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Abstract—A sliding-mode grid voltage observer (SMGVO) is
proposed and experimentally verified in this paper for voltage-
sensorless operation under an unbalanced network. Fundamental
positive sequence component (FPSC) and fundamental negative
sequence component (FNSC) are inherently separated in the
observer without employing any additional filters. Due to em-
bedded filtering effect, high frequency chattering and harmonic
ripples can be well suppressed. Additionally, DC component can
be completely rejected. As a result, DC offset would not cause
fundamental frequency oscillations in magnitude and frequency
of the estimated FPSC and FNSC. Owing to the predictive ability
of SMGVO, one-step delay can be directly compensated using
state variables in the observer. By combining estimation and
prediction into one stage, the designed SMGVO turns out to be
a compact solution for finite control set-model predictive power
control (FCS-MPPC) without voltage sensors. Theoretical proof
is derived to verify that FPSC and FNSC can be accurately
estimated and separated. Experimental results obtained from a
two-level PWM rectifier confirm the effectiveness of the whole
control system.

Index Terms—Predictive power control, unbalanced grid, volt-
age observer, voltage sensorless

I. INTRODUCTION

Generally, accurate power control of three-phase voltage
source rectifier (VSR) requires information of grid voltage and
current. Hence, sensors for measuring grid voltage and current
are usually installed in practical application. However, sensors
increases hardware cost and mounting space [1]. On the
contrary, sensorless control has merits of better environment
adaptability, lower cost, etc. Additionally, sensorless control
schemes can be used as backup so that the system can con-
tinue operation during sensor-fault conditions. In the existing
literature, both voltage sensorless control [2]–[5] and current
sensorless control [6], [7] have been investigated for power
converters. For grid-tied converters, grid current is usually
regulated to satisfy control objectives. The requirement of high
current control bandwidth would impose a high demand on
designing a current estimator. Additionally, current sensors are
usually required for overload protection [8]. On the other hand,
grid voltages usually operate at steady-state and hence a good
estimation can be easily obtained. During the past decade,
many voltage sensorless methods have been proposed.

Among different sensorless control schemes, the concept of
virtual flux (VF) is popular, which has been widely investi-
gated for various control methods (e.g., direct power control
(DPC), flux oriented control and predictive power control) [1],

[2], [9]. However, the pure integrator suffers issues of DC drift
and initial bias in practical application. To address these prob-
lems, low pass filter (LPF) [2], [9] or second order generalized
integrator (SOGI) [8], [10], etc. is typically adopted to emulate
the function of integrator at fundamental frequency. However,
incorporation of these filters in an open-loop estimator would
inevitably cause a long delay during transient process, such
as startup process and sudden voltage sag [1], [11]. In [1], a
method of fast initial bias compensation is proposed based on
time domain analysis assuming an ideal grid voltage. During
normal operation, the DC drift is solved by calculating average
value of VF within each fundamental cycle. As DC bias
updating rate equals fundamental frequency of grid voltage,
dynamic performance may be affected during sudden voltage
change. To avoid relatively slow converging rate of first order
LPF, a fast integration scheme is proposed in [11] aiming at
faster dynamic responses during transient process. However,
most of those schemes cannot directly provide separation
of fundamental positive sequence component (FPSC) and
fundamental negative sequence component (FNSC) under un-
balanced grid condition. To solve this problem, a SOGI based
VF estimator with inherent sequence separation is proposed
in [10]. For better dynamic performance, four parallel SOGIs
instead of cascaded structure are utilized for both converter
voltage and current. The FPSC and FNSC are then extracted
from filtered signal and its quadrature value. As SOGI based
sequence separation presents nonzero gain at zero frequency,
DC drift due to imperfect measurement, grid faults, etc.
would inevitably cause fundamental frequency oscillation in
magnitude and phase of estimated grid voltage [12].

