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Abstract

Weintroduce a fast and accurate heuristic for adaptive tomography that addresses many of the
limitations of prior methods. Previous approaches were either too computationally intensive or
tailored to handle special cases such as single qubits or pure states. By contrast, our approach combines
the efficiency of online optimization with generally applicable and well-motivated data-processing
techniques. We numerically demonstrate these advantages in several scenarios including mixed states,
higher-dimensional systems, and restricted measurements.

Quantum information processing (QIP) promises advantages in a wide range of different contexts, including
machine learning [2—4], chemistry simulation [5-7], and number theory [8, 9]. As such, the experimental effort
to build useful QIP devices has exploded in recent years. In the course of this effort, quantum tomography is a
valuable tool for diagnosing and debugging small quantum devices, and has subsequently seen a variety of
different advances. In particular, Bayesian approaches to tomography which are especially well suited to utilizing
prior information and adapting to changing experimental conditions have developed significantly in recent
years [10—13], presenting a useful experimental tool [14—16].

In this paper we demonstrate the efficiency and accuracy of an adaptive tomography protocol that we call
PAQT: practical adaptive quantum tomography. PAQT intelligently selects new measurements based on the
outcomes of previous ones [10, 17-21]. Adaptivity has been experimentally demonstrated [14, 15,22-25], butis
not currently standard practice. Though adaptivity increases accuracy, the computational costs incurred
outweigh that of simply repeating standard measurements many times. The PAQT approach employs a simple
heuristic that can be efficiently computed between measurements, even with embedded hardware [26-29]. The
algorithm we propose is therefore compatible with modern experimental design and avoids an important
limitation of previous approaches.

We base our algorithm off of self-guided quantum tomography (SGQT), which treats adaptive tomography
as a direct optimization problem rather than a new optimization problem between each measurement [30].
Though this affords an efficient and easy to implement adaptive heuristic, SGQT is not without its limitations. It
requires assuming that the target state is pure, and it does not return rich region estimates for a state. What
PAQT achieves is to effectively combine SGQT with conventional and easily-implemented tomographic
estimators, such as the Bayesian particle filter or least-squares fit (LSF) estimators. Under this approach, an
experimentalist can collect data using SGQT (even if its assumptions are not met), and then post-process this
data using particle filtering or LSF.

The benefit of PAQT is two-fold. (1) From the point of view of traditional tomography, it gives an adaptive
tomography protocol requiring only modest computational resources, as the bulk of the computational cost is
offloaded to post-processing. (2) From the point of view of simulation-based optimization tomography (such as
SGQT), it effectively augments the output with region estimation providing a statistically robust quantification
of uncertainty. Thus, while we do not explicitly demonstrate that the improved scaling of Ferrie [30] remains in
the more general case considered here, PAQT does provide a practical and efficient procedure for performing
adaptive quantum tomography with rigorous statistical principles.

" http://cgranade.com complete data and source code for this work are available online [1], and can be previewed at https://goo.gl/
koiWxR.
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The outline of the paper is as follows. In section 1 we define and review the problem of tomography as well as
three standard solutions: least squares, maximum likelihood and Bayesian mean estimation. In section 2, we
review the approaches to measurement adaptive tomography including the recently introduced self-guided
technique. In section 3, introduce PAQT by combining SGQT with adaptive Bayesian tomography and detail the
results of our numerical experiments. Section 4 concludes with a discussion.

1. The tomographic problem

In quantum state tomography, we are interested in reconstructing a quantum state from a collection of
informationally complete measurements made on that state [31-33]. That is, a set of measurements is chosen
such that if one learns their frequencies given a quantum system of interest, the frequencies for any other
measurement of that system can then be predicted. If the system of interest is a qubit, for instance, then knowing
the expectations of the observables { oy, 0,, 0.} allows for predicting the distribution over outcomes for any
other measurement. The empirical reconstruction of quantum states from measurements of informationally
complete observables has been reviewed by D’Ariano et al [34], and reviewed in the case of continuous variables
by Lvovsky and Raymer [35]. Here, we will focus on the case of state tomography in finite-dimensional systems.

