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 

Abstract—Significant advances in neuroscience, sensor 

technologies, and efficient signal processing algorithms have 

greatly facilitated the transition from laboratory-oriented 

neuroscience research to practical applications. Brain-computer 

interfaces (BCIs) represent major strides in translating brain 

signals into actionable decisions and primarily consist of 

hardware and software that guide the communications between 

users and systems. This article presents several current 

neurotechnologies and computational intelligence methods 

applied to EEG-based BCIs. In the hardware aspect, novel 

portable EEG devices featuring dry electrodes are introduced as 

substitutes for traditional BCIs with wet electrodes and its bulky 

size. With these advantages, these novel EEG devices can acquire 

real-time EEG signals for operational workplaces without 

requiring conductive gel/paste or scalp preparations. As for the 

software aspect, blind source separation, artificial neural 

networks, effective connectivity measurements and information 

fusion techniques are introduced to address the technical issues of 

artifact removal, rapid event-related potential detection, complex 

brain network description, and decision fusion, respectively. For 

instance, information fusion technique has been utilized to attack 

the individual differences problem of motor imagery applications 

in the real-world environment. With continuous improvements in 

the development of a convenient approach to record brain signals 

and extract knowledge regarding intentions, BCI techniques are 

envisioned to lead to a wide range of real-life applications in the 

near future. 
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I. INTRODUCTION 

ecently, brain-computer interfaces (BCIs) [1], [2] have 

been shown to be the most promising conduits for 

individuals with disabilities or reduced mobility to 

communicate with external environments or trigger 

surrounding devices. BCIs have also been shown to be 

successful in a wide range of applications, such as personal 

authentication or identification [3], [4], assessment of 

emotional disorders [5], games [6], and accident prevention 

[7-10]. However, several technical issues in signal acquisition, 

signal preprocessing, feature extraction, and signal translation 

must be addressed to facilitate the transition of 

laboratory-oriented neuroscience research to practical BCI 

devices (see Fig. 1). 

Monitoring the neurophysiological activities involved with 

motion in a naturalistic environment using vibration-sensitivity 

equipment, such as functional magnetic resonance imaging 

[11] or positron emission tomography [12], represents a 

significant measurement challenge. The electroencephalogram 

(EEG) is currently the preferred device for non-invasively 

imaging humans’ brains in BCIs as they performing tasks that 

involve natural movements in a real-world environment [13]. 

However, in conventional EEG devices, placing the electrodes 

on the scalp with a conductive gel or paste is one of the 

common ways to measure the brain’s electrical activity. 

Nevertheless, such electrodes, termed “wet electrodes”, require 

a time-consuming preparation process; therefore, BCI systems 

are difficult to be applied outside of laboratory-scale 

experiments. 

Regarding data quality, the measured brain signals are easily 

contaminated with artifacts originating from non-cerebral 

origins. The amplitude of these artifacts commonly generated 

by ocular and muscle activities can be quite large and may thus 

mask the cortical signals of interest, bias the analysis and 

interpretation, and affect the performance of the BCI [14], [15]. 

Several blind source separation techniques have been proposed 

for signal preprocessing to remove such artifacts. Blind source 

separation is called “blind” because the axes of projection and 
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therefore the sources are determined through the application of 

an internal measure, which are without using any prior 

knowledge of the data structure. For example, independent 

component analysis (ICA) [16-18], which produces the 

maximally temporally independent signals available in the 

EEG recording, is a powerful tool for suppressing artifacts. 

However, the iterative process of measuring the independence 

within multichannel recordings is computationally intractable. 

In addition, manually excluding the independent components 

related to artifacts is still a time-consuming and offline process. 

The use of event-related potentials (ERPs) in BCIs is an 

effective method of basic communication [19]. The 

classification accuracy of the ERP-based BCIs is reliant on the 

number of trials used to analyze the data. The influence of 

infrequent noises can be eliminated from the recorded EEG 

data by averaging the ERPs of a large number of repeated trials. 

The signal-to-noise ratio (SNR) can be increased by averaging 

a progressively larger number of trials. However, the large 

number of trials to reduce the computational speed of the BCIs. 

An efficient algorithm to speed up the convergence estimation 

of ERPs is highly desirable for BCI applications. 