Apart from VF, other schemes, such as state observer [3], [4]
and Kalman filter (KF) [13], [14] have been also investigated
for voltage sensorless control. Unlike open-loop structure of
VF estimators, both state observer and KF are closed-loop es-
timators. The feedback of current tracking error could enhance
estimator’s stability and prevent saturation caused by DC drift.
In [3], a notch filter is required after voltage estimation for
proper operation under unbalanced grid conditions. While
state observer presented in [4] can directly offer FPSC and
FNSC without using a filter. Though stability analysis in [4]
shows that the estimation error of grid voltage can converge
to zero, the analytic relationship between estimated value and
actual value is still unclear, complicating further theoretical
analysis of observer’s performance. For KF, satisfactory noise
immunity is its major merit, but higher computational burden
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is usually referred as the main drawback. Additionally, prior
knowledge of measurement and process noises are required
for parameter tuning, which can not be easily derived [14].

Though sliding mode theory has been widely investigated
in the design of controllers for PWM rectifiers [15], [16],
relatively little research on sliding mode observers has been
carried out for grid voltage estimation, especially under unbal-
anced grid conditions. The main reason may be the potential
problem of high frequency chattering, which would introduce
undesired ripple components in the control system. In [17],
a sliding-mode grid voltage observer (SMGVO) is proposed
to extract FPSC. As estimated grid voltage is reconstructed
from switching function, LPFs are employed to filter out high
frequency chattering and attenuate grid voltage harmonics.
However, employment of two cascaded LPFs after the observer
would deteriorate dynamic performance. Additionally, LPF
can not cancel DC drift in estimation. As studied in [12],
if phase-locked loop (PLL) is implemented, rejection of DC
component is desirable to remove fundamental frequency
oscillations in estimated phase, frequency and magnitude. In
this paper, an improved SMGVO will be developed without
these issues.

After getting the estimation of grid voltage, the next step is
to implement a suitable power control scheme. Recently, finite
control set-model predictive control (FCS-MPC) has been
widely researched for high performance control of power con-
verters under both ideal and unbalanced grid condition [18]–
[23]. Compared with two well established control methods,
i.e., voltage oriented control (VOC) and switching table based
DPC [24], FCS-MPC presents superiority in handling multi-
objective control and system constraints [25], [26]. In FCS-
MPC, no pulse width modulation is required and the optimal
switching states can be directly selected by minimizing a
predefined cost function [19], [23], [26]. Due to the lack
of a modulator, only discrete voltage vectors are available
in FCS-MPC, which consist of significant ripples. In real
world, due to imperfect measurement and inaccurate system
parameters, ripples of input voltage to the observer can not be
perfectly compensated by the measured responses [27]. Hence,
the voltage estimator must be designed with good capacity
to reject these disturbances. So far, little research has been
investigated for FCS-MPC operating under unbalanced grid
conditions without voltage sensors.

In this paper, a SMGVO is designed for operation under
unbalanced grid condition. Analytical results confirm stability
and accuracy of the designed observer. Based on the estimation
of FPSC and FNSC from SMGVO, FCS-model predictive
power control (FCS-MPPC) is implemented that can properly
operate under an unbalanced network without voltage sensors.
The main contributions of this work include:

1) A sliding mode grid voltage observer is designed and
analyzed, which has not been fully investigated in the
existing literature for grid voltage estimation, especially
under unbalanced grid condition. Due to embedded
filtering effect and sophisticated design, problem of high
frequency chattering is avoided.

2) Separation of FPSC and FNSC is inherently achieved
within the observer. Hence, no cascaded filters, such as
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Fig. 1. Topology of a two-level VSR.

notch filters or SOGIs, are necessary in the algorithm.
3) DC offset is removed in the estimation, which can elimi-

nate fundamental frequency oscillation in the magnitude
and frequency of separated FPSC and FNSC.

4) Analytic relationship between separated sequence com-
ponents and actual voltage is derived, providing theo-
retical proof to justify the effectiveness of the designed
SMGVO.

5) Voltage-sensorless FCS-MPPC based on extended power
theory [22] is implemented with SMGVO and ex-
perimentally verified under unbalanced grid condition.
Comparisons with conventional SOGI based on voltage
sensors was also carried out. Satisfactory performance
confirms the effectiveness of the whole control system.

The remainder of this paper is organized as follows. Section
II briefly introduces the mathematical model of three phase
PWM VSR. Then, the detailed design and analysis of SMGVO
is elaborated in Section III. In Section IV, implementation
of voltage sensorless FCS-MPPC is introduced. Section V
presents experimental results of the whole system to verify
the effectiveness of the proposed method. Finally, conclusion
is made in Section VI.

