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Abstract
We introduce a fast and accurate heuristic for adaptive tomography that addressesmany of the
limitations of priormethods. Previous approaches were either too computationally intensive or
tailored to handle special cases such as single qubits or pure states. By contrast, our approach combines
the efficiency of online optimizationwith generally applicable andwell-motivated data-processing
techniques.Wenumerically demonstrate these advantages in several scenarios includingmixed states,
higher-dimensional systems, and restrictedmeasurements.

Quantum information processing (QIP) promises advantages in awide range of different contexts, including
machine learning [2–4], chemistry simulation [5–7], and number theory [8, 9]. As such, the experimental effort
to build usefulQIP devices has exploded in recent years. In the course of this effort, quantum tomography is a
valuable tool for diagnosing and debugging small quantumdevices, and has subsequently seen a variety of
different advances. In particular, Bayesian approaches to tomographywhich are especially well suited to utilizing
prior information and adapting to changing experimental conditions have developed significantly in recent
years [10–13], presenting a useful experimental tool [14–16].

In this paperwe demonstrate the efficiency and accuracy of an adaptive tomography protocol that we call
PAQT: practical adaptive quantum tomography. PAQT intelligently selects newmeasurements based on the
outcomes of previous ones [10, 17–21]. Adaptivity has been experimentally demonstrated [14, 15, 22–25], but is
not currently standard practice. Though adaptivity increases accuracy, the computational costs incurred
outweigh that of simply repeating standardmeasurementsmany times. The PAQT approach employs a simple
heuristic that can be efficiently computed betweenmeasurements, evenwith embedded hardware [26–29]. The
algorithmwe propose is therefore compatible withmodern experimental design and avoids an important
limitation of previous approaches.

We base our algorithmoff of self-guided quantum tomography (SGQT), which treats adaptive tomography
as a direct optimization problem rather than a newoptimization problembetween eachmeasurement [30].
Though this affords an efficient and easy to implement adaptive heuristic, SGQT is notwithout its limitations. It
requires assuming that the target state is pure, and it does not return rich region estimates for a state.What
PAQT achieves is to effectively combine SGQTwith conventional and easily-implemented tomographic
estimators, such as the Bayesian particle filter or least-squares fit (LSF) estimators. Under this approach, an
experimentalist can collect data using SGQT (even if its assumptions are notmet), and then post-process this
data using particle filtering or LSF.

The benefit of PAQT is two-fold. (1) From the point of view of traditional tomography, it gives an adaptive
tomography protocol requiring onlymodest computational resources, as the bulk of the computational cost is
offloaded to post-processing. (2) From the point of view of simulation-based optimization tomography (such as
SGQT), it effectively augments the outputwith region estimation providing a statistically robust quantification
of uncertainty. Thus, while we do not explicitly demonstrate that the improved scaling of Ferrie [30] remains in
themore general case considered here, PAQTdoes provide a practical and efficient procedure for performing
adaptive quantum tomographywith rigorous statistical principles.
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The outline of the paper is as follows. In section 1we define and review the problemof tomography as well as
three standard solutions: least squares,maximum likelihood andBayesianmean estimation. In section 2, we
review the approaches tomeasurement adaptive tomography including the recently introduced self-guided
technique. In section 3, introduce PAQTby combining SGQTwith adaptive Bayesian tomography and detail the
results of our numerical experiments. Section 4 concludeswith a discussion.

1. The tomographic problem

In quantum state tomography, we are interested in reconstructing a quantum state from a collection of
informationally completemeasurementsmade on that state [31–33]. That is, a set ofmeasurements is chosen
such that if one learns their frequencies given a quantum systemof interest, the frequencies for any other
measurement of that system can then be predicted. If the systemof interest is a qubit, for instance, then knowing
the expectations of the observables s s s{ }, ,x y z allows for predicting the distribution over outcomes for any
othermeasurement. The empirical reconstruction of quantum states frommeasurements of informationally
complete observables has been reviewed byD’Ariano et al [34], and reviewed in the case of continuous variables
by Lvovsky andRaymer [35]. Here, wewill focus on the case of state tomography infinite-dimensional systems.

That a quantum state can be empirically determined in principle, however, leaves the question of how to
estimate a state in practice, givenfinite experimental resources. For instance, given data from an informationally
complete set of observables, one could use a linear reconstruction, amaximum likelihood estimator [36–38], or
a Bayesianmean estimator [10–13, 39] to report a state.Wewill detail each such approach below, and describe
their relative strengths andweaknesses.

Before proceeding, we note that thoughwe consider the general case of tomography in this work, substantial
progress has beenmade by considering considering important special cases underwhich a state can bemuch
more easily characterized. In particular, permutationally invariant tomography reconstructs the part of a
multiqubit densitymatrix which is invariant under exchange of the qubits [40]. Compressed sensing allows for
the efficient recovery of low-rank quantum states [41, 42], and has been applied experimentally in systems as
large as six qubits [43]. Similarly,MPS [44] andPEPS [45] tomography use theMPS andPEPS ansatzes to
improve exponentially on naïvemethods for states that are well-approximated by common tensor network
ansatzes [46]. Thoughwe do not explore the possibility in this work, we expect that heuristic approaches should
also offer similar advantages to tomographic estimation in these cases.

1.1. Problem set up
First, consider an orthonormal basis for tracelessHermitian operators =

-{ }Bj j
d

1
12
—the Pauli basis, for example.

That is, for all i j, , =†B Bj j and d=( )B BTr k j kj and =( )BTr 0j . Then, any state ρ can bewritten

 år q= +
=

-

( )
d

B , 1
j

d

j j
1

12

for some vector of parameters q q=( )j j. Importantly, these parameters are constrained since r 0. This poses
a problem formany approaches, but there are well-motivatedmethodswhich produce a valid quantum state
starting from anon-physicalmatrix [47].