For a BCI system, it is essential to efficiently extract 

informative features from multi-channel EEG signals. Many 

useful approaches for analyzing the rhythmic pattern of EEG 

signals and extracting quantitative EEG features, such as the 

amplitude values of EEG signals, band powers, power spectral 

density values, and auto regressive parameters, have been 

introduced to design BCIs. In the neuroscience field, there has 

been increasing interest in studies mapping the human brain 

connectivity in recent years. The importance of this research 

topic was emphasized in the Human Connectome Project [20], 

which is devoted to investigating the knowledge of the human 

brain network. The effective connectivity [21] is one of the 

most commonly used measurements to identify the causal and 

directional relationship between different brain regions. It is 

reasonable to assume that the coupling between spatially 

separated brain areas can provide complementary information 

for BCIs. 

A considerable amount of multi-modality information is 

often simultaneously employed and recorded in a so-called 

hybrid BCI system [22]. These distinct information sources 

provide various estimations of decision and action from 

multi-aspect data, which may help improve the system 

performance. Pelletier et al. [23] illustrate that there is 

beneficial using multimodal information according to the 

limitations of one modality, which can often be offset by the 

strengths of another. In addition, optical signals (i.e., NIRS) is 

one of the optimal solution for a multimodal approach since its 

signals do not interfere with electric or magnetic fields [24]. 

There are several types of EEG signals used to design and 

operate BCIs, such as P300 event-related potentials (ERPs), 

and steady-state visually evoked potentials (SSVEPs). Among 

them, P300 and SSVEP signals have become extremely popular 

due to the high information transfer rate (ITR) they produce and 

their minimal user training requirement [25, 26]. Each collected 

signal possesses its own properties and potential uncertainties 

to describe the underlying cognitive states. A comprehensive 

analysis of multiple sources is needed to reduce individual 

uncertainty and improve the system performance reliability. 

Therefore, developing an effective approach to integrate 

multi-modal information is an important and urgent issue. 

In this article, current neurotechnology and computational 

intelligence methods are introduced as possible solutions to 

address the aforementioned technical issues. Section II 

introduces a series of EEG capture devices developed to 

measure EEG signals with channels ranging from 4 to 64 

channels. In contrast to conventional wet electrodes, dry 

electrodes exhibit the electronic characteristics of electrically 

conductive materials. They obtain high quality signals without 

skin abrasion or preparation. In these novel EEG devices, dry 

electrodes act as substitutes for traditional wet electrodes; these 

dry electrodes can acquire real-time EEG signals for 

operational workplaces without requiring conductive gel/paste 

or scalp preparation in BCI applications. An online artifact 

removal technique based on canonical correlation analysis 

(CCA) [15] as a blind source separation used to remove 

artifacts is presented in Section III.A. The feasibility of rapid 

P3 detection using a radial basis function network (RBFN) [27] 

under a small number of EEG trials is demonstrated in Section 

III.B. In Section III.C, one of the commonly used 

measurements of brain effective connectivity, Granger 

causality analysis, is introduced to extract detailed changes in 

the brain network during sustained-attention driving. In Section 

IV, Dempster-Shafer (D-S) theory [28], [29] is used to 

aggregate pieces of evidence from multiple information sources 

and exploit redundancy and complementariness between 

sources in global information. When applied to integrate 

different physiological signals, this fusion technique can 

improve the quality of final decisions and facilitate the optimal 

estimation of objects. 

II. EEG-BASED NEUROIMAGING TECHNOLOGY FOR BCIS 

Conventional wet electrodes are commonly used to measure 

EEG signals. These electrodes provide excellent EEG signals 

with the proper skin preparation and conductive gel 

application; however, the skin must be prepared prior to 

 
Fig. 1.  Current neurotechnology and computational intelligence methods 

applied to enhance BCI performance. 
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applying the wet electrodes, which is typically problematic for 

users. To overcome these drawbacks, we have developed 

several types of novel dry-contact EEG sensors that can 

efficiently reduce the preparation time without conductive gel. 

