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In recent years, unsupervised two-dimensional (2D) dimensionality re-
duction methods for unlabeled large-scale data have made progress.
However, performance of these degrades when the learning of similarity
matrix is at the beginning of the dimensionality reduction process. A sim-
ilarity matrix is used to reveal the underlying geometry structure of data
in unsupervised dimensionality reduction methods. Because of noise
data, it is difficult to learn the optimal similarity matrix. In this letter, we
propose a new dimensionality reduction model for 2D image matrices:
unsupervised 2D dimensionality reduction with adaptive structure learn-
ing (DRASL). Instead of using a predetermined similarity matrix to char-
acterize the underlying geometry structure of the original 2D image space,
our proposed approach involves the learning of a similarity matrix in the
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procedure of dimensionality reduction. To realize a desirable neighbors
assignment after dimensionality reduction, we add a constraint to our
model such that there are exact c connected components in the final sub-
space. To accomplish these goals, we propose a unified objective func-
tion to integrate dimensionality reduction, the learning of the similarity
matrix, and the adaptive learning of neighbors assignment into it. An
iterative optimization algorithm is proposed to solve the objective func-
tion. We compare the proposed method with several 2D unsupervised
dimensionality methods. K-means is used to evaluate the clustering per-
formance. We conduct extensive experiments on Coil20, AT&T, FERET,
USPS, and Yale data sets to verify the effectiveness of our proposed
method.

1 Introduction

High-dimensional feature data frequently appear in many fields of sci-
entific research such as image and video category recognition, gene ex-
pression; and time series prediction (Lakshmanan, Sadtler, Tyler-Kabara,
Batista, & Yu, 2015). However, directly handling these high-dimensional
data inevitably suffers from the curse of dimensionality and massive stor-
age cost (Kadir, Goodman, & Harris, 2014; Yamada, Jitkrittum, Sigal, Xing,
& Sugiyama, 2014). In the past, many dimensionality reduction techniques
that aim to learn an intrinsic low-dimensional compact representation have
received considerable attention. Among these diverse approaches, unsu-
pervised dimensionality reduction is appealing because it drops some ir-
relevant features while keeping the interpretation of dimension-reduced
processing. Considering that large-scale data are usually collected without
labels in practice, in this letter, we focus on the challenging problem of
unsupervised dimensionality reduction.

Without the discriminative information from labels, the key step of unsu-
pervised dimensionality reduction lies in preserving the intrinsic structure
of original input data after dimensionality reduction (Dy & Brodley, 2004).
Typically the local geometric structure is characterized by a pairwise simi-
larity matrix based on a kernel-defined function. Once the similarity matrix
is predetermined in the original high-dimensional space, it is fixed in the
procedure of dimensionality reduction, such as locality preserving projec-
tion (LPP) (Niyogi, 2004) and locally linear embedding (LLE) (Roweis &
Saul, 2000). However, this strategy might degrade performance because the
kernel-defined weights used for calculating a similarity matrix are sensi-
tive to the hyperparameter (such as the width in gaussian function) and
lack meaningful interpretation. Importantly, the pairwise similarity matrix
is learned at the beginning of the procedure of dimensionality reduction.
Thus, it might not be the optimal one and fails to capture the intrinsic
structure accurately (Gao et al., 2016). Recently, some efforts have been
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devoted to exploiting an optimal underlying structure in the procedure
of dimensionality reduction. For example, Nie, Wang, and Huang (2014)
proposed learning the data similarity matrix by assigning adaptive and op-
timal neighbors for each data point. Du and Shen (2015) looked at both the
global and local structures of data and performed adaptive structure learn-
ing by iteratively improving the probabilistic neighborhood relationship
Kodirov, Xiang, Fu, and Gong (2016) integrated the graph’s learning into
an �1-norm graph regularized optimization problem for robust subspace
clustering.

It is noteworthy that the state-of-the-art dimensionality reduction mod-
els for image and video representation commonly transform the two-
dimensional image matrices into one-dimensional image vectors. This
matrix-to-vector transformation not only leads to an extremely high-
dimensional image vector space but also ruins the specific structure of the
original 2D images (Yang, Zhang, Frangi, & Yu Yang, 2004; Zhang & Zhou,
2005; Bennamoun, Guo, & Sohel, 2015; Koch & Naito, 2007; Chang et al.,
2015). Instead of using the matrix-to-vector transformation, in this letter,
we propose a straightforward 2D unsupervised dimensionality reduction
model with adaptive structure learning. This method not only mitigates the
negative impact of the predetermined similarity matrix but also involves
the optimal structure learning of 2D images into the procedure of dimen-
sionality reduction. The main contributions of this letter are summarized
as follows:

• A novel 2D unsupervised dimensionality reduction model is pro-
posed by performing dimensionality reduction and optimal under-
lying geometry structure learning simultaneously.

• To achieve a desirable neighbors assignment, we impose a struc-
ture regularization on the graph of 2D data such that the number of
connected components in the optimal graph equals the number of
clusters.

• We exploit an efficient algorithm to solve the proposed challenging
problem and conduct extensive experiments on benchmark data sets
to illustrate the superiority of the proposed algorithm.

Notations and definitions: We use some special symbols in the formulas.
For any matrix P = [Pi j] ∈ R

m×n, let Pj is the jth column of matrix P. tr(A)
refers to the trace of matrix A. r(A) denotes the rank of matrix A. 1 ∈ R

n is
a column vector with all the elements are 1.