Let us assume two-outcome testmeasurements aremade such that eachmeasurement outcome is either 1 or
0 and represented by the pair  -{ }P P,k k . The Born rule dictates that the probability to get 1, say, is

r r=( ∣ ) ( )P PPr 1 , Trk k . Since the operators { }Bj form a basis, we canwrite

 å= +
=

-

( )P
d

p B , 2k
j

d

kj j
1

12

and the Born rule vectorizes to

qr r= = +( ∣ ) ( ) ( )pP P
d

Pr 1 , Tr
1

, 3k k k
T

where =( )p pk j kj. Denote r= ( ∣ )f PPr 1 ,k k and =( )f fk k. Also define thematrix X with entries =( )X pkj kj.
Then the above condenses to

q= + ( )f X
d

1
. 4

If we perform at least d2 suchmeasurements such that the set ={ }Pk k
d

1

2

is linearly independent, then the
probabilities f are sufficient to determine ρ uniquely. That is, the linear system in (4) has a solution set with a
single valid quantum state. In practice we do not have access to f , but only samples drawn from the distribution
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that it defines. SupposeNkmeasurements of  -{ }P P,k k yielded nk 1s andNk−nk 0s. Then, the empirical
frequencies are

=ˆ ( )f
n

N
. 5k

k

k

The task of tomography is to assign a quantum state q to each data set f̂ .

1.2. Linear inversion tomography
Next, wewill outline the traditional approach to solving the tomography problem.While we do not recommend
this approach, it usually provides reasonable answers and is at least implicitly the starting point formore
sophisticated approaches.

We begin by setting the empirical frequencies equal to the (rescaled) theoretical probabilities =f̂ f . After

all, r( )PTr k is literally the expectation value of the observable Pk. In any case, if we let = -ˆY f d1 , the new
systemof equations

q= ( )Y X , 6

maynot have a solution ifmore than d2 differentmeasurements have beenmade. The traditional approach is to
use the least squares estimator

q q= -
q

 ˆ ( )Y Xargmin , 7LS 2
2

which has the exact solution

q = -ˆ ( ) ( )X X X Y . 8LS
T 1 T

This solution is not guaranteed to produce a positive semidefinite estimate. One can resort to performing
constrained least squares (which is ‘not that hard’ since one probably has access to a black box implementation of
this using a canned scientific software library) or one can use a two-step approach [47] that outputs the ‘closest’
physical state to a givenmatrix. There is no consensus onwhich should be preferred andwemake no
recommendations here. In our simulations, we have set all negative eigenvalues to zero, as we observe that in
practice,measurements designed by self-guided tomography tends to only rarely yield q̂LS corresponding
to r 0.

1.3.Maximum likelihood tomography
The linear least squares approach is folklore as old as the problemof tomography, but has been stated explicitly
byQi et al [48]. It usually arises when using aGaussian approximation to the likelihood function inmaximum
likelihood estimation (MLE) (see, for example, Kaznady and James [49]). The likelihood function is the
probability distribution of the data given a state q, thought of as a function of q. Since eachmeasurement is an
independent binomial trial, the likelihood function is quite simple:

q q q= + - -
-

⎜ ⎟ ⎜ ⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ˆ∣ ) ˆ ( )

ˆ ( ˆ )
f X p p

N

N f d d
Pr ,

1
1

1
. 9

k

k

k k
k

N f

k

N f
T T

1k k k k

One of the oldest techniques in classical statistical estimation isMLE,which prescribes the estimate

q q=
q

ˆ ( ˆ∣ ) ( )f Xargmin Pr , . 10MLE

This does not have a closed form in general. Tomake some traction, we can approximate the likelihood function
by aGaussian (perhapswith appeal to the central limit theorem). AGaussian is defined by itsmean and variance,
sowe need only those from the actual distribution tomake the approximation. These are simple enough to
derive from the properties of the binomial distribution:

 q= +[ ˆ] ( )f X
d

1
, 11


q q

d=
+ - -( )( )

[ ˆ] ( )f
p p

N

1
. 12kj kj

d k d k

k

1 T 1 T

The location of themaximumof a function is the same as that of the log of the function. The logarithmof the
Gaussian approximation to the likelihood function (ignoring termswhich do not depend on q) is
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å
q

q q
-

-

+ - -( )( )
( )

( )
p

p p

Y N1

2 1
. 13

k

k k k

d k d k

T 2

1 T 1 T

Wemake onemore approximation, which is again replacing the probabilities with their empirical frequencies1

such that themaximum likelihood problem then becomes

q q= ¢ - ¢
q

 ˆ ( )Y Xargmin , 14MLE 2
2

wherewe haveweighted Y and X by the variance:

¢ =
-

¢ =
-ˆ ( ˆ ) ˆ ( ˆ )

( )Y
N

f f
Y X

N

f f
X

1
,

1
. 15k

k

k k

k k
k

k k

k

Notably, this approach fails if =f̂ 0k or 1 for any k, as the variance in these cases approaches zero, so that
¢  ¥Y k . To solve this, we hedge the empirical frequencies by b = 0.5, so that we use
= + +ˆ ( ) ( )f n N0.5 1k k k when computing theMLE [50].

1.4. Bayesian tomography
As opposed to the frequentist techniques noted above, the Bayesian approach centers aroundBayes’ rule, which
prescribes how to update a prior distribution q( )Pr to a posterior distribution q( ∣ ˆ )f XPr , that is conditioned on

the observed frequencies f̂ . Concretely,

q
q q

=( ∣ ˆ ) ( ˆ∣ ) ( )
( ˆ∣ )

( )f X
f X

f X
Pr ,

Pr , Pr

Pr
, 16

where q( ˆ∣ )f XPr , is the likelihood function of (9), andwhere ( ˆ∣ )f XPr is a pesky normalization that wewill deal
with implicitly when doing numerical calculation.WhenBayes’ rule is used iteratively, the posterior for one
experiment becomes the prior for the next. Inwords, this equation is a prescription of the full distribution of
knowledge about the quantum state given the data thatwas actually observed.What canwe dowith this?