Fig. 2 lists several types of dry sensors, including spring-loaded 

[30], foam-based [31], and silicon-based sensors [32]. The dry 

foam electrode is fabricated by an electrically conductive 

polymer foam covered with conductive fabric and can be used 

to measure bio-potentials without skin preparation or 

conduction gel. Moreover, the foam substrate of the dry 

electrode enables a high geometric conformity between the 

electrode and irregular scalp surface to maintain a low 

skin-electrode impedance, even under motion. The 

spring-loaded sensor was proposed for potential operations in 

the presence of hair and without any skin preparation or 

conductive gel usage. Each probe was designed to include a 

probe head, plunger, spring, and barrel. The 17 probes were 

inserted into a flexible substrate using a one-time forming 

process in an established injection molding procedure. With 17 

spring contact probes, the flexible substrate allows for a high 

degree of geometrical conformity between the sensor and 

irregular scalp surface to maintain low skin-sensor interface 

impedance. Additionally, the flexible substrate also initiates a 

sensor buffer effect, thereby eliminating pain when force is 

applied. Most importantly, the data quality obtained with these 

dry electrodes [31] is comparable to that obtained with 

wet-electrode systems while avoiding the need for skin 

abrasion, preparation or gels. 

In conventional EEG devices, the measured brain activity is 

transmitted through a cable connected between the EEG cap 

and computer, which limits the application and usability of 

BCIs in real life. To overcome this connection limitation, the 

developed EEG hats (Fig. 3) include a wireless transmission 

module and a chargeable battery, which allow recordings to be 

made without being tethered to a computer; thus, subjects are 

able to move freely around the room/office. For instance, we 

can use these wireless and wearable EEG devices to conduct 

complex experiments, such as drowsy driving [33-40], 

distracted driving [41], [42], motion sickness [43], [44], or 

navigation [45] in a motion simulator (Fig. 4(a-b)) or 

real-world driving environment (Fig. 4(c)). This advantage of 

the convenient EEG acquisition offers the opportunity to 

improve our understanding of complex coordinated and 

multi-joint naturalistic behaviors in operating environments. 

 
Fig. 2.  Novel dry-contact sensors for measuring scalp EEG signals. (a)-(f) Different types and (g) sizes of novel dry sensors have been developed for various 

purposes in the past years. 

  

 
Fig. 3.  Different EEG hats carrying different numbers of sensors. (a) Four-channel system that uses silicon-based dry electrodes to measure brain activity on the 
forehead area. (b) Earphone-like EEG system that uses spring-loaded dry electrodes to measure brain activity on the hairy area. (c) The X-shaped EEG system uses 

a combination of spring-loaded sensor and foam-based sensor novels to monitor the brain activity at Fp1, Fp2, Pz, and Oz. (d)-(e) High-density EEG systems with 

32 and 64 dry electrodes, which are placed based on the international 10-20 system of electrode placement. 
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III. COMPUTATIONAL INTELLIGENCE FOR EEG SIGNAL 

PROCESSING 

A. Removal of Artifacts to Enhance Signal Quality 

Figure 5(a) presents a flowchart of the artifact removal 

process used to enhance the EEG signal quality. One can apply 

a band-pass filter (1-50 Hz) to eliminate high-frequency noise 

and the DC drift. An artifact-free EEG can be reconstructed 

after removing the artifacts. Several blind source separation 

(BSS) techniques [46] have been proposed for artifact removal. 

One of the BSS techniques is canonical correlation analysis 

(CCA) [15], which separates the 𝑚 -channel EEG signals 

𝐗(𝑡) = [𝒙1(𝑡), 𝒙2(𝑡), ⋯ , 𝒙𝑚(𝑡)]𝑇  into maximally 

autocorrelated and mutually uncorrelated sources 𝐒(𝑡) =
[𝒔1(𝑡), 𝒔2(𝑡), ⋯ , 𝒔𝑚(𝑡)]𝑇, assuming that the EEG signals are a 

linear combination of the sources. The linear combination of 

sources can be represented by the mixing system 𝐗(𝑡) = 𝐀 ⋅
𝐒(𝑡), where 𝐀 ∈ ℝ𝑚×𝑚  is the unknown mixing matrix. The 

unknown source signals 𝐒(𝑡) can be derived by introducing the 

de-mixing matrix 𝐖 ∈ ℝ𝑚×𝑚  such that 𝐖 ⋅ 𝐗(𝑡) = 𝐒̂(𝑡) , 

where 𝐒̂(𝑡) ≈ 𝐒(𝑡). Ideally, 𝐖 is the inverse of the unknown 

mixing matrix 𝐀. 