2 Related Work

Considerable effort has been devoted to improving the performance of
image representation and recognition through dimensionality reduction
techniques (Turk & Pentland, 1991; Roweis & Saul, 2000; Yang et al., 2004;
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Zhang & Zhou, 2005; Hu, Feng, & Zhou, 2007; Kambhatla & Leen, 1997).
Among these approaches, principal component analysis (PCA), widely
used for image recognition, transforms the 2D image matrix into a 1D
vector. When the dimensionality of the instance is high, it is hard to eval-
uate the total covariance matrix accurately due to its large size (Luo et al.,
2016; Gao, Song, Liu et al., 2015). To solve this problem, Yang et al. (2004)
extended conventional PCA to its 2D version, (2D)PCA and computed the
image covariance matrix based on the original image matrices. This strat-
egy not only enhances the evaluation of covariance matrix but also saves
considerable time in determining the corresponding eigenvectors. How-
ever, this algorithm works in the row direction of images and requires more
coefficients for image representation (Zhang & Zhou, 2005). Because 1D
dimensionality reduction is inflexible, it is hard to achieve a smaller and
more representative projection space. Zhang and Zhou (2005) developed a
two-dimensional PCA model, (2D)2PCA, by examining the row and col-
umn directions simultaneously. Note that all the PCA-based approaches to
dimensionality reduction depend on the total variance, which might fail to
obtain a desirable representation when the distance between two clusters is
shorter than that of intracluster (Welling, 2005; Dong, Huang, & Wen, 2010;
Hosoya & Hyvärinen, 2016).

Unsupervised dimensionality reduction aims to find the most discrimi-
native features that preserve the underlying geometry structure of original
feature space as much as possible (Du & Shen, 2015; Bennamoun et al., 2015;
Dy & Brodley, 2004). In the absence of label information, the local manifold
structure is typically captured through a graph of data points with pairwise
similarity (weighted) matrix (He, Ji, Zhang, & Bao, 2011; Hou, Nie, Li, Yi, &
Wu, 2014; Dash & Liu, 2000; Niyogi, 2004; Cai, Zhang, & He, 2010; He, Yan,
Hu, Niyogi, & Zhang, 2005). The Laplacian of this graph indeed reveals the
adjacency relations of the data points (Belkin & Niyogi, 2001, 2003; Niyogi,
2004). It facilitates mapping the original data in high-dimensional space
into a more representative subspace. However, it is a necessary step for
previous feature selection and extraction models to transform the 2D image
matrices into 1D vectors. Few studies are conducted to select or extract the
most informative features from 2D image matrices in a straightforwardway.
To the best of our knowledge, Hu et al. (2007) extended the conventional
LPP model to its 2D version by predetermining the adjacency relation in
the original 2D image space. As we mentioned, this method might fail to
characterize the underlying local structure accurately due to the noise in
the original space (Nie et al., 2014; Dy & Brodley, 2004). For the annotation
of image and video, Gao, Song, Nie et al. (2015) proposed optimal graph
learning (OGL), a method that constructs a similarity graph on multiple
features and partial tags (Wang, Zhang, Song, Sebe, & Shen, 2016). OGL
is a semisupervised method that learns the optimal graph based on a the-
ory that the shorter the distance is between two samples, the greater the
possibility is for them to be neighbors. However, if we have less labeled
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images or videos, the performance of annotation may be degraded. Song
et al. (2016) proposed joint graph learning and video segmentation (JGLVS),
an unsupervised framework that learns the optimal similarity graph and
video segmentation simultaneously. For JGLVS, the similarity matrix of
superpixels is learned by using the location information of superpixels
and spatial information, and all the superpixels have K connected compo-
nents. Beyond the previous approaches, we aim in this letter to involve
the optimal intrinsic structure learning into the procedure of 2D dimen-
sionality reduction by assigning the optimal neighbors to each data point
adaptively.

3 The Proposed Model

In this letter, we suppose that a 2D image data set consists of N samples
X1, X2, . . ., XN. Each sample is presented by a matrix of size m × n. Let
Pi j (i, j = 1, 2, . . . , N) be the probability of data points Xi and Xj to be a
neighbor. U ∈ R

m×u and V ∈ R
n×v are the transformation matrices that map

the original data points in high-dimensional space to a lower-dimensional
space. For better representation, we collect all the probabilities of data points
to be neighbors into matrix P = [Pi j] ∈ R

N×N. To involve the optimal under-
lying structure learning into the procedure of dimensionality reduction
(Kokiopoulou & Saad, 2007; Zhao, Wang, Liu, & Ye, 2013), we propose
to estimate the transformation matrices U,V and the probability matrix P
simultaneously by solving the following optimization problem,

min
P,U,V

N∑
i, j=1

‖UTXiV − UTXjV‖2
FPi j,

s.t. PT
i 1 = 1, 0 ≤ Pi ≤ 1,UTU = I,VTV = I (3.1)

where the objective function 3.1 encourages the low-dimensional represen-
tation of samples that obey the structure of original feature space. Unlike
the previous methods that predetermine the pairwise weighted matrix P to
characterize the underlying structure (Niyogi, 2004), our proposed model
updates the weighted matrix iteratively to achieve an optimal one in the
procedure of dimensionality reduction.

Note that optimization equation 3.1 employs a probability matrix to
reveal the local geometry structure of input data. However, this strategy ig-
nores the group structure and supposes that each data point in the adjacent
graph with matrix P has only one neighbor. For a task of c clustering, it is
reasonable to encourage the graph to have exact c connected components
(Nie et al., 2014). Assume that each data point is given a function value
fi ∈ R

1×c for i = 1, 2, · · · , N. According to the theorem in Fan (1950), we
have
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N∑
i, j=1

‖fi − f j‖2
2Pi j = 2Tr(FTLF), (3.2)

where matrix F = [fT
1 , fT

2 , · · · , fT
N]� ∈ R

N×c. L ∈ R
N×N is the Laplacian ma-

trix, which is defined as L = D − PT+P
2 , where D is a diagonal matrix with

its ii-th element Dii = ∑
j(Pi j + Pji)/2 for j = 1, 2, · · · , N (Chang, Nie, Ma,

Yang, & Zhou, 2014). Based on these definitions, if matrix P is nonnegative,
there is an important theorem (Chung, 1997; Mohar, 1991):

Theorem 1. After the eigenvalue decomposition of the matrix L, the multiplicity
c of the eigenvalue 0 is equal to the number of connected components in the graph
associated with P.