II. MATHEMATICAL EQUATIONS OF PWM VSR

In the αβ0 reference frame, the value of all variables can
be obtained from the corresponding value in the abc reference
frame using the following Clarke transformation

C3/2 =
2
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The mathematical model of a VSR shown in Fig. 1 can be
expressed by complex vectors as

Lg
dig
dt

= ug −Rgig − uc

= (up + un + u0)−Rgig − uc (2)

where ig , uc and ug are grid current vector, converter voltage
vector and grid voltage vector respectively. up and un are
FPSC and FNSC decomposed from ug . u0 is lumped DC
offset, which may result from measurement, grid voltage, etc.
Lg and Rg are AC filter’s inductance and resistance.
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The traditional power can be calculated based on instanta-
neous power theory as

P =
3

2
ig � ug (3)

Q =
3

2
ig ⊗ ug (4)

where � and ⊗ denote dot product and cross product of two
complex vectors, respectively. In [22], a new definition of
reactive power Qn is used for operation under an unbalanced
network. By replacing traditional reactive power Q with Qn
in the control algorithm, active power P can be kept constant
while maintaining sinusoidal grid currents when grid voltages
are unbalanced. Qn can be calculated as

Qn =
3

2
ig � uqg (5)

where uqg is quadrature value of ug and uqg can be expressed
as

uqg = −jup + jun (6)

It should be noted that Qn is exactly the same as traditional
reactive power Q for an ideal grid. During steady state, the
derivatives of up and un are

dup
dt

= jωgup (7)

dun
dt

= −jωgun (8)

III. ESTIMATION OF GRID VOLTAGE

A. Basic Principle of SMGVO

According to equations (2), (7) and (8), the following
SMGVO is designed

Lg
dîg
dt

= (ûp + ûn + û0 + usmo)−Rg îg − uc (9)

dûp
dt

= jωgûp + ωcusmo (10)

dûn
dt

= −jωgûn + ωcusmo (11)

dû0

dt
= ωc0usmo (12)

where the hat ˆ represents estimated variable and usmo is
sliding mode control function needs to be designed; û0 is the
estimated DC component which can eliminate DC drift in the
estimated FPSC ûp and FNSC ûn. ωc and ωc0 are positive
gains for voltage estimation.

Subtracting (9) from (2) gives the dynamics of current
tracking error

Lg
dei
dt

= (ep + en + e0)−Rgei − usmo (13)

where ei = ig − îg , ep = up − ûp, en = un − ûn, e0 =
u0 − û0 are estimation errors of grid current, FPSC, FNSC
and DC component respectively. In this paper, sliding surface
is chosen as current tracking error, i.e.,

S = ei = ig − îg. (14)

For better performance, a constant plus proportional rate
reaching law [28]

dS

dt
= −h · sgn(S)− λ · S (15)

is employed on the design of usmo. h and λ are reaching law
parameters. For a complex vector, switching function sgn(S)
is defined as

sgn(S) =
S

|S|
. (16)

According to (14), inserting (15) into (13) yields the following
equation

Lgh·sgn(S)+Lgλ·S = Rg ·S−(ep + e0 + en)+usmo. (17)

Based on (17), usmo can be calculated according to (18) with
voltage tracking errors considered as disturbance.

usmo = Lgh · sgn(S) + (Lgλ−Rg)S. (18)

B. Stability and Performance Analysis of SMGVO

To evaluate stability of the designed SMGVO, the following
Lyapunov function is defined.

V =
|S|2

2
=
S2
α + S2

β

2
. (19)

The time derivative of V is

V̇ = ṠαSα + ṠβSβ = Ṡ � S. (20)

The estimation error of current ei will always move to zero if

V̇ = Ṡ � S = ėi � ei < 0. (21)

According to (13) and (18), condition (21) can be rearranged
as

(ep + en + e0)� ei − Lgh |ei| − Lgλ |ei|2 < 0 (22)

Considering

(ep + en + e0)� ei < |ep + en + e0| · |ei| (23)

k and λ can be chosen as

h >
|ep + en + e0|

Lg
(24)

λ > 0 (25)

to ensure the state variable can always approach the sliding
surface.

According to (13) and (18), the following transfer function
can be obtained.