The goal of BSS-CCA is to find the matrices 𝐰𝐱 =

[𝑤𝑥1
𝑤𝑥2

⋯ 𝑤𝑥𝑚
] and 𝐰𝐲 = [𝑤𝑦1

𝑤𝑦2
⋯ 𝑤𝑦𝑚

] that maximize the 

correlation 𝜌 between two canonical variates 𝐔(𝑡) = 𝐰𝐱
𝑇𝐗(𝑡) 

and 𝐕(𝑡) = 𝐰𝐲
𝑇𝐘(𝑡) as follows: 

max
𝐰𝐱,𝐰𝐲

𝜌(𝐔, 𝐕) =
𝐰𝐱

𝑇𝐂𝐱𝐲𝐰𝐲

√(𝐰𝐱
𝑇𝐂𝐱𝐱𝐰𝐱)(𝐰𝐲

𝑇𝐂𝐲𝐲𝐰𝐲)
,                (1) 

where 𝐘(𝑡) = 𝐗(𝑡 − 1) is the instantly delayed signals of the 

observed EEG signals, 𝐂𝐱𝐱  and 𝐂𝐲𝐲  are auto-covariance 

matrices, and 𝐂𝐱𝐲  is the cross-covariance matrix. After 

calculating the partial derivative with respect to 𝐰𝐱 and 𝐰𝐲, the 

optimal problem of Eq. (1) is equivalent to the following 

eigenvalue problem: 

{
𝐂𝐱𝐱

−𝟏𝐂𝐱𝐲𝐂𝐱𝐲
−𝟏𝐂𝐲𝐱𝐰𝐱 = 𝜌2𝐰𝐱

𝐂𝐲𝐲
−𝟏𝐂𝐲𝐱𝐂𝐱𝐱

−𝟏𝐂𝐱𝐲𝐰𝐲 = 𝜌2𝐰𝐲

,                     (2) 

where 𝐰𝐱  and 𝐰𝐲  are eigenvectors and the canonical 

autocorrelation coefficient 𝜌2 is the eigenvalue. 

Figure 5(b) shows a 2 s EEG recording contaminated with 

eye blinks and muscle noises. Figure 5(c) displays the extracted 

time series of CCA components, which are ordered in terms of 

autocorrelation coefficients from high to low in Fig. 5(d). 

Compared to the brain activity components, the components 

with lower autocorrelation coefficients, i.e., the 15th and 16th 

CCA components, correspond to muscle artifacts because the 

broad frequency spectrum of the muscle noise in EEG 

recordings resemble temporally white noises. By contrast, the 

1st CCA component with a relatively higher autocorrelation 

coefficient corresponds to eye artifacts because eye movements 

and eye blinks typically produce low-frequency, 

high-amplitude signals that are highly auto-correlated with 

time. An artifact-free EEG 𝐗′(𝑡) is reconstructed by removing 

these artifact components by setting [𝒔1(𝑡), 𝒔15(𝑡), 𝒔16(𝑡)] = 0 

and operating 𝐗′(𝑡) = 𝐀 ⋅ 𝐒(𝑡), as shown in Fig. 5(e). 

B. Radial Basis Function Network for Tracking Evoked 

Potentials 

As shown in Fig. 6(a), many ERP-based BCI applications are 

designed based on a rapid serial visual presentation paradigm 

(RSVP), such as image search [47] and auto typing [48]. 

However, due to the nonstationarity of brain activity, an 

accurate estimation of the ERP requires the system to average 

over a large number of trials. In [27], a nonlinear adaptive 

algorithm referred to as a data-reusing RBFN (DR-RBFN) was 

proposed to not only estimate the latency and amplitude of 

brain dynamics but also increase the convergence rate 

considerably. 

 Given 𝐾  previous epochs {𝑑(𝑘) ∈ ℝ𝑀|𝑘 = 1,2, ⋯ , 𝐾} , 

the output of the RBFN, denoted as 𝑦(𝑘), can be calculated as 

follows: 

y(𝑘) =  ∑ 𝑤𝑗(𝑘)ℎ𝑗(𝑥)𝑁
𝑗=1

ℎ𝑗(𝑥) =  exp (−
‖𝑥−𝑐𝑗‖

2

𝜎𝑗
)

,                        (3) 

where 𝑁  is the number of hidden units, 𝑤  is the weight 

between the hidden layer and output layer, and 𝜎𝑗 =

𝛽(𝑀 − 1 𝑁 − 1⁄ ). In this study, 𝛽 is set to 0.8. In the kernel 

function ℎ, the kernel center 𝑐 can be calculated as follows:  

𝑐𝑗 = (𝑗 − 1)
𝑀−1

𝑁−1
+ 1.                             (4) 

𝑤(𝑘) can be updated by the least mean squares algorithm as 

follows: 

 
Fig. 4.  Wearable and wireless EEG devices for convenient EEG recording in 

operating environments. (a-b) Simulated driving environment. (c) Real-world 

driving environment. 