According to theorem 1, if the rank of matrix L is N − c, that is, r(L) =
N − c, data points could be assigned to c clusters. To assign the projected
data points in the reduced subspace to c clusters, we involve an additional
rank constraint in the construction of graph such that the optimization
problem, equation 3.1, turns to

min
P,U,V

N∑
i, j=1

‖UTXiV − UTXjV‖2
FPi j,

s.t. PT
i 1 = 1, 0 ≤ Pi ≤ 1,UTU = I,VTV = I, r(L) = N − c. (3.3)

Suppose σi is the ith smallest eigenvalue of L; the constraint r(L) = N − c of
optimization equation 3.3 is equal to the solution of the following problem:

c∑
i=1

σi = min
F∈RN×c,FT F=I

tr
(
FTLF

)
. (3.4)

Combining the optimization equations 3.3 to 3.4, the idea of adaptive
graph learning with consideration of group structure is formulated as the
following problem:

min
P,U,V,F

N∑
i, j=1

‖UTXiV − UTXjV‖2
FPi j + λ∞‖fi − f j‖2

2Pi j,

s.t. PT
i 1 = 1, 0 ≤ Pi ≤ 1,UTU = I,VTV = I, (3.5)

where λ∞ is a large enough value, which can keep the c smallest eigenvalue
of L equal to zero.
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Compared with equation 3.1, equation 3.5 can ensure that the projected
data points can clustered be better. In order to avoid a trivial solution, we
impose a penalty γ

∑N
i, j=1 P2

i j into the objective function, equation 3.5, such
that our model becomes

min
P,U,V,F

N∑
i, j=1

‖UTXiV − UTXjV||2FPi j + γ P2
i j + λ∞||fi − f j‖2

2Pi j,

s.t. UTU = I,VTV = I, PT
i 1 = 1, 0 ≤ Pi ≤ 1, FTF = I (3.6)

where γ is a regularization parameter (Chang, Yang, Long, Zhang, & Haupt-
mann, 2016).

3.1 Optimization Algorithm for Problem 3.6. It is obvious that the
proposed model is jointly convex. In this section, we use an alternative
optimization algorithm to solve the proposed model. When U, V , and P
are fixed, the optimal F can be obtained through solving the following
optimization problem:

min
F∈RN×c,FT F=I

tr
(
FTLF

)
. (3.7)

It is evident that the variable F can be solved by generalizing eigenvalue
decomposition.

When P and F are fixed, the optimization problem 3.6 associated with
variables U and V becomes

min
UTU=I,VTV=I

N∑
i, j=1

||UTXiV − UTXjV||2FPi j. (3.8)

For convenience, we denote the objective function of equation 3.8 as

G(U, V) =
N∑

i, j=1

||UTXiV − UTXjV||2FPi j. (3.9)

Considering the definition ‖A‖2
F = tr(ATA) for any matrix A, we deduce

the following equations, respectively:

Wv =
N∑

i, j=1

Pi j(Xi − Xj)VVT (Xi − Xj)
T , (3.10)
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Wu =
N∑

i, j=1

Pi j(Xi − Xj)
TUUT (Xi − Xj). (3.11)

As a result, the objective function of optimization equation 3.8 can be rewrit-
ten as

G(U, V) = tr
(
UTWvU

) = tr
(
VTWuV

)
. (3.12)

When the variable V is fixed, optimization equation 3.8 is equivalent to the
following form:

min
UTU=I

tr
(
UTWvU

)
. (3.13)

The optimal solution U to optimization problem 3.13 is the orthogonal
generalized eigenvectors of Wv corresponding to the u smallest generalized
eigenvalues. Similarly, if variable U is fixed, optimization problem 3.8 with
respect to variable V is equivalent to the following form:

min
VTV=I

tr
(
VTWuV

)
. (3.14)

The optimal solution V to problem 3.14 is achieved by the v eigenvectors
corresponding to the v smallest eigenvalues of Wu.

When U, V , and F are fixed, the optimal solution P to optimization
problem, equation 3.6, can be obtained by solving the following problem:

min
P

N∑
i, j=1

||UTXiV − UTXjV||2FPi j + γ P2
i j + λ∞||fi − f j||22Pi j.

s.t. PT
i 1 = 1, 0 ≤ Pi ≤ 1 (3.15)

In order to simplify the solution process, denote d1
i j = ‖UTXiV − UTXjV‖2

F ,
d2

i j = ‖ fi − f j‖2
2 and di j = d1

i j + d2
i j. Then the optimization problem 3.5 can

be rewritten as

min
PT

i 1=1,0≤Pi≤1

∥∥∥∥Pi + 1
2γ

di

∥∥∥∥2

2
. (3.16)

This problem turns to a conventional Euclidean projection problem in the
simplex space, which can be solved efficiently by using the algorithm pro-
posed in Nie et al. (2014).
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In summary, the alternative algorithm for optimization problem, equa-
tion 3.6, is shown in algorithm 1.
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3.2 The Solution of Parameter γ and Matrix P. In objective function
3.6, γ is an important parameter that is connected with the learning of un-
derlying geometry structure. However, the value of γ , which is among zero
to infinite, is difficult to determine. Here, we provide an efficient method to
obtain its value. According to Nie et al. (2014), the Lagrangian function of
problem 3.16 can be formulated as

1
2

∥∥∥∥Pi + di

2γi

∥∥∥∥2

2
− α(PT

i 1 − 1) − βT
i Pi. (3.17)

According to KKT condition (Boyd, Vandenberghe, & Faybusovich,
2013), Pi j can be solved by

Pi j =
(

−
di j

2γi
+ α

)
+

. (3.18)

The shorter the distance between two samples is, the greater the possi-
bility is for them to be neighbors. In order to detemine the top-k neighbors
of each sample, we sort each row of D to Q in ascending order, where D is
a matrix with iith element di j. After that, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Qit