First, we can produce a single ‘point’ estimate of q via the posteriormean:

q q= q
ˆ [ ] ( )∣ ˆ , 17f XBME ,

where BME stands for Bayesianmean estimator. Themean estimator is not the only option, though it is optimal
for certain figures ofmerit [39], or at least near-optimal [51]. Second, the posterior distribution naturally
encodes ‘error bars’ byway of the posterior covariance tensor [13, 39]. Finally, the data can be processed online in
the sense that new data can be incorporated into the distributionwithout the need to reanalyze all previous data
at the same time. This lends itself naturally to adaptive tomography, discussed in the next section.

In practice, however, exactly implementing Bayesianmean estimation is quite difficult, as the expectation
value in (17)may not be analytically tractable outside of important special cases.Wewill therefore follow the
approach ofHuszár andHoulsby [10] and use the particle filtering algorithm [52] to numerically implement
Bayesian estimation. This approach has since been used by Ferrie [11, 12] and byGranade et al [13] to develop
useful applications of Bayesian tomography, by Stenberg et al [53] to learn coherent states, and has been
successfully applied outside of tomography to efficiently learnHamiltonians using classical [54] and quantum
resources [55]. For our purposes here, we are primarily interested in the property that once a datumhas been
incorporated into a particle filter, itmay be discarded, such that we do not incur computational costs that grow
faster than the amount of data. Utilizing this advantage, togetherwith the results of Beskos et al [56]we
conjecture that Bayesian tomographywith particle filtering requires computational costs scaling as ( )O d Np4 ,
where r Î ´d d ,N is the number ofmeasurements, and p is the number of particles, as explained below.
Naïvely, onemight expect that Î ( )p O dexp is required, but the result of Beskos et al [56] shows that p can
always be chosen to be subexponential in d.Moreover, p can be chosen independently of d in cases wherewe use
p to control the estimation accuracy rather than the problemdimension.

Particle filtering proceeds by approximating the prior and posterior distributions at each step of Bayesian
inference as aweighted sumof δ functions,

åq q qd» -( ) ( ) ( )wPr , 18
i

i i

where { }wi are theweights of the particles located at q{ }i . Upon observing a datum f̂k, theweights are then
updated by calling the likelihood function for each particle,

1
Adiscussion of the consistency of this replacement can be found in [78].
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q´ ( ˆ ∣ ) ( )w w fPr , 19i i k i

where  is the normalization factor in Bayes’ rule (16), which can be found implicitly by demanding that
å =w 1i i . The BME is then found by taking a sumover the particles representing the current posterior,

åq q=ˆ ( )w . 20
i

i iBME

Numerical stability in particle filtering is provided by the use of a resampling algorithmwhich replaces the
particles by a new set of particles thatmore effectively represents the same posterior.Wewill use the Liu and
West resampling algorithm [57], whichmixes the current posterior with aGaussian distribution of the same
mean and covariance. The resampling is controlled by a parameter Î [ ]a 0, 1 , with smaller a corresponding to
‘moreGaussian’ posteriors.

2. Adaptive and self-guided tomography

Wehave not yet addressed the issue of X , thematrix defining the choice ofmeasurements. How should this
choice ofmeasurements be done? This is an open problem,with the lack of consensusmostly due to
incompatible choices of criteria for optimality. In any case, the fact that somemeasurements are better than
others suggests that improvements can bemade through adaptive tomography—that is, choosing new
measurement settings based on information obtained frompastmeasurement settings.

2.1. Adaptive tomography
Thefirst to consider adaptive state tomographywas Fischer et al [17], who did so for a single qubit assumed to be
in a pure state. That is, the prior was taken to be a uniformdistribution on the surface of the Bloch sphere. The
adaptivity consists ofmaximizing the entropy of the sampling distribution and expected fidelity. The estimator
was chosen to be themaximumof the posterior distribution. This was later experimentally realized for a short set
ofmeasurements by pre-computing and storing the optimal experiment choices in a look-up table [22].

Adaptive state tomography has also been investigated in the context of parameterizedmodels and Fisher
information. Barndorff-Nielsen andGill [18] showed that the quantumFisher information for a single
parameter can be obtained asymptotically by adaptively choosing themeasurement settings in a two-stage
procedure. The asymptotic two-step approach seems also to have been independently discovered by Řeháček
et al [19] andBagan et al [20]. An experimental demonstration has verified a quadratic improvement in accuracy
[23, 58]. These approaches, however, are ofmore theoretical interest as they are guaranteed only asymptotically
or require the total number ofmeasurements to be specified a priori.

A generic approach using themaximum likelihood estimator andmeasurementsminimizing the expected
variance also showed an improvement over standard quantum tomography [21]. This has beenmademore
practical through use of a recursive least-squares formula inQi et al [25]. Belowwewill see that our choice of
heuristic for adaptationmay lead the least squares estimator to fail due to ill-conditionedness. Our results below
will suggest that the better approach is the Bayesian one.

2.2. Bayesian adaptive quantum tomography
The Bayesianmethod also allows for a principled approach to adaptivemeasurements since one has a very
formal definition of expected utility of ameasurement. Consider (16) in the case of a hypotheticalmeasurement
X , which could produce data f̂ . Then, one can define the expected utility of themeasurement as

 q= q( ) [ ( )] ( )ˆ ∣XU L , 21f X,

where L is an arbitrary loss function.
Fischer et al [17] considered both the log-loss and fidelity for a single qubit. Huszár andHoulsby [10]

considered the information gain, which has since been used to define an adaptive protocol in one- and two-qubit
optical experiments [14, 15].Most recently, thefidelity for arbitrary dimensions has been studied and numerics
performed on one and two-qubits [59].

Calculating these utilities, however, poses a problem since onemay be able to perform a great deal of non-
optimized experiments before the calculation of the ‘best’ experiment can be completed. These intermediate
experiments, while not optimized, still contain useful information about the state andmay provide better
accuracywhen the cost of optimization is included.Hence the need for experiment design heuristics that realize
the benefits of adaptivity without computing or optimizing over utility functions, providing significant
improvements in efficiency.

In the context ofHamiltonian learning, for example, heuristics have been used to obtainmany of the benefits
of explicitly optimizing a utility, while avoidingmuch of the computational expense [55, 60].Machine learning
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techniques have recently been applied to the design of good heuristics for quantum characterization problems
[61], but wewill take a different approach and instead use stochastic optimization to provide an efficient heuristic.