That a quantum state can be empirically determined in principle, however, leaves the question of how to
estimate a state in practice, given finite experimental resources. For instance, given data from an informationally
complete set of observables, one could use a linear reconstruction, a maximum likelihood estimator [36-38], or
a Bayesian mean estimator [10—13, 39] to report a state. We will detail each such approach below, and describe
their relative strengths and weaknesses.

Before proceeding, we note that though we consider the general case of tomography in this work, substantial
progress has been made by considering considering important special cases under which a state can be much
more easily characterized. In particular, permutationally invariant tomography reconstructs the part of a
multiqubit density matrix which is invariant under exchange of the qubits [40]. Compressed sensing allows for
the efficient recovery of low-rank quantum states [41, 42], and has been applied experimentally in systems as
large as six qubits [43]. Similarly, MPS [44] and PEPS [45] tomography use the MPS and PEPS ansatzes to
improve exponentially on naive methods for states that are well-approximated by common tensor network
ansatzes [46]. Though we do not explore the possibility in this work, we expect that heuristic approaches should
also offer similar advantages to tomographic estimation in these cases.

1.1. Problem set up
First, consider an orthonormal basis for traceless Hermitian operators { B; }?2;1 'the Pauli basis, for example.
Thatis, forall 4, j, B]T = Bjand Tr(ByB;) = ¢;and Tr(B;) = 0.Then, any state p can be written

1 d’*—1
j=1

for some vector of parameters (6); = 0;. Importantly, these parameters are constrained since p > 0. This poses
aproblem for many approaches, but there are well-motivated methods which produce a valid quantum state
starting from a non-physical matrix [47].

Let us assume two-outcome test measurements are made such that each measurement outcome is either 1 or
0 and represented by the pair { P, 1 — Pt}. The Born rule dictates that the probability to get 1, say, is
Pr(1]p, Px) = Tr(pPy). Since the operators { B;} form a basis, we can write

1 a>—1
=1
and the Born rule vectorizes to
1
mm@m:%wm=5+ﬁa 3)

where (p,); = Py Denote f, = Pr(1|p, Py) and (f)i = f,. Also define the matrix X with entries (X)y; = Py
Then the above condenses to

f:%+X& @

2
If we perform at least d* such measurements such that the set { P }¢_, is linearly independent, then the
probabilities f are sufficient to determine p uniquely. That is, the linear system in (4) has a solution set with a
single valid quantum state. In practice we do not have access to f, but only samples drawn from the distribution

2
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thatit defines. Suppose Ny measurements of { Py, 1 — Py} yielded ny 1sand Ny — 14 0s. Then, the empirical
frequencies are

P _ M
fk—Nk- (5)

The task of tomography is to assign a quantum state 6 to each data set f.

1.2. Linear inversion tomography
Next, we will outline the traditional approach to solving the tomography problem. While we do not recommend
this approach, it usually provides reasonable answers and is at least implicitly the starting point for more
sophisticated approaches.

We begin by setting the empirical frequencies equal to the (rescaled) theoretical probabilities f = f. After
all, Tr(pPy) is literally the expectation value of the observable Py. In any case, if welet Y = f -1 / d, the new
system of equations

Y = X6, (6)

may not have a solution if more than d” different measurements have been made. The traditional approach is to
use the least squares estimator

9L5 = argmin||Y — X9||§, 7)
0

which has the exact solution
015 = XTX)"'XTY. (8)

This solution is not guaranteed to produce a positive semidefinite estimate. One can resort to performing
constrained least squares (which is ‘not that hard’ since one probably has access to a black box implementation of
this using a canned scientific software library) or one can use a two-step approach [47] that outputs the ‘closest’
physical state to a given matrix. There is no consensus on which should be preferred and we make no
recommendations here. In our simulations, we have set all negative eigenvalues to zero, as we observe that in
practice, measurements designed by self-guided tomography tends to only rarely yield 015 corresponding

to p%0.