2γi
+ α > 0 t = 1, . . . , k

−Qit

2γi
+ α ≤ 0 t = k + 1, . . . , N,

. (3.19)

By imposing a constraint
∑N

j=1 Pi j = 1 on equation 3.18, the following
criterion is adopted to determine α:

α = 1
k

+ 1
2kγi

k∑
t=1

Qit . (3.20)

For γi, the optimal solution satisfies

k
2

Qik − 1
2

k∑
t=1

Qit < γi ≤ k
2

Qi,k+1 − 1
2

k∑
t=1

Qit . (3.21)

Then, if the above inequality is satisfied, each sample will have only k
neighbors. Without loss of generality, we set
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γi = k
2

Qi,k+1 − 1
2

k∑
t=1

Qit . (3.22)

Finally, γ is easily solved by

γ = 1
N

N∑
i=1

(
k
2

Qi,k+1 − 1
2

k∑
t=1

Qit

)
. (3.23)

3.3 Convergence Analysis. By the following theorem, the convergence
of our proposed objective function can be proved and the global optimal
solution of projection matrices U and V can be obtained.

Theorem 2. The value of our objective function decreases constantly until con-
vergence in the process of iteration in algorithm 1.

Lemma 1. If three matrices of the four matrices P, F , U, and V can be fixed, then
another matrix can be obtained.

Proof. First, by fixing P, F, and U, the objective function in equation 3.6 will
become the form of equation 3.13, a convex optimization problem. Thus we
can get the global solution of V by taking the derivative of V in equation
3.14 and setting, it to zero. Second, in the same way, if P, F, and V are fixed,
we can obtain the global solution of U by solving the convex optimization
problem shown in equation 3.13. Third, when P, U, and V are fixed, it is
easy to obtain the global solution of F. Finally, if U, V , and F are fixed, it
can be seen that equation 3.15 is a convex function, and the global solution
of P can be solved easily.

Based on lemma 1, we verify theorem 2 as follows. According to al-
gorithm 1, after the tth iteration, we obtain U = Ut , V = Vt , P = Pt ,
and F = Ft . In the next iteration, U = Ut+1, V = Vt+1, P = Pt+1, and
F = Ft+1.

If Pt , Vt , Ft is fixed, we have

N∑
i, j=1

‖Ut+1T
XiV

t − Ut+1T
XjV

t‖2
FPt

i j + γ Pt
i j

2 + λ∞‖ft
i − ft

j‖2
2Pt

i j

≤
N∑

i, j=1

‖UtTXiV
t − UtTXjV

t‖2
FPt

i j + γ Pt
i j

2 + λ∞‖ft
i − ft

j‖2
2Pt

i j. (3.24)
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Similarly, if Pt , Ut , Ft is fixed, we have

N∑
i, j=1

‖UtTXiV
t+1 − UtTXjV

t+1‖2
FPt

i j + γ Pt
i j

2 + λ∞‖ft
i − ft

j‖2
2Pt

i j

≤
N∑

i, j=1

‖UtTXiV
t − UtTXjV

t‖2
FPt

i j + γ Pt
i j

2 + λ∞‖ft
i − ft

j‖2
2Pt

i j. (3.25)

If Ut , Vt , Ft is fixed,

N∑
i, j=1

‖UtTXiV
t − UtTXjV

t‖2
FPt+1

i j + γ Pt+1
i j

2 + λ∞‖ft
i − ft

j‖2
2Pt+1

i j

≤
N∑

i, j=1

‖UtTXiV
t − UtTXjV

t‖2
FPt

i j + γ Pt
i j

2 + λ∞‖ft
i − ft

j‖2
2Pt

i j. (3.26)

If Pt , Vt , Ut is fixed,

N∑
i, j=1

‖UtTXiV
t − UtTXjV

t‖2
FPt

i j + γ Pt
i j

2 + λ∞‖ft+1
i − ft+1

j ‖2
2Pt

i j

≤
N∑

i, j=1

‖UtTXiV
t − UtTXjV

t‖2
FPt

i j + γ Pt
i j

2 + λ∞‖ft
i − ft

j‖2
2Pt

i j. (3.27)

Consider

N∑
i, j=1

‖Ut+1T
XiV

t+1 − Ut+1T
XjV

t+1‖2
FPt+1

i j

≤
N∑

i, j=1

‖UtTXiV
t − UtTXjV

t‖2
FPt

i j, (3.28)

and

‖ft+1
i − ft+1

j ‖2
2Pt+1

i j ≤‖ft
i − ft

j‖2
2Pt

i j. (3.29)
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Combining the formulas between equations 3.24 and 3.29, we can sum up
the following formula:

N∑
i, j=1

‖Ut+1T
XiV

t+1 − Ut+1T
XjV

t+1‖2
FPt+1

i j + γ Pt+1
i j

2 + λ∞‖ft+1
i − ft+1

j ‖2
2Pt+1

i j

≤
N∑

i, j=1

‖UtTXiV
t − UtTXjV

t‖2
FPt

i j + γ Pt
i j

2 + λ∞‖ft
i − ft

j‖2
2Pt

i j. (3.30)

�

Theorem 2 is proved; thus, the value of objective function 3.6 decreases
constantly until convergence by using algorithm 1.

4 Experimental Analysis

In this section, we evaluate the performance of our proposed unsuper-
vised 2D dimensionality reduction with adaptive structure learning algo-
rithm (DRASL) on five popular data sets: Coil20 (Nene, Nayar, & Murase,
1996), AT&T (Samaria & Harter, 1994), Yale (Belhumeur, Hespanha, &
Kriegman, 1997), USPS, and FERET (Phillips, Wechsler, Huang, & Rauss,
1998).