  

 
Fig. 5.  Artifact-free EEG reconstruction. (a) Flowchart of artifact removal. (b) 

Raw EEG signals contaminated with eye blinks and muscle noises. (c) CCA 

components ordered in terms of (d) autocorrelation coefficients. (e) 
Artifact-free EEG signals. 
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𝑤𝑗(𝑘 + 1) =  𝑤𝑗(𝑘) + 𝜇𝐻𝑇(𝐻𝐻𝑇 + 𝜀𝐼)−1 ∙ 𝑒(𝑘) 

where 𝑒(𝑘) = 𝑑(𝑘) − 𝑦(𝑘) is the error signal, 𝜇 is the learning 

rate, 𝜖 is a positive constant, and 

𝐻 = [
ℎ1(𝑥1) ⋯ ℎ𝑁(𝑥1)

⋮ ⋱ ⋮
ℎ1(𝑥𝑀) ⋯ ℎ𝑁(𝑥𝑀)

].                      (5) 

Six subjects with normal or correct-to-normal vision 

participated in the RSVP experiment. As shown in Fig. 6(b), 

uppercase letters were used as visual stimuli. The letter “G” 

was predefined as the target, and the other letters were 

non-targets. All stimuli were presented at a frequency of 5 Hz 

(200 ms per letter). The interval between two sequential targets 

is 20-25 non-target stimuli such that the occurrence rate of 

target is approximately 5%. Subjects were instructed to use 

their right index finger to press the response button while they 

detected the target on the screen. In each session, the 

experiment would end when the subjects detected 80 targets. 

The EEG data were recorded using a dry EEG device at a 

sampling rate of 250 Hz. A low-pass filter with a cut-off 

frequency of 30 Hz and high-pass filter with a cut-off frequency 

of 0.5 Hz were applied to remove the line noise and DC drift, 

respectively. Each EEG epoch of 900 ms began 100 ms before 

and ended 800 ms after the stimulus onsets were selected from 

the continuous EEG recordings. Baseline wander was removed 

by subtracting the mean of the data before stimulus onset. Then, 

the target-evoked P3 wave estimated by the DR-RBFN [27] 

was compared with that estimated by ensemble averaging (EA), 

a conventional approach to assess the ERP. In the DR-RBFN, 

the number of reused data was set to 3 and the number of 

hidden nodes was set to 50. The learning rate and positive 

constant were set to 0.1 and 0.001, respectively. We utilized 

grid search for the parameter learning in this study. The 

data-reusing least-mean-square (DR-LMS) algorithm is 

exploited for real-time implementation of the DR-RBFN. The 

DR-LMS algorithm reuses data pairs from previous iterations 

to generate the new gradient estimates that are in turn used to 

update the adaptive weight vector. This algorithm operates in 

real-time and has a fast convergence rate and can, thus, track 

signal variations across trials. The determined parameters in the 

training stage were further exploited to optimize the proposed 

DR-DBFN, and enhance the system performance. 

The red trace shown in Fig. 6(c) is the average ERP of 80 

target epochs in the Pz site estimated by EA. Compared with 

the average ERP of non-target epochs (blue trace), the P3 

elicited by the targets can be easily detected at approximately 

400 m. The green, black, blue, and red traces shown in Fig. 6(d) 

represent the average ERPs of 20, 40, 60, and 80 target epochs, 

respectively, in the Pz site estimated by the DR-RBFN. 

Increasing the number of epochs used leads to a higher SNR 

and more stable ERP. The average ERP of 40 target epochs 

approximated the results obtained by EA, indicating that the 

DR-RBFN led to a considerably higher convergence rate. This 

property of the DR-RBFN is advantageous for real-time BCI 

applications, as it helps reduce the number of trials required for 

an accurate estimation and to precisely track potentials. 