2.3. Self-guided quantum tomography
SGQT is an adaptive tomography schemewhich avoids the linear inversion problem altogether by posing the
tomography problem as one of optimization rather than estimation [30]. In particular, self-guided tomography
finds a pure state fñ∣ such that the overlap f r f r f= á ñ( ) ∣ ∣F , ismaximized for a true state ρ. If r y y= ñá∣ ∣ is a
pure state, then f r( )F , ismaximized if and only if f yñ = ñq∣ ∣ei for a phase θ, such that an optimal solution is
also an accurate estimate of the true state.

An earlier work took a similar approach by testingwhether the unknown qubit state was symmetric with a
reference state [62], where the reference state is chosen adaptively tomaximize fidelity.However, themethod is
defined only for a single qubit and requires a second fully characterized and controllable qubit alongwith an
entangledmeasurement.

Having phrased state estimation as an optimization problem, self-guided tomography proceeds by
experimentally estimating the objective function F from empirical frequencies. This results in a stochastically
evaluated objective function, such that the optimization problem is amenable to attack by stochastic
optimization algorithms.Wewill in particular rely on the simultaneous perturbative stochastic approximation
(SPSA) [63].

The SGQT estimate is precisely defined as follows.We let fñ∣ be a parameterization of pure states of a given
dimension in terms of a vectorf of real numbers; for instance, qubit states can be parameterized by their Bloch
angles.We then beginwith a random state f ñ∣ 0 and iteratively produce new states f ñ∣ k which serve the dual role
of specifying the current estimate of the state and nextmeasurements to perform. At iteration k, we perform the
measurements  - { }P P,k k, , , where

 f f=  D ñá  D - -∣ ∣ ( )P , 22k k k k k k k, 1 1

andDk is a randomvector that is constructed by setting each entry to±1with equal probability. Here k is a
step-size parameter chosen below. The outcomes of thesemeasurements are denoted f̂k, . The gradient of the
fidelity is estimated from thesemeasurements to be


=

-
D+ -ˆ

ˆ ˆ
( )g

f f

2
. 23k

k k

k
k

, ,

Using these, and an additional gain parameter ak, the SPSA algorithmmimics standard gradient ascent, but
along the randomdirectionDk:

f f añ = + ñ-∣ ∣ ˆ ( )g . 24k k k k1

Convergence is guaranteed [63] given the specification ofDk above and

 = ( )
k

a
1

, 25k 1 3

a = ( )
k

b
1

. 25k

Unless otherwise noted, however, we shall use the parameters suggested by Spall [63],

 a= = ( )k k0.1 and 10 . 26k k
0.101 0.602

SPSA has also been applied in quantum information to design high-fidelity control sequences given
randomized benchmarking experiments [64, 65]. In particular, Ferrie showed that self-guided tomography can
rapidly learn pure states for comparatively large quantum systems [30]. To the best of our knowledge, self-
guided tomography is the only adaptive tomography techniquewhich has gone beyond two qubits, even in
simulation. SGQThas also recently been demonstrated in an optical experiment [24].

SGQT is notwithout its limitations, however. The aimof the current work is tomitigate the following three
limitations of SGQT: (1) it is restricted to pure state tomography, (2) it does not report error bars, and (3) it can
not be restricted to localmeasurements.

3. Practical adaptive quantum tomography

From the above discussion, wefind that SGQTpotentially offersmany advantages for experimental practicality
over traditional protocols, but at the cost that it does not accurately reportmixed states, and does not certify its
own errors.Happily, these are precisely the advantages of the Bayesian approach, such that we can collect data
using self-guided tomography, then post-process with offline estimation.
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We introduce PAQT—practical adaptive quantum tomography—an optimized numerical approachwhich
implements the idea ofmerging self-guided tomography as an online experiment design heuristic into Bayesian
data analysis. In principle, post-processing of self-guided tomography data could be carried outwith any
tomographic estimator.We definePAQT as the use of Bayesian estimation in particular on the data gathered
through the course of a self-guided tomography experiment, owing to the rich statistical principles underlying
Bayesian inference. In utilizing self-guided tomography, PAQT automatically selects experiments online and
can be implementedwithmodest experimental hardware, includingmodern embedded controllers such as
field-programmable gate arrays. The advantages of PAQT are that it provides the enhanced precision of adaptive
tomography togetherwith fast data processing and experiment design. The framework provides robust and
easily interpretable error regionswithout additional overhead. Explicitly, PAQTuses the results of the
measurements (22) specified by SGQTwith the Bayesianmean estimator (17). As described in section 1.1, the
frequencies f uponwhich the Bayesian estimator are conditioned are a description of the results of each
measurement. Since (22) specifieswhichmeasurements are to be performed, this is a complete specification of
our protocol. Althoughwe demonstrate the algorithm for state tomography, themethod is equally applicable to
channel tomography and other estimation tasks and can easily accommodate other estimators.

Our results use theQInfer 1.0a1 [66], QuTiP [67] 3.2.0, NumPy [68] 1.9.2, Pandas [69] 0.16.2 and SciPy
0.15.1 [70] libraries for Python 2.7 (Enthought Canopy 1.5.4) to perform the Bayesian analysis.We performed all
simulations on theUniversity of Sydney School of Physics cluster. Full source code for our simulations, and for
our implementations of self-guided and least-squares tomography, as well as data summarizing all 554, 250 trials
used in our numerical results can be found online in the supplementarymaterial [1]. These trials are split over
652 different experimental conditions, such that formost plots, each point is generated fromapproximately 850
trials. In all numerical experiments, true states are chosen at random for each trial from theGinibre distribution,
which includes theHilbert–Schmidt uniform andHaar uniformdistributions as special cases [71]. For brevity,
wewill indicate these special cases as ‘mixed’ and ‘pure’, respectively. The supplementalmaterial also includes
complete details for allfigures in this paper, and can be used to reproduce all numerical results shown here.