Fe(s) =
ei(s)

eu(s)
=

1

Lg

1

s+ h/ |ei|+ λ
(26)

where, eu = ep + en + e0 is the lumped estimation errors of
voltages. It can be seen from (26) that the minimum bandwidth
of Fe is λ. Hence, a larger λ can result in faster dynamic
response. Additionally, a larger h is required to increase
robustness against estimation errors of voltages as can be seen
from (24). But on the other hand, smaller values of h and λ are
preferable in practical application for better noise immunity.
In this paper, they are set as h = 2000 and λ = 1000 for a
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Fig. 2. Amplitude-frequency characteristic of Fp(s) and Fn(s) with ωc =
0.707ωg and ωc0 = 0.2ωg .

tradeoff between dynamic and steady-state performance based
on experimental tests.

Though satisfactory performance of SMGVO can be guaran-
teed by properly selected parameters, the relationship between
estimated value and actual voltage is still unclear. Since S = 0
when moving along sliding surface, (17) can be simplified as

usmo = (ep + en + e0)

= ug − ûp − ûn − û0. (27)

Based on (10)-(12) and (27), the relationship between esti-
mated components and ug can be described by the following
transfer functions when moving along sliding surface:

Fp(s) =
ûp(s)

ug(s)
=

ωcs (s+ jωg)

s3 + (ωc0 + 2ωc) s2 + ω2
gs+ ωc0ω2

g

(28)

Fn(s) =
ûn(s)

ug(s)
=

ωcs (s− jωg)
s3 + (ωc0 + 2ωc) s2 + ω2

gs+ ωc0ω2
g

(29)

It can be seen from Fp(s) and Fn(s) that two third-order
complex coefficient filters are implicitly incorporated in the
designed SMGVO. Based on some simple calculations, one
can find that 

Fp(jωg) = 1

Fp(−jωg) = 0

Fp(0) = 0

, (30)


Fn(jωg) = 0

Fn(−jωg) = 1

Fn(0) = 0

. (31)

Fig. 2 shows the amplitude-frequency characteristic of Fp(s)
and Fn(s). It is clear that Fp(s) has unity gain at the
fundamental positive frequency (FPF) and a zero gain at both
fundamental negative frequency (FNF) and zero frequency.
While Fn(s) presents unity gain at FNF and zero gain at both
FPF and zero frequency. Obviously, the designed SMGVO
can accurately separate FPSC and FNSC without the DC
component. Additionally, both Fp(s) and Fn(s) show filtering
effect on high frequency harmonics. Hence, high frequency
chattering can be well suppressed.

If ωc0 in (12) is set as zero, namely estimation of DC
component is not considered, (28) and (29) would be two
second-order complex filters as follows

Fp1(s) =
ûp(s)

ug(s)
=

ωc (s+ jωg)

s2 + 2ωcs+ ω2
g

, (32)

Fn1(s) =
ûn(s)

ug(s)
=

ωc (s− jωg)
s2 + 2ωcs+ ω2

g

. (33)

By setting ωc = 0.707ωg , satisfactory dynamic performance
and steady-state performance can be obtained [29]. To reduce
the interference between DC component and estimations of
FPSC and FNSC, ωc0 is set as a smaller value ωc0 = 0.2ωg
in this paper.

C. Effects of Parameter Mismatches

Considering that the estimated inductance and resistance
used in the observer are L̂g and R̂g , parameter errors can
then be defined as

∆L = Lg − L̂g, ∆R = Rg − R̂g. (34)

Following the same procedure as deriving (28) and (29), the
estimated FPSC and FNSC become

ûp(s) = Fp(s) (ug(s)−∆L · sig(s)−∆Rig(s)) (35)
ûn(s) = Fn(s) (ug(s)−∆L · sig(s)−∆Rig(s)) (36)

As Fp(s) can selectively pass FPSC and isolate FNSC, the
relationship between estimated ûp and its actual value up can
be derived during steady state as

ûp = up − jωg∆Ligp −∆Rigp (37)

where igp is the FPSC of grid current ig . Similarly, the
relationship between ûn and un can be obtained as

ûn = un + jωg∆Lign −∆Rign (38)