C. Causality Analysis for Assessing Brain Connectivity 

The feature extraction is crucial to the system performance of 

the BCI. Rather than extract the brain activity from a single 

brain region, the brain network that characterizes some 

coordinated activity within a network of functionally distinct 

regions can provide a more detailed description of complex 

behaviors. Graph theory [49], the dynamic causal model [50], 

and Granger causality (GC) [51] are the most widely used 

measures for studying effective connectivity. Take GC for 

example. GC refers to the fact that signal 𝑋1 can lead to another 

signal 𝑋2 if the information in the past of 𝑋1 helps predict the 

future of 𝑋2. We can represent the multivariate process at time 

𝑡 as a stationary autoregressive process of order 𝑝. Consider, 

for example, two signals (𝑛 = 2). 
𝑋1(𝑡) = ∑ 𝐴11(𝑖)𝑋1(𝑡 − 𝑖)

𝑝
𝑖=1 + ∑ 𝐴12(𝑖)𝑋2(𝑡 − 𝑖)

𝑝
𝑖=1 + 𝜉1(𝑡)

𝑋2(𝑡) = ∑ 𝐴21(𝑖)𝑋1(𝑡 − 𝑖)
𝑝
𝑖=1 + ∑ 𝐴22(𝑖)𝑋2(𝑡 − 𝑖)

𝑝
𝑖=1 + 𝜉2(𝑡)

,     (6) 

where 𝑡 ∈ {𝑝 + 1, 𝑝 + 2, ⋯ , 𝑇} is the current time point and 𝑇 

is the length of the signal. The model order 𝑝  is typically 

obtained by minimizing information criteria, such as the 

Akaike Information Criterion or Bayesian Information 

Criterion, to accurately model the data. The parameters 𝐴 and 𝜉 

 
Fig. 6.  Rapid ERP detection. (a) RBFN applied to ERP-based BCIs. (b) RSVP paradigm. Uppercase letters were randomly presented to subjects, who were 
instructed to respond to the target, i.e., the letter “G”. Comparison of the ERPs estimated by the EA and DR-RBFN algorithms. (c) ERP estimated by applying EA 

to 80 epochs. The red and blue traces represent the target- and non-target-evoked ERPs, respectively. (d) Target-evoked ERP estimated by applying the DR-RBFN 

to 20 (green), 40 (black), 60 (blue), and 80 (red) epochs. 
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model the coefficient matrix and prediction error, respectively, 

which can be estimated using an ordinary least squares 

approach [52].  

To determine the causal effect of 𝑋2 on 𝑋1, the prediction 

error is re-estimated using a submodel that excludes signal 𝑋2. 

Then, the error 𝜉
1

(𝑡)  is estimated and compared with 𝜉1(𝑡) 

obtained in the full model. 

𝑋1(𝑡) = ∑ 𝐴11(𝑖)𝑋1(𝑡 − 𝑖)
𝑝
𝑖=1 + 𝜉

1
(𝑡).               (7) 

The strength of the effect of 𝑋2  on 𝑋1  (i.e., causal 

magnitude) was determined as 𝐺𝐶(2 → 1) = lnΣ11 Σ11⁄ , 

where Σ11 and Σ11
̅̅ ̅̅  are the variances of 𝜉1 and 𝜉

1
, respectively. 

Here, we applied GC to independent EEG processes that 

were collected from a simulated driving experiment in which 

participants performed a sustained-attention driving task [53]. 

The asymmetric ratio of the causal flow (Fig. 7(a)) and the 

significant connectivity of the brain network (Fig. 7(b)) varied 

with changes in behavioral performance, which were measured 

by the reaction time in response to unexpected events. During 

the transition from optimal to poor task performance, 

participants suffered from declining vigilance and fatigue and 

struggled to avoid behavioral lapses. Under such 

circumstances, more efforts were needed by subjects to keep 

themselves engaged in the task, as evidenced by the new 

connectivity from the MCC to the L/R SMC (Fig. 7B). Fig. 7C 

shows that PCC- and ESC-related links vanished, which might 

be related to the fading of consciousness [54]. These reductions 

of cortico-cortical connectivity produce a cortical gate that 

disconnects the brain from the external environment and blocks 

sensory inputs [55]. These results provide new neural markers 

of behavioral lapses to help neuroengineers design a driving 

assistance system. 

