. 

Recent research indicates that data can also assist in identifying black swans [11, 12]. In 

many organisations, the role of data has become increasingly important [34, 35] in detecting 

and understanding environmental ambiguity and uncertainty. Firms that embrace a data-

driven approach to decision-making often find that they have to change the design of the 

organisation [36]. Grossman [37] suggested that data shifts power structures, moving power 

away from leaders with years of experience to whoever has access to data and the means to 

analyse them to make strategic decisions [38]. The creation, storage and use of data in high 

velocity, volume, variety and variability is called ‘big data’, a term that has only been in use 

since 2001 [39]. Organisations and consumers already generate large amounts of data, which 

are predicted to grow exponentially [40]. In their seminal article ‘Big Data and Management’, 

George, Hass and Pentland [12] argued that big data change how organisations are designed 

and managed, their culture and identity and how decisions are made [11, 12]. For many, the 

most likely path to achieve competitive advantage is via big data analytics [41]. Hence, it is 

not only newcomers, such as Instagram, Netflix and Amazon, that can benefit from a data-

driven approach [42]. Any company can benefit, as big data analytics offer insights by 

extracting structured information from unstructured data using tools such as descriptive, 

predictive or prescriptive analytics [43]. In fact, some suggest that big data analytics have 

become a prerequisite to understanding the business environment and to remaining 

competitive [44, 45]. Studies show that big data analytics offer organisations competitive 

advantages [12, 46-48] and that this affects organisational design [36, 46, 49-51]. We argue 

that, although the role of big data analytics for strategy is important, it is not yet fully 

understood. 
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The dynamic capabilities perspective helps to shed light on how to employ big data analytics 

to detect, anticipate and respond to an uncertain environment. Teece [9] characterised 

dynamic capabilities as the capacity to sense opportunities and threats, seize opportunities 

and maintain competitiveness through transforming assets. To understand changes in the 

environment, he [9, 10] suggested that dynamic capabilities require ‘some kind of analytical 

framework’ [9, P1324]. In this study, we seek to further develop the notion of an analytical 

framework and investigate the role of big data analytics for dynamic capabilities and its 

micro-foundations, including sensing, seizing and transforming. 

We ask: how can organisations apply big data analytics when dealing with ambiguity and 

uncertainty? We seek to answer this question via a meta-synthesis of 101 academic papers 

and an analysis of the cases of data analytics therein. The benefits of a meta-synthesis ‘can be 

seen in empirically consolidating primary studies to build theory’ [52, P527]. Our method 

incorporates semantic analytics, NLP and case analysis. This allows us to extract structured 

information from unstructured data. We then study how organisations use big data analytics 

to understand their environment and anticipate and respond to ambiguity and uncertainty. Our 

inductive study has resulted in six propositions that help to identify when various forms of 

big data analytics can assist with sensing and seizing opportunities and, consequently, 

transforming different types of organisations. The theoretical contribution of our study lies in 

the conception of big data analytics as a dynamic capability that supports management in 

times of ambiguity and uncertainty. 

In what follows, we discuss the theoretical background related to black swans, big data 

analytics and dynamic capabilities. We then propose a conceptual framework and justify our 

methodology. Finally, we discuss our findings and derive six propositions that depict the key 

theoretical relationships between big data analytics and dynamic capabilities. 
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Theoretical background 
 
What are black swans? 

The term ‘black swan’ was originally used to connote an extraordinary, unusual or 

impossible event or phenomenon [53]. After the discovery of actual black swans in their 

native Australian habitat, its meaning changed, metamorphosing into a perceived 

impossibility that might be disproven. Taleb [19] used the term to describe events that have a 

distinct effect on organisations and their environment. However, black swans are not only the 

result of environmental forces [19]; they are also a consequence of deliberate choices made 

by management [23]. Choice, chance and environmental circumstances interact in an ever-

changing and uncertain world, resulting in positive and negative outcomes for 

organisations—sometimes in the most unexpected ways. Black swans are events that go 

unnoticed due to seemingly unconnected nodes in a network and across stakeholders [54] 

and, as such, imply ambiguity and uncertainty.  

Organisations that recognise black swans can create new opportunities and a competitive 

advantage [31], as it is at the edge of chaos and the unexpected that the greatest opportunities 

lie [55]. In this instance, predictions are of limited use, as the past is not always the best 

predictor of the future. This is because of the increasing number of unknown unknowns and 

their effects [2]. Hence, the strategic challenge is to continuously adapt strategy to a 

constantly, rapidly and unpredictably changing environment. Such adaptation requires ‘the 

ability to be open to new evidence and to be nimble and flexible in decision-making’ [3, P2].  

Kaisler and Armour [56] have argued that organisations with access to insights from data are 

more likely to identify black swans. However, the usual methods of statistical analysis, such 

as regression, correlation or standard deviation, are not sufficient [57]. As well as interpreting 

signals of a changing environment [33] that may be weak, antennae are required to scan the 
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horizon. Further, organisations require decision-making processes that allow swift action. 

However, humans are not very good at imagining the unexpected. Managers, like all people, 

tend to suffer from cognitive biases—that is, they look for what they know (focusing on data 

that reaffirms beliefs), see patterns in data in which none exist (due to the illusion of 

understanding), ask the wrong questions (and ignore evidence) and overestimate their 

knowledge (resulting in tunnel vision) [19, 30].  

To detect black swans—to be able to respond to an ambiguous and uncertain environment—

organisations must know where to look, be willing to expect the unexpected and act quickly 

and decisively [33]. Current research indicates that data-driven organisations are in a strong 

position to deal with environmental ambiguity and uncertainty when they have empowered, 

connected and decentralised decision-makers [36, 58], and when they have a flexible 

organisational design and the technological capabilities to innovate across time and space 

[59]. Research has led to better understandings of what constitutes black swans and how 

uncertain environments affect organisations; however, there is little research to explain how 

organisations can successfully respond to black swans.  

The role of big data analytics for business 

Big data relates to data that are high in volume, velocity and variety [39]. Recently, 

technologies have been developed to analyse such data (i.e., big data analytics) and these are 

now used to inform decision-making. When explaining the effect of big data analytics on 

organisations, authors have pointed to three different types (or stages) of data analytical 

practices [36, 38, 49, 60-63]: descriptive analytics, predictive analytics and prescriptive 

analytics [43, 56, 64-67]. Each stage offers insights that can improve and optimise 

performance and sustain competitive advantage [68-74]. Each stage increases in complexity, 

as does the value it may add to the business that employs it.  
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Descriptive analytics enable organisations to learn, filter, shape and calibrate opportunities by 

providing insights into what has happened in their internal and external environment [75, 76]. 