1.3. Maximum likelihood tomography

Thelinear least squares approach is folklore as old as the problem of tomography, but has been stated explicitly
by Qi et al [48]. It usually arises when using a Gaussian approximation to the likelihood function in maximum
likelihood estimation (MLE) (see, for example, Kaznady and James [49]). The likelihood function is the
probability distribution of the data given a state 8, thought of as a function of 8. Since each measurement is an
independent binomial trial, the likelihood function is quite simple:

. N (1 oV 1 AR
Pr(f10, X) = . (—+p 0) 1———p 0 . ©)
1;[ Ni k d ¢ d ¢
One of the oldest techniques in classical statistical estimation is MLE, which prescribes the estimate
Oriy = argmin Pr(f'l@, X). (10)
6

This does not have a closed form in general. To make some traction, we can approximate the likelihood function
by a Gaussian (perhaps with appeal to the central limit theorem). A Gaussian is defined by its mean and variance,
so we need only those from the actual distribution to make the approximation. These are simple enough to
derive from the properties of the binomial distribution:

E[f] = % 1 X0, (11)

(s p0)( 2 o)

V[f]kj = Oy N
k

(12)

The location of the maximum of a function is the same as that of the log of the function. The logarithm of the
Gaussian approximation to the likelihood function (ignoring terms which do not depend on 0) is

3
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(i — p, 0)°N; .
(i +pi0)(1 -7 - p'e)

We make one more approximation, which is again replacing the probabilities with their empirical frequencies'
such that the maximum likelihood problem then becomes

(13)

N | =

2

g = argmin ||Y' — X’0||§, (14)
0

where we have weighted Y and X by the variance:

Y/ = |[———— N — Y, X' = #Xk- (15)
\ (= £) \ A= 1)

Notably, this approach fails if fk = 0 or 1 for any k, as the variance in these cases approaches zero, so that
Y’ — 0. To solve this, we hedge the empirical frequencies by 8 = 0.5, so that we use
fo = (m + O.5)/(Nk + 1) when computing the MLE [50].

1.4. Bayesian tomography

As opposed to the frequentist techniques noted above, the Bayesian approach centers around Bayes’ rule, which
prescribes how to update a prior distribution Pr(@) to a posterior distribution Pr(8| f , X) thatis conditioned on
the observed frequencies f . Concretely,

Pr(£16, X)Pr(0)
Pr(f1X)
where Pr( f |8, X) is the likelihood function of (9), and where Pr( f' |X) is a pesky normalization that we will deal
with implicitly when doing numerical calculation. When Bayes’ rule is used iteratively, the posterior for one
experiment becomes the prior for the next. In words, this equation is a prescription of the full distribution of

knowledge about the quantum state given the data that was actually observed. What can we do with this?
First, we can produce a single ‘point’ estimate of 6 via the posterior mean:

Osve = Egj 7 x10], 17)

Pr(d|f, X) = (16)

where BME stands for Bayesian mean estimator. The mean estimator is not the only option, though it is optimal
for certain figures of merit [39], or at least near-optimal [51]. Second, the posterior distribution naturally
encodes ‘error bars’ by way of the posterior covariance tensor [13, 39]. Finally, the data can be processed online in
the sense that new data can be incorporated into the distribution without the need to reanalyze all previous data
at the same time. This lends itself naturally to adaptive tomography, discussed in the next section.

In practice, however, exactly implementing Bayesian mean estimation is quite difficult, as the expectation
value in (17) may not be analytically tractable outside of important special cases. We will therefore follow the
approach of Huszdr and Houlsby [10] and use the particle filtering algorithm [52] to numerically implement
Bayesian estimation. This approach has since been used by Ferrie [11, 12] and by Granade et al [13] to develop
useful applications of Bayesian tomography, by Stenberg et al [53] to learn coherent states, and has been
successfully applied outside of tomography to efficiently learn Hamiltonians using classical [54] and quantum
resources [55]. For our purposes here, we are primarily interested in the property that once a datum has been
incorporated into a particle filter, it may be discarded, such that we do not incur computational costs that grow
faster than the amount of data. Utilizing this advantage, together with the results of Beskos et al [56] we
conjecture that Bayesian tomography with particle filtering requires computational costs scaling as O (d*Np),
where p € C9%4 Nis the number of measurements, and pis the number of particles, as explained below.
Naively, one might expect that p € O(exp d) is required, but the result of Beskos et al [56] shows that p can
always be chosen to be subexponential in d. Moreover, p can be chosen independently of d in cases where we use
p to control the estimation accuracy rather than the problem dimension.