We start by noting in figure 1 that, in the case of qubits, the states estimated by self-guided tomography are
almost as indistinguishable as the pure state closest to each true state in terms of the 1-norm. Thismakes it clear
that, although self-guided tomography should not be expected to return a useful estimate if the true state is
mixed, it is still heavily dependent on the true state such that we should expect self-guided tomography to collect
useful data.

Indeed, as we show infigure 2, PAQT effectively combines self-guided tomographywith least-squares and
Bayesian estimators for both pure andmixed states on a qubit. In particular, even though self-guided
tomography has ceased to learn states when the true state is amixed state, the data collected can be used by both
the Bayesian and LSF tomographic estimators to return very good estimates of the state.

Which estimator in particular gives the lowest error depends strongly, however, on the loss function that one
uses to quantify error. Infigure 3, we compare the distribution over losses for the four tomographic procedures
as applied to qubit pure andmixed states, and asmeasured by the infidelity and quadratic loss functions.

Figure 1.Distinguishability between self-guided estimated states and true states drawn from theHilbert–Schmidt prior for a qubit,
plotted versus the best achievable distinguishability for any estimator constrained to pure states r y y= ñá∣ ∣, where the
distinguishability between ρ andσ is defined as the trace distance r s- 1

2 1, minimized for pure ρ andfixedσ by

s- -( ( ) )1 2 Tr 1 22 . The self-guided estimates are drawn from10,000 iterations with either n=5, 50 or 500 shots per
measurement, such that eachmeasurement fk is drawn from a binomial distributionwith n trials. As the number of shots per
measurement increases, the self-guided estimates approach the closest states allowed by the pure state assumption, demonstrating that
the self-guided procedure produces useful data evenwhen the true state ismixed.
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Whereas self-guided tomography directly optimizes the infidelity, we note that it performs verywell according
to thismeasure in the pure-state case. Similarly, the Bayesianmean estimator is optimal for Bregman
divergences such as the quadratic loss q q q q q q= - -( ˆ ) ( ˆ ) ( ˆ )L , : T , so that it performs verywell if we choose to
quantify errors accordingly.

Infigure 4, we consider self-guided tomography of pure andmixed qutrit states, showing that the benefits of
using PAQT to combine SGQTwith Bayesian tomography persist in this case. Notably, least-squares fitting does
significantly less well for self-guided datasets on pure qutrits. Reducing the resampling parameter a to 0.9 allows
the Bayesian estimator to remain robust in this case, however.

Figure 2.Median infidelity = -r F1 for self-guided tomography on single qubit (top) pure and (bottom)mixed states, bothwithout
post-processing the self-guided data (green), as well as post-processing via PAQTusing Bayesian (orange) and least-squares estimators
(gray and blue). In both cases, Bayesian tomography is performedwith a full-rank (Hilbert–Schmidt) prior, using the particlefilter
summarized in section 1.4with 4000 particles and the resampling parameter a=0.98. The shaded regions indicate the 16%and 84%
quantiles over trials. Note that, for a normal distribution, this regionwould coincidewith the s1 –confidence interval, but as illustrated
in figure 3, the losses are far fromnormally distributed, such that we cannotmake the normal interpretation. The self-guided
procedure works very well for pure states (top), providing estimates with fidelity approximately 99.999% after 107 bits of data, while
the Bayes estimator uses a full-rank prior and thus underperforms on pure states due to this hedging. By contrast, formixed states, the
self-guided procedure does not learnwell on its own, but post-processing the self-guided data with Bayesian or least-squares
estimation produces high-fidelity estimates.

Figure 3.Kernel density estimate of the distribution over losses for self-guided quantum tomographywithout post-processing, as well
as PAQTwhich post-processes the SGQTdata using Bayesian and least-squares fit estimators. Tomography simulations are shown for
single-qubit pure andmixed states. The top shows the density over the infidelity, as directly optimized by self-guided tomography,
while the bottom shows the density over the quadratic loss.Whenmeasuring the performance of each algorithmusing the infidelity,
self-guided tomography is optimal for pure states, while Bayesian and least-squares post-processing provide the best estimates for
mixed states. On the other hand, if we use the quadratic loss to characterize estimation performance, Bayesian post-processing
produces the best estimates even in the pure-state case. The data for this figurewas generated using 1000 iterations, 50 shots per
iteration, and 8000 SMCparticles.

8

New J. Phys. 19 (2017) 113017 CGranade et al



Wealso consider the case inwhich the optimization procedure used by self-guided tomography is restricted
to an incorrectmodel of the systemunder study. In particular, infigure 5, we collect data under the restriction
that the true state is amixed or pure product state of two qubits, then draw the true state from aHaar orHilbert–
Schmidt prior on the full four-dimensional state. In this way, the self-guided algorithm is explicitly following an
incorrectmodel for the state.We note that, despite this, the Bayesian and least-squares estimators are both able
to improve on their initial uncertainty by using data collected from the product statemeasurements. It is also
interesting to note that the protocol with fewermeasurements seems to performbetter, whichmight be
counterintuitive. However, remember that for this scenario, themodel is wrong.More data will produce an
estimate that ismore accurate, butwith respect to thewrongmodel. Thus, the procedure with fewer
measurements performs better in this scenario through less accurate (noisy)measurements.

Finally, we note that the performance of the Bayesian estimator can be dramatically improved if we
postselect on diagnostic information provided by the particle filtering algorithm. Infigure 6, we show the kernel-
density estimated distribution over infidelity for each of the qutrit and two-qubit cases, postselecting on the
smallest effective sample size observed during a tomography run. That is, we accept a tomography trial if the
particle filter weights { }wi satisfy


å

( )
w

n
1

27

i
i
2 th

throughout the experiment, for some choice of threshold nth. For the qutrit case, using either 32 000 or 128 000
particles, we observe that aswe increase this threshold (that is, as we demand a larger effective sample size), the
mean performance rapidly approaches themedian performance. Thus, performing this postselection allows us
to exclude theworst-case performance of the Bayesian estimator. On the other hand, when the data are not
especially informative, as in the two-qubit productmeasurement case, the benefit of postselection is significantly
less pronounced.