Similar to when you look into the rear-view mirror of your car, descriptive analytics looks 

into the past using multiple structured data sources and statistical methods to obtain insights 

about what has happened, from a second ago to decades ago [77]. As such, descriptive 

analytics only offers insights into what has previously happened; it does not provide 

recommendations on what to do moving forward. 

Predictive analytics improves decision-making across the organisation [66]. It is about the 

future and predicting what will happen [77]; it is like your car’s navigation system, directing 

you to the fastest route around a traffic jam. Predictive analytics uses machine learning and 

algorithms to find patterns and capture relationships in multiple (un)structured data sources to 

create foresight [78]. There is an assumption that organisations that use predictive analytics 

gain competitive advantage because they can anticipate the future [79]; however, insufficient 

data and flaws or biases in algorithms may significantly harm organisations and their 

customers [80]. 

Prescriptive analytics transform organisations. The final stage in understanding a business 

[81], prescriptive analytics offer recommendations on how to act upon, and take advantage 

of, predictions. It uses a variety of algorithms and data modelling techniques to gain a 

thorough understanding of the environment and improve business performance [65]. Likened 

to a car, it is a self-driving, autonomous vehicle that can pick you up and take you to your 

destination. 

Berner et al. [37, 38] argued that the application of analytics affects the power balance within 

organisations. Traditionally, the power to make strategic decisions lies with the person who 

has the most experience, decision-making rights [82] and access to resources or information 
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not available anywhere else in the organisation [83]. According to Bacon [84], knowledge is 

a form of power that can be gained from power [85]. However, when data and information 

are widely accessible in real-time, the power balance shifts [37] away from executives who 

may have years of experience. Thus, when organisations provide more people with access to 

knowledge through big data analytics, power is distributed more equally, empowering the 

organisation [36, 38, 86, 87]. Malone [58] observed that balancing top-down control with 

bottom-up empowerment is increasingly important. Due to the decreasing costs of 

information technology, decision-making is becoming decentralised. Decentralised 

organisations are better positioned to benefit from big data analytics [36], as real-time 

insights enable anyone, not only executives, to make decisions rapidly, resulting in more 

agile companies [12, 36, 38, 49, 60].  

Researchers largely agree on what big data analytics is and how it affects decision-making 

and power dynamics within organisations. However, we do not know how big data analytics 

can be employed strategically to understand the environment. Nor do we understand how it 

can guide strategic choices or affect change for organisations that are facing ambiguity and 

uncertainty. 

Dynamic capabilities as a theoretical lens 

Teece and Pisano [88] described dynamic capabilities as those capabilities that enable 

organisations to develop new products and services in changing market circumstances to gain 

competitive advantages [89-91]. According to Teece [9], they are most relevant for 

organisations operating in international and open markets that experience rapid technological 

change. Dynamic capabilities enable firms to incorporate, build and adjust internal or 

external assets; they are heterogeneous across firms, enabling highly adaptive behaviour [92] 
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and the agility to manage deep uncertainty [7, 93]. Zollo and Winter [94] found a direct link 

between dynamic capabilities and superior performance in changing environments.  

When seeking competitive advantage, dynamic capabilities offer a deeper understanding of 

how and when the market and environment are changing [9], which can give an organisation 

the ability to transform accordingly. Dynamic capabilities must be integrated, developed or 

reconfigured depending on how circumstances change [95, 96]. Such capabilities emerge by 

learning from mistakes, practise and experience [89, 97]. Teece [9] considered dynamic 

capabilities particularly relevant for organisations that are receptive to market and 

technological developments [95], especially within fast-moving environments that involve 

global markets and competition. Following on from this, Cavalcante and Kesting [98] have 

argued that organisations require a dynamic business model to continue operating their 

existing activities and flexible characteristics to adapt to a changing environment. When 

faced with industry disruption, a company that has dynamic capabilities is on the lookout for 

unknown unknowns, while an organisation that applies big data analytics to enhance its 

dynamic capabilities can create additional value [99-103]. 

Dynamic capabilities and, in particular, its micro-foundations, focus on how an organisation 

remains competitive in times of uncertainty [9, 104]. Zollo and Winter [94] argued that 

micro-foundations are integral to a business model and to the competitiveness of the firm. 

Teece [9] too notes dynamic capabilities as those capabilities that sense and seize 

opportunities and, subsequently, transform and realign the assets of an organisation. Sensing 

is the ability to understand customers, market trends and technological changes; understand 

the constraints that affect such changes (including laws and ethics); and scan the environment 

for change [105]. Organisations with dynamic capabilities align internal processes and 

routines (such as product development), decision-making and culture to seize the 
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opportunities that have been sensed [106, 107]. They do this by determining what 

technologies to use, business models to apply and market segments to target [9]. Once an 

opportunity is seized and the strategic direction has changed, the organisation transforms 

[108]. According to Teece [9] and Wang and Ahmed [109], sensing, seizing and transforming 

are essential for sustaining profitable growth. The routines, skills and capabilities 

underpinning sensing, seizing and transforming combine to give organisations a competitive 

edge in uncertain and changing environments [9]. In addition, Erevelles, Fukawa [102], and 

Opresnik and Taisch [110] claimed that a big data strategy underpins and facilitates dynamic 

capabilities to respond to changes in a dynamic environment. Hence, in this study, we apply a 

dynamic capabilities perspective to better understand how organisations can use big data 

analytics in ambiguous and uncertain times. 

Big data analytics has the potential to enable organisations to better understand the business 

environment and improve their strategic decision-making. However, we do not yet know 

enough about what types of data analytics are best suited to achieving such outcomes. In 

what follows, we propose a theoretical framework based on the dynamic capabilities 

perspective that links different applications of big data analytics to an organisation’s ability to 

detect and respond to black swans. 

Theoretical framework 

Following Teece’s view that ‘some kind of analytical framework’ [9, P1324] helps with 

understanding an uncertain environment, and with the aforementioned theoretical 

considerations in mind, we argue that different applications of big data analytics can be 

interpreted using a dynamic capabilities perspective. Data analytics, when conceptualised as 

dynamic capabilities, can help to interpret the business environment, enable managers to act 

and result in sustained superior performance and competitive advantage. Therefore, in this 
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study, we investigate the role of descriptive analytics, predictive analytics and prescriptive 

analytics within organisations in times of uncertainty and ambiguity. We aim to understand 

how these types of business analytics are linked to dynamic capabilities in general, and the 

micro-foundations of sensing, seizing and transforming in particular. This leads to our 

conceptual framework as shown in Figure 1. 