From (37) and (38), one can see that parameter mismatches
would introduce estimation errors in both ûp and ûn. The
deviation depends on parameter mismatches and actual cur-
rent. However, due to selective ability of Fp(s) and Fn(s),
ûp still only contains positive-sequence component and ûn
still only contains negative-sequence component. With system
parameters shown in Table. I, simulation results of magnitude
and phase errors of ûp and ûn are illustrated in Figs. 3 and
4. It can be found that inductance mismatch has less effect
on magnitude error than that caused by resistance mismatch.
However, inductance error dominates estimation errors of
phase angle. Assuming model parameters are within twice of
actual value, the maximum magnitude error is about 4% of
actual value for ûp and ûn. And, the maximum phase error
is about 0.2 rad.
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D. Implementation of SMGVO

With a small sampling period Tsc, the simple first-order
Euler discretization method can be employed to rewrite (9)-
(12) in the discrete-time form as

uksmo = Lgk · sgn(ikg − î
k

g) + (Lgλ−Rg) (ikg − î
k

g) (39)

î
k+1

g = î
k

g +
Tsc
Lg

[
ûkp + ûkn + ûk0 + uksmo −Rg î

k

g − ukc

]
(40)

ûk+1
p = ûkp + Tsc

(
ωcu

k
smo + jωgû

k
p

)
(41)

ûk+1
n = ûkn + Tsc

(
ωcu

k
smo − jωgû

k
n

)
(42)

ûk+1
0 = ûk0 + Tscωc0u

k
smo (43)

It should be noted that no explicit filters are utilized here.
However, two implicit complex coefficient filters, i.e., (28)
and (29) are inherent filtering characteristics of the designed
SMGVO. Hence, FPSC and FNSC can be accurately estimated
and separated while suppressing the influence of DC offset. As
ûp and ûn are obtained by integrating usmo, chattering and
sampling noises included in usmo are suppressed due to the
filtering effect of the integrator. This can also be confirmed by
amplitude-frequency characteristic shown in Fig. 2.

As seen from (41) and (42), actual grid frequency ωg is re-
quired for the proposed SMGVO to estimate FPSC and FNSC.
To obtain better estimation accuracy under grid frequency
variation, the synchronous reference frame PLL (SRF-PLL)
as shown in Fig. 5 can be employed for online frequency
adaption. In the figure, the input voltages upα and upβ are
normalized scalar components of ûkp , i.e.,

upα =
ûkpα∣∣∣ûkp∣∣∣ ,upβ =

ûkpβ∣∣∣ûkp∣∣∣ . (44)

After normalization, the linearized model of SRF-PLL can be
derived as [12]

Gθ =
θ̂g(s)

θg(s)
=

kps+ ki
s2 + kp︸︷︷︸

2ζωn

s+ ki︸︷︷︸
ω2

n

, (45)
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where kp and ki are gains of proportional-integral (PI) con-
troller; ζ and ωn are damping factor and natural frequency
respectively; kp = 2ζωn; and ki = ω2

n.
In practical application, actual grid frequency may deviates

from its nominal value. To mitigate side-effects of frequency
variation on the observer, it is necessary to feed back estimated
ω̂g from SRF-PLL stage to the observer. It is clear that the
frequency feedback loop (FFL) consists of two parts (see Fig.
6): inner observer and outer SRF-PLL. To maintain stability,
the bandwidth of outer loop should be slower than inner loop.
In [30], this is achieved by inserting a low-pass filter between
two parts. From Fig. 5, it can be seen that estimated frequency
deviation ∆ω̂g consists of proportional term kpuq and integral
term kiuq/s. An inherent filtered estimation can be obtained
from integral component in PI as

∆ω̂gf =
ki · uq
s

(46)

The relationship between ∆ω̂g and ∆ω̂gf can be easily derived
as

Gω(s) =
∆ω̂gf (s)

∆ω̂g(s)
=

ki
kps+ ki

(47)

It can be seen that Gω is a low pass filter that can reduce
interference between SMGVO and SRF-PLL. With ∆ω̂gf , the
filtered grid frequency can be estimated as

ω̂gf = ω0 + ∆ω̂gf (48)

where ω0 is the nominal frequency, which is 2π50 rad/s in this
paper. As SMGVO based PLL is a highly nonlinear system, it
is difficult to design parameters analytically. Though better
results can be obtained by deriving small-signal linearized
model as performed in [31], parameters can also be tuned by
simulation [32]. In this paper, damping factor is set as ζ = 1
to reduce overshoot during transient process. ωn is chosen
as ωn = 2π15 rad/s for the compromise between dynamic
responses and immunity against noises and harmonics. This
gives kp = 188.5 and ki = 8882.6. To verify the effectiveness
of parameter selection, steady-sate and dynamic performance
are experimentally tested in Section V under both unbalanced
and distorted conditions. A detailed block diagram of the
proposed SMGVO with SRF-PLL is shown in Fig. 6.