Figure 4.Median infidelity for self-guided tomography on single-qutrit (top) pure and (bottom)mixed states. In both cases, PAQT is
performedwith Bayesian post-processing using a full-rank (Hilbert–Schmidt)prior, 32 000 particles and the resampling parameter
a=0.9. The shaded regions indicate the 16%and 84%quantiles over trials. In this case, Bayesian estimation via PAQTproduces
high-quality estimates for pure andmixed true states.
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4.Discussion

Though the point of SGQT is to avoid solving a large systemof linear equations, the data collected from the
performedmeasurements still define a set of equations that can be inverted in oneway or another. This is the
approach of LSF andweighted LSF.However, we note that these approaches do not performwell in all but a few
of the cases considered. The explanation for this observation is that the constructed linear system is in general ill-
conditioned.

Given infinite precision data, SGQTmeasurements would trace out a straight path through state space from
the initial guess to the true state, following the gradient of the fidelity. This set ofmeasurements will not be
informationally complete. Due to the stochasticity of the algorithm, forfinite data, a sufficiently large number of
SGQT iterationswill be informationally complete, butmost of themeasurements will be linearly dependent.
This frustrates the stability of attempting to solve the linear equations defined by (6). The standard approach to
quantify the stability of a linear system is through the condition number

k
s
s

=( ) ( )
( )

( )X
X

X
, 28

d

1

2

where s ( )X1 is the largest and s ( )Xd2 is the smallest singular value. Smaller condition numbers lead tomore
stable linear systems.Wewill argue and demonstrate that self-guided tomography leads tomeasurements which
define a linear systemwith large condition number. Importantly, it is only the process bywhich data is gathered
(rather than analyzed) that determines the condition number.Wewill therefore restrict our discussion of
condition numbers to SGQT as a data gathering procedure and the resultant effect on the numerical stability of
different estimation strategies. In particular, our use of the condition number is distinct from its use in assessing
the utility of a set ofmeasurements for tomographic estimation [72, 73], as we are concerned notwith
tomographic completeness butwith numerical stability.

The largest singular valuewill be related to the total number of SGQT iterations sincemost of the late
measurements will be nearly co-linear, clustering around the true state. The smallest singular valuewould be 1 in
the ideal case of performing a subset of orthogonal basismeasurements. However, as noted above, the system is
only barely informationally complete—thematrix X is nearly rank-deficient (rank< -d 12 ), in other words.

Figure 5.Median infidelity for self-guided tomography on pure (top) andmixed (bottom) states of two qubits, restricted to product
measurements. In both cases, we use PAQT for post-processing with 32 000 particles for the Bayesian estimator, and the self-guided
tomography data is collectedwith a gain of a = k31k

0.602 and a step of  = k0.1k
0.101.
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The actually value of s ( )Xd2 , and hence, k( )X , will vary quite a bit from run to run, but the scalingwith the total
number ofmeasurements,K, will be ( )O K . This is becausemost of themeasurements will be approximately
co-linear. In the exact case where X consists of - ´ -( ) ( )d d1 12 2 orthogonal submatrix and -K 1 repeated
rows, the condition number is identically K .

Infigure 7, we plot the empirical condition number of X as a function of the total number of SGQT
iterations.We see the expected behavior. The condition number starts high as there are simply not enough

Figure 6.Performance of PAQTBayesian post-processing when postselecting on trials duringwhich the effective sample sizes ness

remains above various thresholds during out the estimation procedure, for qutrit data and for two-qubit data restricted to product
measurements. For each of the three data sets, the left-hand subfigure shows the kernel density estimate over infidelity, demonstrating
thatmore demanding thresholds can ‘shift’ the distribution over infidelity, especially for the product-measurement case. The upper-
right subfigures for each data set show the approach of themean infidelity to themedian fidelity as a function of the post-selection
threshold, while the lower-right subfigures show the probability of the postselection succeeding. Importantly, in three of the four
cases, we observe that post-selection on the diagnostics produced byBayesian particlefiltering can help eliminate trials with less
accurate estimates. For the case inwhich both a large number of particles are used and a large amount of data is taken, the effect of
post-selecting on diagnostics ismuch less pronounced. The data in thisfigurewas generated using 10 000 iterations, with the number
of shots per iteration and SMCparticle count indicated in the subfigure titles.
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measurements to ensure informational completeness. Then, the condition number reaches aminimumvalue
before rising at a rate of approximately K due tomany nearly (but not exactly) identicalmeasurements2.

This effect identifies a fundamental tension between the benefit ofmeasurement adaptivity and offline data
analysis, which is why PAQTdoeswell in spite of this tension.Wenote that inmost cases using PAQTwith a
Bayesianmean estimator performs quite well and comeswithmany added benefits, as discussed above. In the
cases where the Bayesianmean estimator does not performwell, we conjecture this is due to non-optimal
choices of the particle filtering algorithmparameters rather than a fundamental problemof ill-conditionedness.
This is not a problem to be swept under the rug, however, and a non-trivial optimizationwill need to be
performed tofind good operating points for the particle filtering algorithm.

A second comment concerns the standard claim in quantum state tomographywork that all results obtained
for states will immediately apply to quantum process tomography due to the isomorphism between quantum
states and channels. Though this claim is broadly true, there is an important subtlety thatwemust consider.
Under theChoi–Jamiłokowski isomorphism [74, 75], process tomography is equivalent to state tomography
with a restriction on allowable priors andmeasurements. Thus, the product-statemodel of figure 5 is especially
important in that it immediately shows that our adaptive state tomography protocol also provides a protocol for
process tomography. Indeed, the Choi–Jamiłokowski isomorphism gives that productmeasurements on two
copies of a quantum system are equivalent to preparing a state, evolving under an unknownmap, and then
measuring the output state [13, 76]. This observation has recently been utilized by Pogorelov et al [16] to
perform adaptive quantumprocess tomographywith Bayesian estimation implemented by particle filtering.

Figure 7.Condition numbers for least-squaresfittingmatrices in the single qubit, single qutrit, two-qubit productmeasurement,
d=5 and d=7 cases, as a function of the number of iterations of self-guided tomography data collection.