 

Figure 1: Conceptual framework 

Methodology 

We carried out a meta-synthesis of 101 peer reviewed academic articles featuring case studies 

of how organisations have applied various types of data analytics. A meta-synthesis analysis 

allowed us to draw comparisons and conclusions from these studies [111] by extracting 

structured information from unstructured data. With the objective of understanding how big 

data analytics enables organisations to sense, seize or transform to remain competitive, we 

applied a systematic selection procedure using a semantic data processing approach. The 

objective of this approach was to use big data analytics to answer our research question. We 

applied NLP and semantic analytics to the selected papers. This enabled us to extract 
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structured information from unstructured data to understand the concepts within the papers 

and find patterns among these concepts, thereby exposing the value of using big data 

analytics tools. In what follows, we explain how a sample of 101 peer reviewed articles was 

selected, justify the method of analysis (particularly regarding semantic analytics and NLP) 

and describe how we extracted structured data from the sample for further analysis. 

Data gathering process 

To arrive at the sample of 101 academic articles covering case studies of data analytics, we 

began with a search query in leading journals, as recommended by Webster and Watson 

[112]. We conducted a search using the term ‘big data’ within 47 A*- and A-rated business 

and management journals (based on the 2013 ABDC Journal Quality List, the Harzing 

Quality List and SCImago Journal Rank Indicator) using Web of Science. While Web of 

Science did not include all articles on big data, it offered further details, including citation 

analysis [113]. The initial search query returned 45 articles, of which only 27 were deemed 

useful based on an analysis of abstracts. Next, covering all English academic business 

journals, we conducted a search using Business Source Complete (EBSCO), again using the 

term ‘big data’. This query returned 9540 results. We refined these results by extending the 

search query with additional terms selected after discussion with experts in the field. These 

additional keywords included ‘case study’, ‘example’, ‘business intelligence’ and ‘decision-

making’. Based on the three levels of big data analytics, we included the terms ‘descriptive 

analytics’, ‘predictive analytics’ and ‘prescriptive analytics’. We performed multiple queries, 

combining search terms in different variations, resulting in 2308 results. The relevance of 

these articles, in being a business use case of big data, was assessed by reviewing their titles 

using the keywords. This reduced the sample to 269. Keyword filtering is a useful approach 

when search queries return such a high list of results [114]. As such, papers focusing on, for 

example, discussions of technical big data implementations [115, 116] were excluded. 
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Method of analysis 

We used semantic analysis and NLP to discover topics within the papers to further reduce the 

sample. This approach was appropriate as it enabled us to understand how different topics 

were correlated. Further, information extraction using semantics and NLP enabled large 

amounts of text to be synthesised to provide detailed conceptual insights [117, 118]. This 

method has been applied across a wide range of research [119-121], including business [122, 

123], but predominantly in health and biomedical research [124-126], and has been 

instrumental in analysing extensive health documents to discover new scientific results. 

Information extraction entails automatically extracting structured information from 

unstructured data, usually through NLP, to discover semantic relations between concepts of 

interest [117, 121, 123, 127, 128]. Once extracted, the information can be used to develop a 

graph that shows the relationship between multiple concepts [119]. The processing of the 

articles and extraction of computer-generated abstracts consisted of three steps. 

(1) Pre-processing: the first step focused on the case study only; we did not include 

literature reviews as these could contaminate the data. Therefore, we extracted the 

text and publication structure from the PDFs to exclude the literature reviews of each 

academic paper. 

(2) Topic models: the second step consisted of automatically discovering important 

phrases using topic models and collocations - two words that habitually appear 

together and convey a certain meaning [129] - called Latent Dirichlet Allocation 

(LDA) [130]. LDA is a statistical model used to decide on the topic of a previously 

unseen document. This is based on determining the probability a topic has of 

generating a particular word. We continuously updated that probability by 

continuously analysing the document [130]. We used a standard topic modelling tool: 

the MALLET topic model package [131, 132]. Subsequently, we expanded this list 
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using Wordnet, which is an NLP resource consisting of a hand coded lexical database 

for the English language [133].  

The purpose of applying topic models is extracting terminology from the document 

collection and organising it in the form of lexicons [134]. Using pre-approved 

lexicons allows to easily see the cause of the system results, as well as improving it. 

Manual creation of lexicons imposes prohibitive costs and calls for automated tools. 

Topic models allow grouping similar words together, for example, to put industry 

terms into one topic. While the method is unsupervised, and the results require human 

review, it is still a substantial reduction of manual work comparing to skimming 

through the documents. 

(3) Extraction of words and phrases: the third step involved extracting important words 

and phrases from the sample and linking them to the different categories we had 

defined. For example, we extracted change indicators (‘reduce’, ‘improvement’, 

‘benefit’), business processes (‘decision-making’, ‘customer understanding’, 

‘customer relation management’) and company properties (‘size’, ‘revenue’, 

‘country’, ‘industry’). This step turned unstructured text into structured text and 

enabled us to gain relevant insights. 

Categorisation 

Aside from the automatic generation of abstracts, we applied a rule-based approach in our 

analysis to classify several variables. This enabled us to avoid false hits from the information 

extraction [135]. Text categorisation entails assigning extracted text to one or more 

predefined categories to understand relationships between different concepts [136]. To 

provide insight into the effect of big data analytics among organisations, we defined four 

categories. 
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1) Type of organisation: we defined four types of organisations most relevant to 

dynamic capabilities [137-139]. These were small and medium enterprises (SMEs), 

large corporates or multinational enterprises (MNEs), government organisations and 

not-for-profit organisations.  

2) Industries: we chose to use the Industry Classification Benchmark (ICB) to classify 

different industries. The ICB is used globally and consists of 10 industries, subdivided 

into 19 super sectors. These super sectors are further partitioned into 41 sectors, 

which are comprised of 114 sub-sectors. This subdivision enabled us to connect the 

variety of sectors in the sample to 15 main industries. We extended the list with 

several classifications such as government, education and not-for-profit. These have 

not been included in this list since it was launched by the Dow Jones and FTSE. 

3) Level of big data analytics: we outlined descriptive, predictive or prescriptive 

analytics, as discussed earlier. 

4) Type of application, or use case, of big data analytics: the micro-foundation sensing, 

seizing or transforming, that is pursued by the organisation discussed. 