4.1 Experiment Data Sets. The Coil20 (Nene et al., 1996) data set con-
sists of 1440 images—72 different images per object for 20 objects. These
images were taken at five different degrees. To simplify the computation of
experiments, we crop each image to 32 × 32 pixels and use the pixel values
as features. The AT&T (Samaria & Harter, 1994) data set consists of 400
images from 40 different subjects, and each subject has 10 distinct images.
Some images were taken at different times and in different lighting, and
have various facial expressions (e.g., smiling or nonsmiling, open or closed
eyes). Each image has is 112 × 92, and we use the pixel values as features.
The Yale (Belhumeur et al., 1997) data set consists of 165 gray-scale images
of 15 individuals. Each individual has 11 images with distinct facial ex-
pression (e.g., sad, happy, supervised), different lighting (e.g., center-light,
left-light, right-light), and other configurations. The FERET (Phillips et al.,
1998) data set consists of 1400 images of 200 subjects. Each subject has
7 images. To facilitate computation, we select 490 images of the data set,
each image is downsampled to the size of 80 × 80, and the pixel values are
used as features. The subset of the USPS data set contains 1854 gray-scale
handwritten digit images, and each image is cropped to 16 × 16 to evaluate
the performance of handwritten digit recognition. The detailed information
about these data sets is summarized in Table 1.
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Table 1: Description of Data Sets.

Data Set Sample Feature Class Dimensions of Feature Vector

USPS 1854 256 10 {2, 4, . . . , 14}
Coil20 1440 1024 20 {4, 8, . . . , 28}
FERET 490 6400 70 {10, 20, . . . , 70}
AT&T 400 10,304 40 {10, 20, . . . , 80}
Yale 165 77,760 15 {20, 50, . . . , 200}

4.2 Evaluation Matrices. In our experiments, accuracy (ACC) and nor-
malized mutual information (NMI) are used to evaluate the clustering per-
formance (Cai, He, & Han, 2005):

• ACC: For ith image, we denote gi as the obtained clustering label and
hi as the truth label, respectively. The calculation formula of ACC is

ACC =
∑N

i=1 δ(hi, map(gi))

N
, (4.1)

where N is the number of images, map(gi) is a permutation function
that maps the obtained clustering label to the truth label, and δ is a
function that accomplishes the matching of x and y if x = y, δ(x, y) = 1
and equals 0 otherwise.

• NMI: Normalized mutual information is another standard that can
be used to assess the performance of clustering. For any two arbitrary
variables C and D, NMI(C, D) can be used as

NMI(C, D) = I(C, D)√
H(C)H(D)

, (4.2)

where I(C, D) is a function that computes the mutual information
between C and D, H(C), and H(D) represent the entropies of C and D,
respectively. We denote tl as the number of samples in cluster ζ and
t̃h as the number of samples of hth truth class. NMI can be computed
by the following formula:

NMI =
∑c

l=1
∑c

h=1 tl,h log
(

N×tl,h

tl̃ th

)
√(∑c

l=1 tl log
tl
N

) (∑c
h=1 t̃h log

t̃h
N

) , (4.3)

where tl,h is the intersectional samples number of cluster ζ and the
hth ground truth class.
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4.3 Compared Algorithms. To evaluate the effectiveness of our pro-
posed DRASL, we compare it with the following 2D unsupervised dimen-
sionality reduction algorithms.

4.3.1 (2D)PCA (Yang et al., 2004). This extracts the eigenvectors of image
matrix in the row direction of 2D image matrices. The solution of the pro-
jection matrix relies on a covariance matrix RO, which can be obtained by
the following formula,

RO = 1
N

N∑
i=1

(Xi − X̄)T (Xi − X̄), (4.4)

where X̄ is the average image of all images; projection matrix A of (2D)PCA
is composed of r eigenvectors corresponding to the r largest eigenvalues of
RO.

4.3.2 (2D)2PCA (Zhang and Zhou, 2005). This considers both row and
column directions to extract the eigenvectors of a 2D image matrix. In
(2D)2PCA, the alternative (2D)PCA is used to extract the features of column
direction. Assume X ( j)

i and X̄ ( j) are the jth column vectors of Xi and X̄,
respectively. Then the covariance matrix CO of alternative (2D)PCA can be
defined as

CO = 1
N

N∑
i=1

n∑
j=1

(X ( j)
i − X̄ ( j))(X ( j)

i − X̄ ( j))T . (4.5)

The projection matrix B of alternative (2D)PCA consists of the s eigen-
vectors, which correspond to the s largest eigenvalues of CO. Considering
equations 4.34 and 4.35, the projection matrix C of (2D)2PCA is

C = BTXA. (4.6)

4.3.3 (2D)LPP (Hu et al., 2007). This is based directly on 2D image ma-
trices to conduct dimensionality reduction rather than 1D vectors as con-
ventional LPP does. The basic idea of the (2D)LPP algorithm is to find a
subspace that can not only reduce the dimensionality, but also preserve the
local manifold structure of data. The important part of (2D)LPP is to con-
struct the nearest neighbor graph, which reveals the adjacent relationships
of samples. The (2D)LPP procedure that extracts features is summarized as
follows:

1. Construct adjacency graph G.
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2. Assign weights.
3. Construct. the covariance matrix. The eigenvectors of (2D)LPP are

computed by

HT (L ⊗ Im)Hw = λHT (D ⊗ Im)Hw, (4.7)

where ⊗ means the Kronecker product of two matrices. D is a diag-
onal matrix, and the iith element is Dii = ∑n

j=1 Si j (Si j is the weight
between the ith and the jth data points). H comprises all the image
matrices and H = [XT

1 , XT
2 , XT

3 , . . . , XT
N]T . Then the projection matrix

J of (2D)LPP consists of k eigenvectors that correspond to the k small-
est eigenvalues.

4.3.4 I(2D)PCA (Woraratpanya et al., 2015). This is extension of (2D)PCA
that excludes the influence of the illumination effect based on (2D)PCA.
The difference between (2D)PCA and I(2D)PCA is that the construction of
a covariance matrix is based on only one zero mean image by I(2D)PCA
when (2D)PCA relies on N zero mean images to construct it.