2
For the case of d=7, the condition number has some interesting transient behavior that we do not yet understand.However, it is still

consistent with the asymptotic behavior described above.
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With this inmind, then, our results show that self-guided state tomography is an efficient heuristic for designing
quantumprocess tomography experiments, andmay pose an interesting tradeoff for the computational cost of
explicit adaptivity, in the same sense as self-guided tomographywithout the productmeasurement constraint
provides a useful tradeoff for adaptive state tomography. The generalization to process tomographywill be
explored further in futurework.

5. Conclusion

In summary, we have shown how tomitigate the drawbacks of SGQTusing PAQT to provide explicit and
statistically principled adaptive quantum tomographic estimates. In numerically testing PAQT,we have shown
that SGQT alone is extremely efficient when the true state is pure, such that it is computationally challenging to
competewith SGQT in high-dimensional problemswhere the pure state assumption is explicitlymet. This
allows us tomore carefully deliniate between the advantages of each protocol, and to provide practical solutions
for adaptive tomography.

However,morework needs to be done to refine the self-guided heuristic formixed states and restricted
measurement scenarios. An interesting open problem suggested by ourwork is to investigate if the scaling
advantages of SGQT remainwhen usingmixed states and, in the case of two ormore qubits, when using product
measurements.We expect that designing good heuristics for the challenging estimation problemswhich lie
ahead for quantum technologywill become an active area of research, as it has for classicalmachine learning
problems.
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[19] Řeháček J, Englert B-G andKaszlikowskiD 2004Minimal qubit tomography Phys. Rev.A 70 052321
[20] BaganE, BallesterMA,Gill RD,Muñoz-Tapia R andRomero-Isart O 2006 Separablemeasurement estimation of densitymatrices and

itsfidelity gapwith collective protocols Phys. Rev. Lett. 97 130501
[21] SugiyamaT, Turner P S andMuraoM2012Adaptive experimental design for one-qubit state estimationwith finite data based on a

statistical update criterion Phys. Rev.A 85 052107
[22] HannemannT, Reiss D, Balzer C,NeuhauserW, Toschek P E andWunderlichC 2002 Self-learning estimation of quantum statesPhys.

Rev.A 65 050303
[23] MahlerDH, Rozema LA,Darabi A, Ferrie C, Blume-Kohout R and Steinberg AM2013Adaptive quantum state tomography improves

accuracy quadratically Phys. Rev. Lett. 111 183601
[24] ChapmanR J, Ferrie C and PeruzzoA 2016Phys. Rev. Lett. 117 040402
[25] QiB,HouZ,Wang Y,DongD, ZhongH-S, Li L, XiangG-Y,WisemanHM, Li C-F andGuoG-C 2017 npjQuantum Inf. 3 19
[26] Stockton J, ArmenMandMabuchiH 2002 Programmable logic devices in experimental quantumoptics J. Opt. Soc. Am.B 19 3019
[27] Casagrande S 2014Ondesign and testing of a spectrometer based on an FPGAdevelopment board for use with optimal control theory

and high-Q resonatorsMasters ThesisUniversity ofWaterloo,Ontario
[28] Lamb IDC,Colless J I, Hornibrook JM, Pauka S J,Waddy S J, FrechtlingMKandReilly D J 2016An FPGA-based instrumentation

platform for use at deep cryogenic temperaturesRev. Sci. Instrum. 87 014701
[29] Hornibrook JM et al 2015Cryogenic control architecture for large-scale quantum computingPhys. Rev. Appl. 3 024010
[30] Ferrie C 2014 Self-guided quantum tomographyPhys. Rev. Lett. 113 190404
[31] NewtonRG andYoungB-l 1968Measurability of the spin densitymatrixAnn. Phys., NY 49 393
[32] BandWandPark J L 1970The empirical determination of quantum states Found. Phys. 1 133
[33] BandWandPark J L 1979Quantum state determination:Quorum for a particle in one-dimensionAm. J. Phys. 47 188
[34] D’ArianoGM, ParisMGA and SacchiMF 2003Advances in Imaging and Electron Physics (vol 128) (Amsterdam: Elsevier) pp 205–308
[35] LvovskyA I andRaymerMG2009Continuous-variable optical quantum-state tomographyRev.Mod. Phys. 81 299
[36] Hradil Z 1997Quantum-state estimation Phys. Rev.A 55R1561
[37] ChristandlM andRenner R 2012Reliable quantum state tomography Phys. Rev. Lett. 109 120403
[38] Faist P andRenner R 2016Phys. Rev. Lett. 117 010404
[39] Blume-Kohout R 2010Optimal, reliable estimation of quantum statesNew J. Phys. 12 043034
[40] TóthG,WieczorekW,GrossD, Krischek R, SchwemmerC andWeinfurterH 2010Permutationally invariant quantum tomography

Phys. Rev. Lett. 105 250403
[41] GrossD, Liu Y-K, Flammia ST, Becker S and Eisert J 2010Quantum state tomography via compressed sensing Phys. Rev. Lett. 105

150401
[42] Flammia S T,GrossD, Liu Y-K and Eisert J 2012Quantum tomography via compressed sensing: error bounds, sample complexity and

efficient estimatorsNew J. Phys. 14 095022
[43] SchwemmerC, TóthG,NiggebaumA,Moroder T, GrossD,GühneO andWeinfurterH 2014 Experimental comparison of efficient

tomography schemes for a six-qubit state Phys. Rev. Lett. 113 040503
[44] CramerM, PlenioMB, Flammia ST, SommaR,GrossD, Bartlett SD, Landon-Cardinal O, PoulinD and Liu Y-K 2010 Efficient

quantum state tomographyNat. Commun. 1 149
[45] Landon-Cardinal O and PoulinD2012 Practical learningmethod formulti-scale entangled statesNew J. Phys. 14 085004
[46] Bridgeman JC andChubbCT2017Hand-waving and interpretive dance: an introductory course on tensor networks J. Phys. A:Math.