In addition, we incorporated the impact of the journal that published the article. We used the 

2015 SCImago Journal Rank as it uses a larger source journal database (covering 29,713 

journals) than the Journal Impact Factor, and focuses on quality, rather than quantity, of 

citations [140]. 

This analysis resulted in the creation of an excel document with a computer-generated 

summary of each article that contained structured information such as title, journal name and 

year of publication, as well as industry and country, if available. However, industry and 

country were too unreliable to use and we were forced to extract this information manually. 
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We read and analysed the computer-generated abstracts of the 269 papers to determine their 

relevance to this study. We excluded papers that did not feature a case study analysis. For 

example, articles focusing on the penetration of business intelligence systems [141], new 

approaches to data extraction [142] or the development of a methodological framework for 

retail forecasting [143], were excluded. If the computer-generated abstract was not 

sufficiently comprehensive, we read the original abstract of the paper. We only selected 

articles that featured a case study because these provided insights into existing or past events 

within a constantly changing context [144, 145]. The case study methodology is especially 

appropriate in new topic areas [146] and is the best way to understand a certain phenomenon 

over time [145, 147]. 

This resulted in a final sample of 101 articles that featured relevant case studies of big data 

analytics. Each article discussed an application of big data analytics within an organisation. 

Table 1 provides an overview of the selected articles. The articles discuss a variety of cases 

from different contexts. This enabled us to synthesise qualitative case studies [52] and 

understand different applications of big data analytics across different contexts. As Hoon [52, 

P523] has observed, such a meta-synthesis is considered inductive as it aims to make 

‘contributions beyond those achieved in the original studies’. We believe that our systematic 

selection process produced a sufficiently large sample to be demonstrative in respect of the 

existing research on big data analytics. Figure 2 shows a graphic overview of the papers 

included in this study based on their impact factor and dates of publication. This 

demonstrates that big data papers have only begun to appear in recent years. This makes 

sense, as big data analytics have only been adopted by organisations in the last decade: 
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Figure 2: Overview impact factor and publication date articles used 

Extracting structured information 

We applied further semantic analysis on the remaining 101 papers to extract semantic 

relations and the lexical/structural context of the level of analytics used, as well as the type of 

use cases described within the case studies. Semantic relations determine word definitions 

[133]. Understanding the lexical and structural context of words and phrases was thought to 

automatically determine the use case as well as the application of big data analytics. 

However, this was more challenging than we anticipated. We applied NLP to determine the 

four abovementioned categories for each case study. Each category required allocation of a 

specific value (e.g., country or year) or a text fragment that makes sense to human annotators. 

However, the complexity of the fields varied in two dimensions: how well the field can be 

defined (i.e., human agreement on annotations) and how various vocabulary and grammatical 
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structures appear around the field values in the publication. This directly influenced the 

accuracy of the algorithm. For example, ‘year of publication’ had higher accuracy, while 

accuracy for ‘analytics type’ and ‘use case’ was much lower. As such, we decided to 

manually code all 101 articles to determine the types of analytics, use case and, in some 

cases, industry and country of the organisation described in each case study. This was 

achieved by reading all 101 articles and using expert knowledge to code the correct category 

for the different fields. We analysed each individual case according to the four categories 

specified. This coding system helped us to understand the particular structure and 

configuration of the variables that characterised each study [148]. We coded specific words 

that would indicate either sensing, seizing or transforming. For example, to be able to detect 

sensing we searched for words that suggested obtaining an understanding of customer and 

market trends. We looked for terms such as ‘customers’, ‘suppliers’, ‘target market’, ‘needs’, 

‘technologies’, ‘churn’, ‘360 degrees’ and ‘personalisation’. In regard to seizing, we searched 

for concepts related to improving organisational processes and managerial activities. We 

coded terms such as ‘decision-making’, ‘business processes’, ‘leadership’, ‘improving’, 

‘improvements’ and ‘culture’. Finally, to identify transforming we searched for concepts 

linked to (co)creating and innovating new products and services. We coded words such as 

‘innovation’, ‘product development’, ‘create’, ‘services’ and ‘value’. As suggested by Hoon 

[52], our objective was to merge the different case specifics using our theoretical framework, 

understand patterns among the different case studies and contexts [149], and translate the 

different concepts and categories from one study to another [150, 151], thereby deriving our 

six propositions. We included insights and quotations from a selection of articles in our 

results section to emphasise the characteristics of the different case studies, how they linked 

to other case studies and to provide more context on the articles included in our research. 
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Sample characteristics 

It should be noted that all case studies were recent (see Figure 2), which is not surprising 

given that ‘big data’ has only been around since 2001 [39]. Figure 2 shows that most of the 

case studies appeared in journals of low rank, since the initial search resulted in few A- or 

A*-ranked journal articles. 

As with some of the characteristics of the companies researched, Figure 3 shows that the 

geographical distribution was wide. Most companies we analysed were in the United States 

(US). This is not surprising. According to market research, the US is at the forefront of 

organisations applying big data analytics [152]. Figure 4 shows the different industries, based 

on the extended ICB industry list. The predominant industries that have been researched are 

consumer services, financial services, government, media and consumer goods. In some 

ways, this is in line with market research, indicating that the top industries investing in big 

data are banking (financial services), manufacturing (industrial) and government [153]. 

Overall, we are confident that although the data set is relatively small, it covers a relevant 

sample. 

Figure 3: Origin of companies in case studies 
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Figure 4: Industries vs use case 

 

 

Dimension Descriptive 
analytics 

Predictive analytics Prescriptive analytics 

Sensing [70, 154-187] [69, 188-203] [81] 

Seizing [204-219] [46, 220-240] [241] 

Transforming  [36, 48, 68, 242-246]  

Table 1: 101 use case articles analysed for meta-synthesis 

Results 

In total, 101 case studies were analysed. Although some case studies discussed multiple 

companies [156, 167, 169, 171, 179], the authors of these articles analysed the social media 

activities of multiple companies as evidence of how social media (descriptive) analytics had 

been used to understand customer behaviour (sensing). Therefore, we looked at each article 

as representing one case study. In addition, we chose to code only one variable of each 

category for each case study. We did this to prevent skewed results in which the same case 
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study would appear twice in the results. In what follows, we discuss some of the structured 

information we discovered in the articles and use these insights to develop multiple 

propositions related to descriptive, predictive and prescriptive analytics. We also discuss 

some additional findings. 