In this paper, SMGVO is designed and analyzed in
continuous-time domain. After that, it is discretized for prac-
tical implementation. With a high sampling frequency, this
is usually acceptable and satisfactory performance can be
obtained as those presented in [4], [10], [15], [33]. Better per-
formance may be obtained by design and analysis in discrete-
time domain. However, the derivation process would be more
complicated. Nevertheless, if changing rate of the concerned
state variable is comparable with sampling frequency, design
and analysis in discrete-time domain give better results [3].

IV. SMGVO BASED FCS-MPPC

In [22], FCS-MPPC employing Qn as shown in (5) is
investigated under unbalanced grid conditions. The control
diagram of FCS-MPPC based on the proposed SMGVO is
shown in Fig. 7. From (39)-(43), it can be found that SMGVO
is not only an estimator but also a predictor. The predicted
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Fig. 7. Control diagram of SMGVO based FCS-MPPC.

TABLE I
CONTROL AND SYSTEM PARAMETERS

Filter resistance Rg 0.3 Ω
Filter inductance Lg 10 mH
Line-line voltage (RMS) UN 150 V
Voltage frequency f 50 Hz
DC-side capacitor C 840 µF
Load resistance RL 100 Ω
Sampling period Tsc 50 µs
SMGVO parameter 1 h 2000
SMGVO parameter 2 λ 1000
SMGVO parameter 3 ωc 0.707ωg

SMGVO parameter 4 ωc0 0.2ωg

current and voltage at (k + 1)th instant can be utilized to
compensate for the one-step delay in practical application.
The detailed implementation steps of FCS-MPPC based on
SMGVO can be summarized as follows:

1) Calculating î
k+1
g , ûk+1

p , ûk+1
n and ûk+1

0 based on (39)-
(43).

2) Predicting ûk+2
p and ûk+2

n as{
ûk+2
p = ûk+1

p ejωgTsc

ûk+2
n = ûk+1

n e−jωgTsc
. (49)

3) Grid current ik+2
gm for all candidate voltage vectors

vm(m = 0, 1...7) can be predicted based on (2) with
estimated grid voltages and current in step 1) as

ik+2
gm = î

k+1

g +
Tsc
Lg

[
ûk+1
p + ûk+1

n + ûk+1
0

−Rg î
k+1

g − vm

]
(50)

4) Predicting active power Pk+2
m and reactive power Qk+2

n,m

for all calculated ik+2
gm based on (3), (5) and (6) as

P k+2
m =

3

2
ik+2
gm �

(
ûk+2
p + ûk+2

n

)
, (51)

Qk+2
n,m =

3

2
ik+2
gm �

(
jûk+2

n − jûk+2
p

)
. (52)

5) Evaluating the following cost function

Jm =
∣∣P ref − P k+2

m

∣∣2 +
∣∣Qref −Qk+2

n,m

∣∣2 + IC (53)

Ic =

{
108 + 108

(∣∣ik+2
gm

∣∣− Imax) if
∣∣ik+2
gm

∣∣ > Imax

0 if
∣∣ik+2
gm

∣∣ < Imax
(54)
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Fig. 8. Experimental test setup.

The voltage vector vm which leads to minimum value of Jm
is selected as the output voltage of the converter.

In (54), Ic is added in the cost function to avoid over current
during transient process [33]. For experimental tests in this
paper, Imax is set as 8 A. The reason why Qn is more suitable
for power control under unbalanced grid condition has been
explained in [22] and thus not repeated here.