4.4 Experiment Settings. In our experiment, we first obtain the projec-
tion matrices by various dimensionality reduction methods, and then eval-
uate the clustering performance by K-means in terms of accuracy (ACC)
and normalized mutual information (NMI). Since the final values of the
clustering are determined by the initial values, for different dimensionality
reduction methods, we repeat the K-means 30 times with random initial
values and take the average values as the final results.

There are some suggestions for parameter settings. For (2D)LPP, the
neighbor structure graph is constructed by using the self-tune gaussian
method (Zelnik-Manor & Perona, 2005). For DRASL, γ is determined by
equation 3.23 with k = 5, and c is set to be the number of classes. Since λ∞ is a
very large number, it is unsuitable to use it as a fixed value in the algorithm.
In our experiments, we dynamically change the value of λ∞ according to
the value of c: λ∞ is initialized with γ ; if the number of clusters is larger
than c, λ∞ will be divided by two; λ∞ doubles its value otherwise.

4.5 Experimental Results. For evaluating the performance of our algo-
rithm in clustering, we conduct experiments on five data sets. To be fair to all
the comparison algorithms, the dimensions of feature vectors in (2D)2PCA
and DRASL are set to (c − 1) × (c − 1) and (c − 1) in (2D)PCA, (2D)LPP,
and I(2D)PCA, where c is the number of classes. The comparison results
are summarized in Tables 2 and 3, in which each element is the sum of the
average value and the standard deviation. The baseline is all features.

From Tables 2 and 3 we can observe that the DRASL algorithm can obtain
better clustering results than the baseline in terms of ACC and NMI. The
reason is that after the dimensionality reduction, the noisy and irrelevant
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Table 2: Clustering Results (ACC%±Standard Deviation) of Different Dimen-
sionality Reduction Algorithms on Five Data Sets.

Data Set Yale FERET AT&T Coil20 USPS

Baseline 51.49 ± 5.61 33.10 ± 1.71 58.21 ± 3.92 59.07 ± 5.14 62.07 ± 3.86
(2D)PCA 52.28 ± 6.49 33.58 ± 1.26 59.35 ± 4.01 59.65 ± 3.76 63.00 ± 3.08
(2D)2PCA 53.88 ± 6.03 33.63 ± 1.32 59.67 ± 4.07 60.38 ± 5.79 62.81 ± 3.71
I(2D)PCA 54.47 ± 5.07 33.30 ± 1.83 59.04 ± 3.94 59.81 ± 5.42 62.62 ± 4.20
(2D)LPP 53.29 ± 4.76 33.56 ± 1.3 61.92 ± 3.56 60.85 ± 5.8 63.06 ± 5.11
DRASL 56.03 ± 3.86 35.9 ± 1.98 63.50 ± 3.32 62.39 ± 5.75 64.87 ± 4.95

Note: Numbers in bold are the result of our proposed method.

Table 3: Clustering Results (NMI% ± Standard Deviation) of Different Dimen-
sionality Reduction Algorithms on Five Data Sets.

Data Set Yale FERET AT&T Coil20 USPS

Baseline 60.68 ± 3.71 63.08 ± 1.04 79.01 ± 1.64 73.04 ± 2.33 61.03 ± 1.94
(2D)PCA 62.23 ± 4.36 63.17 ± 1.18 79.43 ± 1.92 74.09 ± 2.07 61.20 ± 1.55
(2D)2PCA 61.33 ± 3.81 63.46 ± 0.86 78.87 ± 2.03 72.78 ± 2.39 61.67 ± 1.58
I(2D)PCA 62.31 ± 2.73 63.34 ± 1.41 79.16 ± 2.15 74.11 ± 2.42 61.30 ± 2.06
(2D)LPP 61.40 ± 3.50 63.60 ± 1.21 81.05 ± 1.87 74.10 ± 2.92 61.08 ± 2.37
DRASL 65.29 ± 2.91 65.47 ± 0.97 81.98 ± 1.96 76.02 ± 2.63 63.83 ± 2.47

Note: Numbers in bold are the result of our proposed method.

features can mostly be discarded. Therefore, the dimensionality reduction
technique is necessary and effective for the clustering task. Not only can the
informative features be preserved, but the performance of clustering is also
improved. Second, as shown in Tables 2 and 3, the performance of DRASL
outperforms the other four comparison algorithms. This is attributed to
the process of constructing the neighbor structure graph and the learning
of neighbors’ assignment. Since the construction of a neighbor graph is
a dynamic process, the proposed algorithm can effectively preserve the
adjacency relations of data in the subspace by adaptive learning, and then it
guarantees that the final results have only c connected clusters. Meanwhile,
the better adjacency graph is helpful for us to reduce the dimensionality
of images. However, (2D)PCA-based approaches neglect the importance of
the underlying geometry structure and pay attention only to the total scatter
of data. For (2D)LPP, its neighbor structure graph cannot reveal the actual
relationships of data in the noise. Thus, the underlying geometry structure
is crucial in the process of 2D unsupervised dimensionality reduction and
our algorithm can obtain better results than others.

The second experiments aim to demonstrate the clustering performance
of diverse dimensionality reduction algorithms with different numbers of
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Figure 1: Clustering ACC of five algorithms on five data sets.

Figure 2: Clustering NMI of five algorithms on five data sets.

dimensions of feature vector. The experiments are conducted in five data
sets, and the ACC and NMI results are in Figures 1 and 2. For the di-
mensionality reduction algorithms, we regularly select the dimensions of
feature vectors for testing; the specific information is shown in Table 1.
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Table 4: Clustering Results (ACC% ± Standard Deviation and NMI% ± Stan-
dard Deviation) of PCA and LPP on Three Data Sets.

Method Data Set FERET Yale AT&T

PCA ACC 33.13 ± 1.12 54.79 ± 2.46 61.05 ± 3.03
NMI 64.01 ± 1.10 61.28 ± 1.17 80.52 ± 1.73

LPP ACC 32.53 ± 1.45 52.76 ± 4.85 62.21 ± 4.00
NMI 63.42 ± 1.16 61.88 ± 1.99 80.95 ± 2.10

We find that our algorithm can get better results than (2D)PCA,
(2D)2PCA, I(2D)PCA, and (2D)LPP in a number of dimensions of feature
vectors. The results prove that our algorithm outperforms others.