Use case vs. type of analytics 
 
Descriptive analytics 

Our research revealed that many organisations applying big data analytics use descriptive 

analytics. As Figure 5 shows, 52 companies applied descriptive analytics within their 

organisation. Of these, the majority, 35 organisations, did so to sense their environment and 

understand customer needs and their changing environment. Teece [9] defined sensing as 

those activities that scan, search and explore across markets, technologies and customers to 

understand latent customer needs, technological progress, the evolution of markets and 

potential responses from suppliers and competitors. Discovering opportunities requires access 

to structured information [9, 247]. The micro-foundations Teece [9] identified as part of the 

framework for sensing include elements such as research and development activities to find 

new technologies and processes. These identify supplier innovation, new markets and 

changing customer needs and should be embedded in the organisation [9], as they help to 

understand its context [91]. The 35 organisations applied descriptive analytics to sense their 

environment in a variety of ways.  
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Figure 5: Use case vs analytics type 

For example, using the business intelligence software Qlikview, a Dutch mortgage advisory 

company with 100 shops applied mobile descriptive analytics to offer insights into consumer 

behaviour and market conditions [175]. As the authors, Verkooij and Spruit [175, P29], 

commented, this ‘solution integrates six internal as well as external data sources to provide 

these business insights’ and offered shop managers an iPad to view insights anywhere, 

anytime. The city of Boston applied mobile descriptive analytics to facilitate road 

infrastructure management. As O'Leary [168, P181] explained, the city developed an app 

called Street Bump that ‘uses the mobile phone’s accelerometer to detect potential potholes. 

It uses the phone’s global positioning system capabilities to gather location information of 

that pothole.’ The citizen-generated sensor data offered insights into road conditions and 

enabled the government to identify areas of improvement. Both are examples of what Teece 

[9] and Nonaka and Toyama [247] described as having access to information to discover 

opportunities. In addition, as Helfat and Peteraf [105] argued, descriptive analytics enables 
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organisations to scan the environment for change, offering a better understanding of the 

context of the organisation [9]. 

Apart from context, understanding change among stakeholders is key [91]. A joint venture in 

the United Kingdom between three magazine publishing companies [165] used descriptive 

analytics to monitor different actors within the magazine’s distribution supply chain. The 

joint venture embedded descriptive analytics within the supply chain to analyse various 

structured data sources from multiple suppliers and wholesalers, which as noted by Teece [9], 

enables organisations to examine key performance indicators (KPIs) and supplier processes 

[165]. 

Zollo and Winter [94] are in favour of making analytics capability an integral part of the 

business model, which is what Nielsen did to understand consumer behaviour [70]. Nielsen, 

‘the ratings engine for the advertising industry’ [70, P574], offered information to its 

customers regarding the viewing and purchasing behaviour of consumers. The company 

collects billions of records and uses advanced technology (such as neuroscience) to further its 

objective of measuring viewer attention and involvement when exposed to advertising [70]. 

As Kaisler and Armour [56] argued, this offers stakeholders insights in a changing 

environment. 

Finally, the city of Barcelona analysed user-generated content to understand tourist profiles 

[182]. An analysis of 100,000 travel blogs and reviews written by tourists who had visited 

Barcelona gave the city insights into its ‘customer’ and produced detailed profiles of visitors 

[182]. The city employed descriptive analytics to obtain insights on changing tourism 

behaviour to identify new markets and customer trends [9].  
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As these case studies show, descriptive analytics is used to understand the environment and 

to discover patterns in customer behaviour or market trends. It helps organisations detect 

opportunities in times of ambiguity and uncertainty, as data on customer and market trends 

provide insights and clues into the changing environment of an organisation [56]. Therefore, 

descriptive analytics offers the antennae required to detect the weak signals that indicate a 

changing environment [33, 91, 105] and changing customer behaviour [9]. Descriptive 

analytics helps to understand the environment of an organisation by providing insights related 

to the past [9]. We summarise this with our first proposition:  

Proposition 1: Descriptive analytics enable organisations to better sense opportunities in 

times of uncertainty. 

However, descriptive analytics is not only applied to sense the environment. It also appears 

that, in some (17) case studies, it can be related to improving internal processes in response to 

changing environments—that is, seizing. For example, a subsidiary in the US of a 

multinational financial services firm used detailed customer profiles to manage its customers. 

The company needed this information to ‘make actionable and potentially business-altering 

decisions’ [209, P329]. Descriptive analytics was used to segment customer data, integrate 

these with external data and build a customer cross-sell platform [209]. As observed by 

Kindström and Kowalkowski [106], such activities help to better seize opportunities that 

appear from insights. 

Another example is the international fashion retailer, GUESS? Inc, which applied descriptive 

analytics to improve its decision-making capabilities and drive business actions [214]. The 

global retailer used a mobile analytics platform, GMobile, to turn fashion trends and 

customer data into insights that allowed buyers, planners and distributors to place ‘the right 

apparel in the right store at the right time to appeal to its fashion-savvy shoppers’ [214, 
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P114]. Using mobile business intelligence, GMobile offered access to information [9, 247] 

and visually displayed information, such as bestsellers or sales information, enabling 

employees to know what markets to target [9]. 

The St. Joseph Mercy Oakland Hospital applied descriptive analytics to improve internal 

processes and managerial activities, such as the hospital’s leadership. It did not use a mobile 

application; instead, the hospital used digital dashboards showing KPIs in prominent 

locations to improve operational processes and health management programs and initiatives 

[212]. As well as providing access to information, as argued by Nonaka and Toyama [247], 

the dashboards helped to mitigate risks and allow users to ‘adapt to changes in the 

organisational culture’ [212, P328]. According to Chesbrough [107] and Kindström and 

Kowalkowski [106], such practices foster innovation, resulting in better internal processes. 

Finally, a Thai coal-fired power plant employed descriptive analytics [219] to create insights 

from data generated through emission monitoring platforms to reduce NOx emissions and 

comply with air pollutant emissions. It did this by collecting multiple petabytes of data from 

multiple structured sources to improve operational decision-making, which, as Kindström, 

Kowalkowski [106] and Kay [248] argued, allowed them to ‘improve the performance of the 

power plant’ [219, P1797]. 