It should be noted that if voltage sensors are equipped,
FPSC and FNSC still need to be separated using methods
such as SOGI [34] or delayed signal cancellation filter [12].
Additionally, equations (40)-(42) should also be implemented
to compensate one-step control delay with measured values. In
the designed SMGVO, estimation and prediction are integrated
into one stage. Not only can FPSC and FNSC be obtained but
also predictions of current and voltages at (k+1)th instant are
directly available for delay compensation. Therefore, SMGVO
based voltage sensorless predictive power control would not
increase much in complexity compared with conventional
voltage sensors based predictive control schemes.

V. EXPERIMENTAL RESULTS

The performance of the designed control system is evaluated
on a laboratory test-rig, which is shown in Fig. 8. In all
tests, measured grid voltages are not used in the controller
but only displayed for comparisons. The experimental data
is acquired by a scopecorder DL850. Grid voltages and
currents are directly measured by probes, while estimated
voltages are obtained via an on-board digital-to-analog con-
verter (DAC7724U). A programmable AC source (Chroma
61511) is used to simulate unbalanced grid conditions. The
sampling time is Tsc = 50µs, other control and system
parameters are listed in Table I. In all the following tests, only
the performance of power control and voltage estimation is
considered and outer DC voltage control loop is not discussed
here. For comparison, FPSC and FNSC, i.e., usogip and usogin

are calculated from measured grid voltages based on dual
SOGI (DSOGI) as follow [29]

usg =
mωgs

s2+mωgs+ω2
g
ug

uqsg =
mω2

g

s2+mωgs+ω2
g
ug

usogip = 1
2

(
usg + juqsg

)
usogin = 1

2

(
usg − juqsg

) . (55)

where m is selected as
√

2 for satisfactory dynamic and
steady-state performance [29], [34]. The effectiveness of
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Fig. 9. Startup responses with 50% voltage dip in phase A. (a) Actual grid
voltages, currents and estimated voltages; (b) comparison between estimated
voltages from SMGVO and calculated voltages from DSOGI.

DSOGI has been extensively verified in existing research under
unbalanced grid conditions. Additionally, usogip and usogin

are directly calculated based on actual voltages sampled by
scopecorder. Hence, it is assumed that usogip and usogin are
accurate and can be used as the benchmark to verify the
effectiveness of the designed SMGVO.

Fig. 9 shows responses from startup process to steady state
operation with 50% voltage dip in phase A. The converter
initially works in diode rectifier mode. After a moment, the
control system is enabled and then the converter works in
PWM rectifier mode. The references of active power P ref and
reactive power Qref are set as 1 kW and 0 Var respectively.
It can be seen that SMGVO based FCS-MPPC can safely
start without initial knowledge of actual grid voltage. Due
to the incorporation of current constraints (54) in the cost
function, the magnitude of grid current can be well limited
below the Imax during startup process. The waveforms of
estimated FPSC ûp and FNSC ûn are sinusoidal without
obvious chattering. From Fig. 9(b), it is clear that the estimated
FPSC and FNSC are in accordance with those extracted by
DSOGI from measured grid voltage. The estimation error
is small and nearly zero at steady-state. This test confirms
that SMGVO can accurately estimate and separate FPSC and
FNSC.

To evaluate dynamic responses of SMGVO, a test changing
grid voltages from balanced to unbalanced conditions was
carried out. 50% voltage dip in phase A is suddenly applied
during normal operation. P ref and Qref are 1 kW and 0 Var
respectively. The results are listed in Fig. 10. It can be seen that
estimated FNSC ûn is nearly zero under balanced condition.
When voltage sag is suddenly applied, ûn can quickly reach its
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Fig. 10. Operation from balanced condition to unbalanced condition. (a)
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n calculated from actual voltage by DSOGI.
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Fig. 11. Dynamic responses when P ref steps from 600 W to 1000 W.

steady-state value which is in accordance with that extracted
by DSOGI, as can be seen from Fig. 10(b). The rise time
of ûn is about 5.5 ms. For both SMGVO and DSOGI,
2% settling time is about 15 ms. This test shows that the
proposed SMGVO performs well during transient process and
its performance is comparable with conventional DSOGI with
slightly larger overshoot. Hence, similar performance without
significant degradation can be obtained based on SMGVO
when compared with voltage-sensors based schemes under
unbalanced grid conditions.