In the experiments, we also compare our approach with the 1D image
dimensional reduction algorithm PCA and LPP. To be fair, we transform the
2D image matrices to 1D vectors, and the dimensions of feature vector are
set to (c − 1). For LPP, the neighbor structure graph is constructed by using
the self-tuned gaussian method (Zelnik-Manor & Perona, 2005). The results
are summarized in Table 4. For example, for the Yale data set, Table 3 shows
the highest clustering NMI results, 65.29% of DRASL, and Table 4 shows
the highest clustering NMI results, 61.88%. The results indicate that DRASL
can get better performance than conventional PCA and LPP approaches.

Furthermore, as mentioned in algorithm 1, DRASL can achieve con-
vergence by continuous iteration. In practice, our algorithm usually con-
verges within 15 iterations, and the time complexity of our algorithm is
O(m2u + n2v + N2c). However, a major drawback cannot be ignored. In the
iteration procedure of algorithm 1, the deduction of matrices U, V , and F is
derived from eigendecomposition and shows that the solution of projection
matrices consumes much more time than others. In the experiment, all the
algorithms are implemented with Matlab programming and run on CPU
i5 − 6200U with 2.40 GHz and 8 GB RAM. The average running time of
our algorithm is about 14 minutes. Thus, we still have much work to do to
improve our algorithm.

5 Conclusion

To address the challenging task of large-scale high-dimensional data di-
mensionality reduction, we propose a novel dimensionality reduction al-
gorithm, DRASL. To construct an optimal similarity matrix, we involve
the learning of a similarity matrix into the procedure of dimensionality
reduction. To obtain a desirable neighbors’ assignment after dimensional-
ity reduction, we introduce the adaptive structure learning to the proposed
model. An efficient iterative optimization algorithm has also been proposed
to solve our objective function. We conduct rich experiments on five data
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sets, and the experimental results indicate that DRASL can obtain better
clustering results when the similarity matrix is optimal. But every coin has
two sides; our algorithm also has some drawbacks, such as that DRASL will
need more run time and some parameters need to be tuned in the experi-
mental process. These deficiencies should be considered carefully in future
work.

Acknowledgments

This work was jointly supported by the National Natural Science Founda-
tions of China under grant 61502387, the Natural Science Foundations of
Shaanxi under grant 2016JQ6029, and Educational Commission of Shaanxi
Province, China under Grant 11JK1062.

References

Belhumeur, P., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces:
Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach.
Intelligence, 9(7), 711–720.

Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for
embedding and clustering. In T. G. Dietlerich, S. Becker, & Z. Ghahramani (Eds.),
Advances in neural information processing systems, 14 (pp. 585–591). Cambridge,
MA: MIT Press.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6), 1373–1396.

Bennamoun, M., Guo, Y., & Sohel, F. (2015). Feature selection for 2d and 3d face
recognition. In Wiley encyclopedia of electrical and electronics engineering (pp. 1–54).
Hoboken, NJ: Wiley.

Boyd, S., Vandenberghe, L., & Faybusovich (2013). Convex optimization. IEEE Trans-
actions on Automatic Control, 51(11), 1859–1859.

Cai, D., He, X., & Han, J. (2005). Document clustering using locality preserving
indexing. IEEE Transactions on Knowledge and Data Engineering, 17(12), 1624–1637.

Cai, D., Zhang, C. Y., & He, X. F. (2010). Unsupervised feature selection for multi-
cluster data. In Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (pp. 333–342). New York: ACM.

Chang, X., Nie, F., Ma, Z., Yang, Y., & Zhou, X. (2014). A convex formulation for spectral
shrunk clustering. arXiv:1411.6308

Chang, X., Nie, F., Wang, S., Yang, Y., Zhou, X., & Zhang, C. (2015). Compound
rank-k projections for bilinear analysis. IEEE Transactions on Neural Networks and
Learning Systems, 27(7), 1.

Chang, X., Yang, Y., Long, G., Zhang, C., & Hauptmann, A. G. (2016). Dynamic concept
composition for zero-example event detection. arXiv:1601.03679

Chung, F. R. (1997). Spectral graph theory. Providence, RI: American Mathematical
Society.

Dash, M., & Liu, H. (2000). Feature selection for clustering. Encyclopedia of Database
Systems, 21(3), 110–121.



1372 X. Zhao et al.

Dong, X., Huang, H., & Wen, H. (2010). A comparative study of several face recogni-
tion algorithms based on PCA. In Proceedings of the Third International Symposium
on Computer Science and Computational Technology (p. 443). N.p.

Du, L., & Shen, Y.-D. (2015). Unsupervised feature selection with adaptive structure
learning. In Proceedings of the ACM-SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 209–218). New York: ACM.

Dy, J. G., & Brodley, C. E. (2004). Feature selection for unsupervised learning. Journal
of Machine Learning Research, 5(4), 845–889.

Fan, K. (1950). On a theorem of Weyl concerning eigenvalues of linear transforma-
tions I. PNAS, 35(11), 652.

Gao, L., Song, J., Liu, X., Shao, J., Liu, J., & Shao, J. (2015). Learning in high-
dimensional multimedia data: The state of the art. Multimedia Systems, 21, 1–11.

Gao, L., Song, J., Nie, F., Yan, Y., Sebe, N., & Heng, T. S. (2015). Optimal graph
learning with partial tags and multiple features for image and video annotation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Piscataway, NJ: IEEE.

Gao, L., Song, J., Nie, F., Zou, F., Sebe, N., & Shen, H. T. (2016). Graph-without-cut:
An ideal graph learning for image segmentation. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence. Cambridge, MA: AAAI Press.