These case studies demonstrate that descriptive analytics is also used to improve 

organisational processes and decision-making capabilities, enabling an organisation to seize 

opportunities [9, 106, 107]. We encapsulate this in our second proposition: 

Proposition 2: Descriptive analytics help organisations to improve internal processes to 

respond to a changing environment. 
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Predictive analytics 

Once customer and market trends are understood, a business prepares to seize those 

opportunities [9]. This requires decision-making in circumstances of uncertainty and 

‘investments in development and commercialisation activity’ [9, P1326] to ensure the correct 

structures, procedures, designs and incentives are in place [9]. Teece [9] identified that, 

among other factors, this process involved selecting decision-making protocols [248], 

designing product and revenue architectures, and improving processes and managerial 

activities such as leadership, communication and organisational culture. In short, it meant 

preparing the organisation for seizing opportunities previously sensed, based on insights and 

creativity as well as stakeholder intelligence [9]. These activities anticipate detected unknown 

unknowns and prepare potential responses. Predictive analytics offers predictions to improve 

decision-making processes and to understand what opportunities should be seized.  

As Figure 5 shows, we identified 47 organisations that applied predictive analytics within 

their businesses and 22 that used it to seize opportunities. These organisations applied 

predictive analytics to improve decision-making protocols, improve processes and develop 

the organisational culture to seize sensed opportunities. As the case study on Netflix shows, 

predictive analytics was applied in the use of detailed customer information to ‘improve 

members’ retention, reduce cancellations, achieve long-term fidelity, and obtain positive 

satisfaction ratings for their product’ [240, P571]. In addition, Netflix applied predictive 

analytics, which, as claimed by Kay [248] and Kindström, Kowalkowski [106], allows for 

offering product recommendations and facilitating customers’ decision-making, on, in 

Netflix’s case, what to watch [240]. In this way, through the analysis of vast troves of data, 

Netflix is able to seize opportunities based on its deep understanding of its customers’ 

preferences. 
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The case of the Indian industrial company Ramco Cements Limited (RCL) shows how 

operational data and Enterprise Resource Planning data analyses enable ‘more intelligent 

business decisions’ [227, P298]. RCL used extensive data visualisation techniques and 

predictive capabilities to analyse multiple complex data sources, analysing the geo data of 

trucks, plant data and customer data to optimise processes and improve decision-making 

[227]. The predictive capabilities that RCL implemented can be linked to dynamic 

capabilities, since predictive analytics enables an organisation to improve its processes [106], 

make better decisions [248] and respond to changes in their environment [9]. 

The case of a large financial institution with more than 8,000,000 customers in 10 countries 

shows that social media analytics can be used to understand customer profiles [9] and ‘to 

enable informed and insightful decision-making’ [239, P3728]. The bank applied sentiment 

analysis on social media activities to source potential new customers, gaining insights that 

were integrated into outbound marketing campaigns to attract new customers. In addition, 

predictive analytics enabled the organisation to cross-sell and upsell products to customers 

based on certain lifetime events [239]. As such, the bank grew its analytical capabilities, 

which Makadok [97] and Teece [9] argue enables and organisation to make better decisions 

in circumstances of uncertainty. 

Finally, we have the case of a global media conglomerate applying predictive analytics to 

improve inventory management, which, as argued by Chesbrough [107] and Kindström, 

Kowalkowski [106], prepares internal processes for a changing environment. The firm in 

question, one of the largest distributors of multimedia, used internal transactional records, 

public data and Google search data to optimise inventory management [234]. Predictive 

analytics enables the firm to have the correct inventory at the ideal location, depending on 

customer demand.  
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These and other cases among the 22 identified in our research, demonstrate that organisations 

actively use predictive analytics to seize opportunities by optimising processes and improving 

their decision-making capabilities. As such, we make a third proposition: 

Proposition 3: Predictive analytics enables organisations to seize opportunities by optimising 

processes and improving decision-making capabilities. 

In 17 cases, predictive analytics was applied to sense opportunities and understand customer 

needs, market trends and competitors’ actions. For example, an analysis of written customer 

reviews from an online review website, Reviewcentre.com, demonstrates that predictive 

analytics can extract recommendations on customer satisfaction and predict their effect on 

company performance [189]. As such, predictive analytics can be used to understand 

customer behaviour [9] and the effect on the business.  

In another example, a Chinese bank was described as generating ‘insights for active 

customers based on their transaction behaviour, using close to 20 terabytes of data’ [194, P1]. 

The data enabled the bank to identify online customer behaviour; predictive analytics offered 

insights into customers who were likely to drop off and those who were actively using online 

services. The bank went beyond ‘traditional customer analytics … using unstructured data 

that has not been used before’ [194, P8], which as Helfat and Peteraf [105] argue, allows for 

understanding changing customer behaviour. The next step would be to turn those insights 

into business rules to improve decision-making [248].  

Finally, a case study of the Samsung Galaxy i9300 shows that analysing customer reviews 

using predictive analytics can offer insights into future customer demands [198]. The case 

study suggested that the ‘designers of i9300 are recommended to consider how to improve 

the performance of battery and provide a larger memory space to consumers’ [198, P3033]. 
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Therefore, organisations not only use descriptive analytics to sense opportunities; they also 

turn to predictive analytics to understand their environment [91]. As such, we suggest a 

fourth proposition: 

Proposition 4: Predictive analytics offers insights into consumer behaviour, as well as 

changing market demand. 

Prescriptive analytics 

Sensing and seizing opportunities, or detecting and anticipating unknown unknowns, 

prepares an organisation for profitable growth and competitive advantage to help avoid 

unfavourable outcomes [9, 94]. However, the key to sustained competitive advantage is the 

capability to change routines and develop new products and services depending on changing 

market circumstances [9, 88]—that is, to respond to unknown unknowns [31]. According to 

Teece [9], this requires a continuous (re)alignment of assets and includes elements that are 

involved in embracing innovation [249] and decentralisation, thereby ensuring value-

enhancing product development or knowledge management skills that respond to disruptive 

innovation [250]. The objective is to (co)create and innovate new products, services and 

business models that match the sensed and seized opportunities. As observed earlier, 

prescriptive analytics can offer recommendations on how to act upon predictions to take 

advantage of seized opportunities and, potentially, (re)align assets to transform businesses. 