Fig. 11 shows dynamic responses when P ref steps from 600
W to 1 kW under unbalanced grid conditions. In the figure,
P and Q are calculated according to estimated voltages and
measured grid currents based on (3) and (4). Qn is calculated

102

103

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time(s)

19

20

21

Fig. 12. Steady state responses with 1.5 V DC component and 50% AC
voltage dip in phase A.
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3.7

Fig. 13. Average switching frequency fsw when P ref = 1 kW.

from (5). It can be seen that, obvious twice grid-frequency
oscillation exists in conventional reactive power Q. However,
active power P and new reactive power Qn are constant during
steady state and the waveform of grid current is sinusoidal.
The obtained results are similar to that of voltage sensors
based FCS-MPPC presented in [22]. Additionally, dynamic
response is fast without obvious overshoot. During transient
process, Qn is kept at zero. Hence, decoupled control of active
power and reactive power is achieved. The settling time is
less than 3 ms in this test. The demonstrated results show that
SMGVO based voltage sensorless FCS-MPPC could achieve
satisfactory performance under unbalanced grid conditions.

A benefit of the proposed SMGVO is that it can eliminate
DC component in the estimation. Fig. 12 shows comparative
results of SMGVO and DSOGI when there is 1.5 V DC offset
in Phase A under unbalanced grid conditions. It can be seen
that significant fundamental frequency oscillations caused by
DC component exist in usogip and usogin . This is because uqsg
in (55) has nonzero gain at zero frequency [8]. While the
amplitudes of estimated ûp and ûn are much less influenced
by injected DC offset.

Fig. 13 shows switching frequency with P ref = 1 kW
during steady-state operation. In the experimental test, fsw
is calculated by counting total switching jumps N of all
six legs of PWM rectifier over a fixed period of 0.05s, i.e.,
fsw = N/6/0.05. Hence, fsw is updated with a rate of 0.05s
in this test. The average switching frequency over the time
span shown in Fig. 13 is about 3.56 kHz.

To further evaluate the quality of voltage estimation, the
total harmonic distortion (THD) of ûp and ûn are calculated
when grid voltages are both unbalanced and distorted. In this
test, both 14 V (≈11% of fundamental value) -5th and 7th
harmonics are injected into grid voltages. Meanwhile, 50%
voltage dip in phase A is applied. Though harmonics cannot
be completely removed in the estimation, they are significantly
attenuated. The results confirm that the proposed observer can
effectively suppress harmonics while estimating fundamental
component, which is in accordance with the analysis presented
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Fig. 14. Spectrum analysis of (a) grid voltage, (b) ûp and (b) ûn under
unbalanced and distorted grid conditions.
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Fig. 15. Estimated grid frequency with sudden frequency step change of +10
Hz under unbalanced and distorted grid conditions.

in Section III-B.
Fig. 15 shows the curve of estimated grid frequency when

a sudden frequency change of +10 Hz is applied. Meanwhile,
-5th and 7th harmonics are injected into grid voltages. For
comparison, ω̂sogigf is obtained by replacing ûp with usogip

as the input voltage of SRF-PLL. It is seen that with SRF-
PLL as shown in Fig. 5, the designed SMGVO can be
adapted to frequency variation. Both dynamic and steady-state
performance are similar with that obtained from conventional
DSOGI. Due to the ability to suppress harmonics, estimated
grid frequency is smooth without significant oscillation even
under distorted grid conditions.

VI. CONCLUSION

A SMGVO is designed and experimentally verified in this
paper. It has the following properties: 1) inherent separation
of FPSC and FNSC without utilizing any filters; 2) no high
frequency chattering; 3) satisfactory DC component rejection;

4) comparable performance with DSOGI based sequence
separation using measured voltage; 5) predictive ability to
compensate one-step delay in predictive control.

FCS-MPPC is implemented based on SMGVO and tested
on a two-level PWM rectifier to verify the effectiveness of
the control system. Experimental results show that FPSC and
FNSC can be accurately estimated and separated. The dynamic
performance of SMGVO during voltage sag is similar to
that of DSOGI. The implemented voltage sensorless FCS-
MPPC presents fast dynamic responses which can track power
reference quickly. Direct start without initial knowledge of grid
voltage is possible due to fast converging rate of SMGVO and
high regulation bandwidth of FCS-MPPC.
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