D. Decision Fusion Technique for Multimodal Information 

Translation 

The fusion technique plays an important role in hybrid BCIs 

that combine two or more sub-BCI systems with different input 

signal sources. One distinguished approach in the fusion 

research community is D-S theory [28], [29], a promising 

approach used to make a final decision from multi-aspect 

information. D-S theory is a generalized variant of Bayesian 

probability theory that introduces the notion of assigning 

beliefs and plausibilities to possible hypotheses of each 

decision-maker along with the required combination rule to 

fuse multi-modality information. D-S theory allows each 

source to incorporate information in different levels of detail. 

This property is advantageous for assigning a possibility mass 

to sets or intervals; hence, the fusion system can efficiently 

consider both stochastic (or objective) uncertainty and 

epistemic (or subjective) uncertainty. 

Consider, for example, two basic probability assignments, 

𝑚1  and 𝑚2 . An optimal decision, 𝑚 , can be made by 

integrating various information from 𝑚1  and 𝑚2  via 

Dempster’s rule [28], [29] as follows: 

𝑚1 ⊕ 𝑚2(𝐴) =
1

1−𝜅
∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝐴 ,           (8) 

where all {𝐴, 𝐵, 𝐶} ⊆ 2Θ, 𝐴 ≠ ∅ and 𝑚1 ⊕ 𝑚2(∅) = 0 . The 

conflict coefficient 𝜅 = ∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶≠∅  measures the 

degree of conflict between 𝑚1  and 𝑚2 . A larger value of 𝜅 

indicates greater conflict between two sources. 

The efficacy of D-S theory in multi-aspect data fusion is 

demonstrated in a typical BCI application, namely, detecting 

whether the cognitive state of participants is alert or not during 

a realistic sustained-attention driving task [41]. Distracted 

driving experiment consists of an unexpected deviation 

(swerving) of the car and the presentation of mathematical 

equations. A flowchart of the proposed system is shown in Fig. 

8. The simultaneously recorded EEG and electrooculography 

(EOG) signals were used to build an ensemble of support vector 

 
Fig. 7.  Effective connectivity between independent EEG processes measured 

by GC at different levels of behavioral performance. (a) Asymmetric ratios of 

causal flow (i.e., the difference between the outflow and inflow) (b) Causal 
connectivity (i.e., the causal interaction between brain regions). (ACC: 

anterior cingulate cortex, MCC: midcingulate cortex, lSMC: left sensorimotor 

cortex, rSMC: right sensorimotor cortex, PCC: posterior cingulate cortex, 

ESC: extrastriate cortex) 

 

 
Fig. 8.  Multimodal fusion of EEG and EOG signals for a hybrid BCI using 
D-S theory. 

 

TABLE I 

CLASSIFICATION ACCURACIES OBTAINED USING INDIVIDUAL 
CLASSIFIERS AND ENHANCED BY D-S FUSION. 

Modality EEG EOG Fusion 

Classifier NBC SVM NBC SVM 
D-S 

theory 

Mean±Std 

(%) 55.7±5.1 70.9±3.8 59.6±4.8 60.3±2.1 75.1±3.6 
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machines (SVMs) and Naïve Bayes classifiers (NBCs). 

Table I provides the classification results of different 

comparative models reported by five-fold cross-validation. The 

average accuracies of the NBC and SVM using EEG signals 

alone are 55.7±5.1% and 70.9.3±3.8%, respectively. The 

average accuracies of the NBC and SVM using EOG signals 

alone are 59.6±4.8% and 60.3±2.1%, respectively. When using 

D-S theory to fuse the outcomes derived from distinct 

classifiers, the classification accuracy can reach an average 

value of 75.1±3.6%. These results suggest that multi-modality 

information with D-S theory fusion can effectively enhance the 

performance of BCIs. 

IV. CONCLUSIONS 

This article presents the latest BCI-related researches done in 

our group. Our previous work applied computational 

intelligence technology in BCIs (i.e., drowsy and distracted 

driving applications [10]) to inspire detailed investigations of 

practical issues in real-life applications. Novel EEG devices 

featuring dry electrodes facilitate and speed up electrode 

positioning before recording and allow subjects to move freely 

in operational environments. We also demonstrate the 

feasibility of applying CCA, RBFNs, effective connectivity 

measurements and D-S theory to help BCIs extract informative 

knowledge from brain signals. Two recent trends in research in 

the computational and artificial intelligence community, Big 

Data and Deep Learning, are expected to impact the direction 

and development of BCIs. Those ongoing studies will enable 

the next generation of BCIs. 
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