However, our research revealed that organisations do not apply prescriptive analytics to 

transform their business or (re)align their assets. This may be because prescriptive analytics 

is a nascent technology that is applied only by few organisations (e.g., Facebook and 

Google). Market research showed that worldwide revenue of big data was $122 billion in 

2015, with only $415 million generated by prescriptive analytics software [251]. In addition, 

although prescriptive analytics is likely to offer the greatest benefits for organisations, a lack 
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of available software, data and computational requirements may prevent organisations from 

applying prescriptive analytics [81]. As Figures 5 and 6 demonstrate, there were only two 

cases of prescriptive analytics in our research sample; these were used for sensing and seizing 

by an SME and a government. In these two cases, prescriptive analytics were applied to 

understand consumer behaviour at a utility organisation [81] and to improve data-driven 

decision-making at a steel bar products manufacturer in North America [241]. Since evidence 

of organisations applying prescriptive analytics in our study is weak, we are not comfortable 

deriving a proposition. However, at the conclusion of this paper, we offer further discussion 

and suggest a future research agenda regarding prescriptive analytics. 

Figure 6: Company type vs analytics type 

Figure 7 shows that few organisations apply big data analytics to transform their assets and 

that SMEs and not-for-profit organisations do not use big data analytics to transform their 

organisations. 
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Figure 7: Use case vs company type 

As SMEs and not-for-profit organisations generally lag behind in the adoption of big data 

analytics [252, 253], it is not surprising that they are not using such analytics to transform 

their organisations. However, eight organisations in our research sample did transform 

themselves using a form of analytics. Each of these applied predictive analytics to transform 

their business in one way or another. None used descriptive analytics. This was expected, as 

descriptive analytics offers insights based on historical data [208, 254-256] that overlooks 

predictive and prescriptive aspects relevant to transforming an organisation [81]. 

To transform an organisation, predictive analytics was applied in several ways. A French 

telecommunications organisation applied predictive analytics ‘to reduce operational cost, 

increase operational feasibility and enhance cross-sell/upsell opportunities’ [243, P81]. This 

offered the organisation the flexibility to create new, value-enhancing products, which is vital 

for sustainable growth [109]. The Bank of England embedded analytics in its policies and 

actions, which Teece [9] argued is what should be done. It used more than 1000 structured 

and unstructured data sets to create new, futureproof policies [242]. The city of Amsterdam 
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used predictive analytics to turn itself into a smart city [245]. In doing so, and in line with 

Snow and Fjeldstad’s [257] research, the city collaborated with different commercial and 

governmental organisations to improve itself, combining data sources to predict traffic flows, 

make changes (if necessary) and alleviate congestion on the streets [245]. Finally, the car 

company Ford used predictive analytics—or, as Ford calls it  [48, P5], ‘pervasive advanced 

analytics’—to improve the development of cars, resulting in better cars that are produced 

more efficiently. The telecommunications organisation, the Bank of England, the city of 

Amsterdam and Ford are examples of organisations applying predictive analytics to 

transform their assets to anticipate a changing environment [9, 108, 109]. Therefore, while 

due to lack of available research we cannot offer a proposition on prescriptive analytics, we 

provide a proposition on how transformation can be achieved with predictive analytics. This 

leads us to our fifth proposition: 

Proposition 5: Organisations can apply predictive analytics to transform their assets to 

anticipate a changing environment. 

Discussion 

In this study, we found that both descriptive and predictive analytics enable organisations to 

sense and seize opportunities in changing environments. These types of analytics allow 

organisations to turn data into information, thereby offering a competitive advantage [12, 46-

48]. As Kaisler and Armour [56] argued, organisations that have access to information are 

more likely to understand ambiguous and uncertain environments. Although historical data—

that is, descriptive analytics—may not be a good predictor for this [2], it does offer insights 

into the weak signals that can identify a changing environment and may indicate where to 

look when trying to detect a changing environment [33]. Organisations applying descriptive 

analytics, or business intelligence, obtain valuable insights that can guide them in their 
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decision-making, whereby decisions are based on the historical context of the environment 

instead of based on intuition. In addition, as Petrick and Martinelli [3] have argued, if one 

wants to remain competitive, flexibility in decision-making and flexible organisational 

processes that can deal with ambiguity and uncertainty [7, 8] are key [31]. Our research 

suggests that predictive analytics enables organisations to improve their decision-making 

processes by not only providing the historical context, but also recommending the best course 

of action to be taken based on the full context of the environment. As such, it can be argued 

that descriptive and predictive analytics allow organisations to understand ambiguous and 

uncertain environments and it means that the traditional way of decision-making, based on 

experience and expertise [258, 259], is exchanged for data-driven decision-making [36]. 

However, whether information and processes alone are sufficient to respond to such 

environments is unclear; therefore, additional research is required. Nevertheless, our research 

suggests that the framework of descriptive and predictive analytics and, potentially, 

prescriptive analytics, offers the possibility of comprising the analytical framework required 

for dynamic capabilities, as put forward by Teece [9]. Further, as Snowden and Boone [20] 

argued, a deep understanding of context is required for leaders who face increasing ambiguity 

and uncertainty; we suggest that this is possible through big data analytics. Thus, we 

contribute to the existing literature of dynamic capabilities by supporting and further 

expanding the notion of an analytical framework as a requirement for the dynamic 

capabilities framework. In addition, the managerial implications of our research involve an 

increased understanding of the importance of big data analytics to obtain a better 

understanding of an organisation’s context, which improves an organisation’s decision-

making and, potentially, results in a competitive advantage.  
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Our research revealed some additional insights. As shown in Figure 8, the majority of 

organisations in our study (44 companies) were MNEs that applied big data analytics in 

different ways for different use cases.  

 

Figure 8: Analytics vs use case vs organisation 

Figure 8 shows that MNEs are present in five quadrants. Teece [139] argued that MNEs must 

amplify their dynamic capabilities. Our research demonstrates that big data analytics can be 

observed as a dynamic capability that helps to understand the environment, enables managers 

to take action and provides organisations with sustained superior performance and 

competitive advantage in times of ambiguity and uncertainty. This is in keeping with earlier 

studies by Jalonen and Lönnqvist [260] and Galbraith [261]. 

MNEs have an organisational structure that ensures empowerment and decentralised 

decision-making capabilities, giving them an additional advantage. MNEs span multiple 

jurisdictions and territories in which variables such as technologies, infrastructure, markets 

and customer demands are different. The most common administrative structure for MNEs is 

a decentralised network organisation [262]. MNEs operate through a network of market-
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sensitive self-organising business units [263, 264] that are vertically or horizontally 

integrated [265]. Such geographically dispersed organisations have antennae across time and 

space that enable them to be receptive to change and to understand how an environment is 

changing [59, 266]. In addition, regarding knowledge and information sharing, decentralised 

nodes tend to be open and dynamic across and within different units [267]. These 

characteristics enable organisations to rapidly and efficiently respond to changing market 

demands and uncertain environments [264, 268-270], making them adaptable to their 

environment, receptive to change and flexible in operation [59, 263]. This suggests that 

MNEs are particularly suited to dealing with deep ambiguity and uncertainty [59]. This leads 

to our sixth, and final, proposition: 

Proposition 6: MNEs are most likely to apply big data analytics in ambiguous and uncertain 

environments. 