Theor. 50 223001
[47] Smolin J A, Gambetta JM and SmithG 2012 Efficientmethod for computing themaximum-likelihood quantum state from

measurements with additiveGaussian noisePhys. Rev. Lett. 108 070502
[48] QiB,HouZ, Li L,DongD,XiangG andGuoG2013Quantum state tomography via linear regression estimation Sci. Rep. 3 3496
[49] KaznadyMS and JamesDFV2009Numerical strategies for quantum tomography: alternatives to full optimization Phys. Rev.A 79

022109
[50] Blume-Kohout R 2010Hedgedmaximum likelihood quantum state estimation Phys. Rev. Lett. 105 200504
[51] KuengR and Ferrie C 2015Near-optimal quantum tomography: estimators and boundsNew J. Phys. 17 123013
[52] Doucet A and JohansenAM2011A tutorial on particlefiltering and smoothing: fifteen years laterTheOxfordHandbook ofNonlinear

Filtering edDCrisan andBRozovskii (Oxford:OxfordUniversity Press)
[53] StenbergMPV, PackK andWilhelmFK 2015Adaptive identification of coherent statesPhys. Rev.A 92 063852
[54] GranadeCE, Ferrie C,WiebeN andCoryDG2012Robust onlineHamiltonian learningNew J. Phys. 14 103013
[55] WiebeN,GranadeC, Ferrie C andCoryDG2014Hamiltonian learning and certification using quantum resources Phys. Rev. Lett. 112

190501
[56] Beskos A, CrisanD and Jasra A 2014On the stability of sequentialMonteCarlomethods in high dimensionsAnn. Appl. Probab. 24 1396
[57] Liu J andWestM2001Combined parameter and state estimation in simulation-based filtering SequentialMonte CarloMethods in

Practice edDFreitas andNGordon (NewYork: Springer)
[58] HouZ, ZhuH,XiangG-Y, Li C-F andGuoG-C 2016Achieving quantumprecision limit in adaptive qubit state tomographyNpj

Quantum Inf. 2 16001
[59] KalevA andHen I 2015 Fidelity-optimized quantum state estimationNew J. Phys. 17 093008
[60] Ferrie C, GranadeCE andCoryDG2013How to best sample a periodic probability distribution, or on the accuracy ofHamiltonian

finding strategiesQuantum Inf. Process. 12 611
[61] StenbergMPV,KöhnO andWilhelmFK2016Characterization of decohering quantum systems:machine learning approach Phys.

Rev.A 93 012122
[62] HappC J and FreybergerM2008Adaptive estimation of qubits by symmetrymeasurements Phys. Rev.A 78 064303
[63] Spall J 1992Multivariate stochastic approximation using a simultaneous perturbation gradient approximation IEEETrans. Autom.

Control 37 332
[64] Ferrie C andMoussaO2015Robust and efficient in situ quantum controlPhys. Rev.A 91 052306
[65] GranadeCE 2015Characterization, verification and control for large quantum systems PhDThesisUniversity ofWaterloo,Ontario
[66] GranadeC et al 2017Quantum 1 5
[67] Johansson J R,Nation PD andNori F 2013QuTiP 2: a Python framework for the dynamics of open quantum systemsComput. Phys.

Commun. 184 1234

14

New J. Phys. 19 (2017) 113017 CGranade et al

https://doi.org/10.1088/0305-4470/33/24/306
https://doi.org/10.1103/PhysRevA.70.052321
https://doi.org/10.1103/PhysRevLett.97.130501
https://doi.org/10.1103/PhysRevA.85.052107
https://doi.org/10.1103/PhysRevA.65.050303
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevLett.117.040402
https://doi.org/10.1038/s41534-017-0016-4
https://doi.org/10.1364/JOSAB.19.003019
https://doi.org/10.1063/1.4939094
https://doi.org/10.1103/PhysRevApplied.3.024010
https://doi.org/10.1103/PhysRevLett.113.190404
https://doi.org/10.1016/0003-4916(68)90035-3
https://doi.org/10.1007/BF00708723
https://doi.org/10.1119/1.11870
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevLett.109.120403
https://doi.org/10.1103/PhysRevLett.117.010404
https://doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1103/PhysRevLett.105.250403
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1088/1367-2630/14/9/095022
https://doi.org/10.1103/PhysRevLett.113.040503
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1088/1367-2630/14/8/085004
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1103/PhysRevLett.108.070502
https://doi.org/10.1038/srep03496
https://doi.org/10.1103/PhysRevA.79.022109
https://doi.org/10.1103/PhysRevA.79.022109
https://doi.org/10.1103/PhysRevLett.105.200504
https://doi.org/10.1088/1367-2630/17/12/123013
https://doi.org/10.1103/PhysRevA.92.063852
https://doi.org/10.1088/1367-2630/14/10/103013
https://doi.org/10.1103/PhysRevLett.112.190501
https://doi.org/10.1103/PhysRevLett.112.190501
https://doi.org/10.1214/13-AAP951
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1088/1367-2630/17/9/093008
https://doi.org/10.1007/s11128-012-0407-6
https://doi.org/10.1103/PhysRevA.93.012122
https://doi.org/10.1103/PhysRevA.78.064303
https://doi.org/10.1109/9.119632
https://doi.org/10.1103/PhysRevA.91.052306
https://doi.org/10.22331/q-2017-04-25-5
https://doi.org/10.1016/j.cpc.2012.11.019


[68] van derWalt S, Colbert SC andVaroquauxG 2011TheNumPy array: a structure for efficient numerical computationComput. Sci.
Eng. 13 22

[69] McKinneyW2010Data structures for statistical computing in PythonProc. 9th Python in Science Conf. pp 51–6
[70] Jones E et al 2001 SciPy: open source scientific tools for Python (https://www.scipy.org)
[71] Zyczkowski K and SommersH-J 2001 Inducedmeasures in the space ofmixed quantum states J. Phys. A:Math. Gen. 34 7111
[72] Bogdanov Y I, BridaG, Bukeev ID,GenoveseM,KravtsovK S, Kulik S P,Moreva EV, Soloviev AA and ShurupovAP 2011 Statistical

estimation of the quality of quantum-tomography protocols Phys. Rev.A 84 042108
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