He, X., Ji, M., Zhang, C., & Bao, H. (2011). A variance minimization criterion to
feature selection using Laplacian regularization. IEEE Trans. Pattern Anal. Mach.
Intelligence, 33(10), 2013–2025.

He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H.-J. (2005). Face recognition using
Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(3), 328–340.

Hosoya, H., & Hyvärinen, A. (2016). Learning visual spatial pooling by strong PCA
dimension reduction. Neural Computation, 28(7), 1–16.

Hou, C., Nie, F., Li, X., Yi, D., & Wu, Y. (2014). Joint embedding learning and sparse
regression: A framework for unsupervised feature selection. IEEE Trans. Cybern.,
44(6), 793–804.

Hu, D., Feng, G., & Zhou, Z. (2007). Two-dimensional locality preserving projections
(2DLPP) with its application to palmprint recognition. Pattern Recognition, 40(1),
339–342.

Kadir, S. N., Goodman, D. F., & Harris, K. D. (2014). High-dimensional cluster
analysis with the masked EM algorithm. Neural Computation, 26(11), 2379–2394.

Kambhatla, N., & Leen, T. K. (1997). Dimension reduction by local PCA. Neural
Computation, 9, 1493–1516.

Koch, I., & Naito, K. (2007). Dimension selection for feature selection and dimension
reduction with principal and independent component analysis. Neural Computa-
tion, 19(2), 513–545.

Kodirov, E., Xiang, T., Fu, Z., & Gong, S. (2016). Learning robust graph regularisation
for subspace clustering. In Proceedings of the British Machine Conference. N.p.

Kokiopoulou, E., & Saad, Y. (2007). Orthogonal neighborhood preserving projections:
A projection-based dimensionality reduction technique. IEEE Trans. Pattern Anal.
Mach. Intelligence, 29(12), 2143–2156.

Lakshmanan, K. C., Sadtler, P. T., Tyler-Kabara, E. C., Batista, A. P., & Yu, B. M. (2015).
Extracting low-dimensional latent structure from time series in the presence of
delays. Neural Computation, 27(9), 1–32.



Unsupervised 2D Dimensionality Reduction 1373

Luo, M., Nie, F., Chang, X., Yang, Y., Hauptmann, A., & Zheng, Q. (2016). Avoiding
optimal mean robust PCA/2DPCA with non-greedy l1-norm maximization. In
Proceedings of the 25th International Joint Conference on Artificial Intelligence. N.p.

Mohar, B. (1991). The laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O.
Oellermann, & A. J. Schenk, Graph theory, Combinatorics, and Applications (pp.
871–898). New York: Wiley.

Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia object image library (Coil-20)
(Technical Report CUCS-005-96). New York: Columbia University.

Nie, F., Wang, X., & Huang, H. (2014). Clustering and projected clustering with
adaptive neighbors. In Proceedings of the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (pp. 977–986). New York: ACM.

Niyogi, X. (2004). Locality preserving projections. In S. Thrun, L. K. Saul, & B.
Schölkopf (Eds.), Advances in neural information processing systems, 16. Cambridge,
MA: MIT Press.

Phillips, P. J., Wechsler, H., Huang, J., & Rauss, P. J. (1998). The FERET database and
evaluation procedure for face-recognition algorithms. Image and Vision Computing,
16, 295–306.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500), 2323–2326.

Samaria, F. S., & Harter, A. C. (1994). Parameterisation of a stochastic model for
human face identification. In Proceedings of the Second IEEE Workshop on Ap-
plications of Computer Vision (pp. 138–142). Washington, DC: IEEE Computer
Society.

Song, J., Gao, L., Puscas, M. M., Nie, F., Shen, F., & Sebe, N. (2016). Joint graph
learning and video segmentation via multiple cues and topology calibration. In
Proceedings of the 2016 ACM on Multimedia Conference (pp. 831–840). New York:
ACM.

Turk, M. A., & Pentland, A. P. (1991). Face recognition using eigenfaces. In Proceed-
ings of the Conference on Computer Vision and Pattern Recogintion (pp. 586–591).
Washington, DC: IEEE Computer Society.

Wang, J., Zhang, T., Song, J., Sebe, N., & Shen, H. (2016). A survey on learning to hash.
arXiv:1606.00185.

Welling, M. (2005). Fisher linear discriminant analysis. Toronto: Department of Com-
puter Science, University of Toronto.

Woraratpanya, K., Sornnoi, M., Leelaburanapong, S., Titijaroonroj, T., Varakul-
siripunt, R., Kuroki, Y., & Kato, Y. (2015). An improved 2DPCA for face recognition
under illumination effects. In Proceedings of the International Conference on Infor-
mation Technology and Electrical Engineering (pp. 448–452). Piscatway, NJ: IEEE.

Yamada, M., Jitkrittum, W., Sigal, L., Xing, E. P., & Sugiyama, M. (2014). High-
dimensional feature selection by feature-wise kernelized lasso. Neural Computa-
tion, 26(1), 185–207.

Yang, J., Zhang, D., Frangi, A. F., & Yu Yang, J. (2004). Two-dimensional PCA: A new
approach to appearance-based face representation and recognition. IEEE Trans.
Pattern Anal. Mach. Intelligence, 26(1), 131–137.

Zelnik-Manor, L., & Perona, P. (2005). Self-tuning spectral clustering. In L. K. Saul,
Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (pp.
1601–1608). Cambridge, MA: MIT Press.



1374 X. Zhao et al.

Zhang, D., and Zhou, Z.-H. (2005). (2d)2PCA: Two-directional two-dimensional PCA
for efficient face representation and recognition. Neurocomputing, 69(1–3), 224–
231.

Zhao, Z., Wang, L., Liu, H., & Ye, J. (2013). On similarity preserving feature selection.
IEEE Transactions on Knowledge and Data Engineering, 25(3), 619–632.

Received November 15, 2016; accepted December 19, 2016.



Copyright of Neural Computation is the property of MIT Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.