This sixth proposition implies that especially managers of MNEs could benefit from 

generating insights via big data analytics about their changing environment. Hence, 

leveraging internal and external data sources from across the organisation can help managers 

of MNEs obtain a clear picture of the context and improve their decision-making capability, 

which in turn may lead to competitive advantage.  Circumstantial evidence from strategic 

management practice supports our proposition. For example, Pitney Bowes and General 

Electric (GE) are known to have leveraged data analytics using information produced from 

Pitney Bowes' shipping machines and customers [271]. With customized asset performance 

management applications developed by GE, Pitney Bowes was able to offer improved job 

scheduling capabilities and productivity and client services to its enterprise clients [272]. 

Another example is PopSugar, a lifestyle media company. PopSugar uses data analytics to 

produce engaging content that its readers find relevant and valuable. Data analytics enables 
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PopSupgar to understand the context of audiences and business value drivers. For instance, 

PopSugar was able to determine from 231,000 social shares and 7 million views that 

childhood nostalgia and recognizable product names help increase social shares and 

readership [273], information that the company immediately leveraged in their strategic 

marketing.    

Companies such as Pitney Bowes or PopSugar benefit from better understanding their 

environment via big data analytics, especially in times of ambiguity and uncertainty. With 

that, the practice of strategic management changes as organisations move from decisions 

based on experience and intuition [274] to decisions based on data [11, 12]. The ability to 

analyse data and understand insights derived from data [61] is increasingly becoming a 

sought after strategic management skill.  

This research contributes to significantly expanding the notion of ‘some kind of analytical 

framework’ that Teece [9] refers to as being required for understanding and developing 

dynamic capabilities. We have clarified what the analytical framework entails in the context 

of ambiguous and uncertain environments, and our specific contribution to the field lies in the 

evidence of the value of descriptive and predictive analytics to better understand the fast-

changing environment of an organisation and to improve the decision-making capabilities 

that could result in achieving competitive advantage. As such, the importance of our 

contribution lies in the understanding that to achieve competitive advantage using dynamic 

capabilities [9, 10], organisations require an analytical framework consisting of descriptive 

and predictive analytics. With big data being everywhere and an increased emphasis on data-

driven organisations and smart environments [12], our theoretical and practical contribution 

of seeing big data analytics as a dynamic strategic capability can help organisations, if 
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implemented well, to add value to their business and remain relevant in a fast-changing 

environment.    

Areas for further research 
 
In this study, via six propositions, we developed a conceptual understanding about how big 

data analytics can be used in ambiguous and uncertain environments to inform strategy 

making. Furthering our attempt to expand the notion of ‘an analytical framework’ [9], we can 

now explain, in more detail, how different types of big data analytics relate to strategic 

dynamic capabilities. The conceptual framework can help scholars and practitioners better 

understand the notion of the analytical framework; however, it also reveals the need for 

further research. 

While our research suggests that MNEs are most likely to apply big data analytics tools, it 

has not shown that MNEs are better suited to deal with ambiguity and uncertainty than other 

types of organisations. This may be explained by the suggestion that researchers had better 

access to larger, rather than smaller, organisations. Hence, this imbalance among types of 

organisations might be caused by a lack of research. Further research may be required to gain 

insight into the types of organisations that are best suited to detect, anticipate and respond to 

uncertain environments. We suggest that future studies focus on different types of 

organisations (i.e., MNE v SME v not-for-profit v government) and examine which ones are 

best suited to benefit from big data analytics. 

Figure 8 offers insights into which types of organisations may benefit most from different 

types of analytics during the stages of sensing, seizing and transforming. However, further 

research is required to understand which types of analytics work best for different types of 

organisations during different stages of dynamic capability deployment. For example, our 

research did not reveal whether MNEs should apply predictive analytics while SMEs should 
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apply descriptive analytics to sense the market. Such research could evoke interesting and 

useful findings for organisations. 

Finally, our sample included eight companies that applied prescriptive analytics. We consider 

these representative, given that not many organisations currently apply this type of analytics 

[81]. However, we suggest that further research is required to understand if prescriptive 

analytics offers adequate insights for an organisation to enable (re)alignment of assets. 

Prescriptive analytics is a new field; as such, we recommend conducting further longitudinal 

research in future years, when data is likely to become available.  

Limitations 

The methodology applied here may have been an unsuitable use of NLP. In hindsight, to 

reduce the number of papers in our sample, we could have read the articles, instead of using 

advanced algorithms. Advanced algorithms can be useful to extract structured information 

from unstructured data if the sample size is large—that is, in the millions of documents. In 

that case, advanced algorithms can find patterns and relationships among concepts in a 

fraction of the time it would take a human. However, in our research, the sample size was too 

small to benefit from this. Nevertheless, it was an interesting exercise that demonstrated the 

potential of this approach. Future scholars can benefit from advanced algorithms when they 

are dealing with a large number of documents and unstructured data.  

A related limitation is the overall low number of articles from high-impact journals that form 

part of our sample. Unfortunately, such papers were not available and we had to include 

journals of a lower rank. However, the number of case studies on big data analytics is likely 

to increase over time. Future research will benefit from more case studies and more high-

impact journal publications.  
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Conclusion 

To explain black swans, Taleb [19, P40] employed the metaphor of the turkey:  

Consider a turkey that is fed every day, every single feeding will firm up the bird’s 

belief that it is the general rule of life to be fed every day by friendly members of the 

human race ‘looking out for its best interests’, as a politician would say. On the 

afternoon of the Wednesday before Thanksgiving, something unexpected will happen 

to the turkey. It will incur a revision of belief. Consider that [the turkey’s] feeling of 

safety reached its maximum when the risk was at the highest! 

The same goes for organisations that believe that if something has worked in the past, it 

will continue to do so in the future, until ‘well, it unexpectedly no longer does’ [19, P41]. 

If organisations want to be around tomorrow, they should avoid being a turkey. In times of 

ambiguity and uncertainty, big data analytics enables organisations to sense and seize 

opportunities. Using large amounts of structured and unstructured data and applying it to 

advanced analytics enables organisations to understand their environment and seize 

opportunities, which enables them to remain competitive and avoid being the turkey. 
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