Particle filtering proceeds by approximating the prior and posterior distributions at each step of Bayesian
inference as a weighted sum of 6 functions,

Pr(6) ~ > w;6(0 — ), (18)

where {w;} are the weights of the particles located at {8;}. Upon observing a datum fk, the weights are then
updated by calling the likelihood function for each particle,

! A discussion of the consistency of this replacement can be found in [78].
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w; — w; X Pr(ﬂlel)/./\/, (19)

where A is the normalization factor in Bayes’ rule (16), which can be found implicitly by demanding that
>_;w; = 1. The BMEis then found by taking a sum over the particles representing the current posterior,

Opviz = > wi6;. (20)

Numerical stability in particle filtering is provided by the use of a resampling algorithm which replaces the
particles by a new set of particles that more effectively represents the same posterior. We will use the Liu and
West resampling algorithm [57], which mixes the current posterior with a Gaussian distribution of the same
mean and covariance. The resampling is controlled by a parameter a € [0, 1], with smaller a corresponding to
‘more Gaussian’ posteriors.

2. Adaptive and self-guided tomography

We have not yet addressed the issue of X, the matrix defining the choice of measurements. How should this
choice of measurements be done? This is an open problem, with the lack of consensus mostly due to
incompatible choices of criteria for optimality. In any case, the fact that some measurements are better than
others suggests that improvements can be made through adaptive tomography—that is, choosing new
measurement settings based on information obtained from past measurement settings.

2.1. Adaptive tomography

The first to consider adaptive state tomography was Fischer et al[17], who did so for a single qubit assumed to be
in a pure state. That is, the prior was taken to be a uniform distribution on the surface of the Bloch sphere. The
adaptivity consists of maximizing the entropy of the sampling distribution and expected fidelity. The estimator
was chosen to be the maximum of the posterior distribution. This was later experimentally realized for a short set
of measurements by pre-computing and storing the optimal experiment choices in a look-up table [22].

Adaptive state tomography has also been investigated in the context of parameterized models and Fisher
information. Barndorff-Nielsen and Gill [ 18] showed that the quantum Fisher information for a single
parameter can be obtained asymptotically by adaptively choosing the measurement settings in a two-stage
procedure. The asymptotic two-step approach seems also to have been independently discovered by Rehagek
etal[19] and Bagan et al [20]. An experimental demonstration has verified a quadratic improvement in accuracy
[23, 58]. These approaches, however, are of more theoretical interest as they are guaranteed only asymptotically
or require the total number of measurements to be specified a priori.

A generic approach using the maximum likelihood estimator and measurements minimizing the expected
variance also showed an improvement over standard quantum tomography [21]. This has been made more
practical through use of a recursive least-squares formula in Qi et al[25]. Below we will see that our choice of
heuristic for adaptation may lead the least squares estimator to fail due to ill-conditionedness. Our results below
will suggest that the better approach is the Bayesian one.

2.2.Bayesian adaptive quantum tomography

The Bayesian method also allows for a principled approach to adaptive measurements since one has a very
formal definition of expected utility of a measurement. Consider (16) in the case of a hypothetical measurement
X, which could produce data f' . Then, one can define the expected utility of the measurement as

UX) = Ej gx[L(O)], 2D

where L is an arbitrary loss function.

Fischer et al[17] considered both the log-loss and fidelity for a single qubit. Huszar and Houlsby [10]
considered the information gain, which has since been used to define an adaptive protocol in one- and two-qubit
optical experiments [14, 15]. Most recently, the fidelity for arbitrary dimensions has been studied and numerics
performed on one and two-qubits [59].

Calculating these utilities, however, poses a problem since one may be able to perform a great deal of non-
optimized experiments before the calculation of the ‘best’ experiment can be completed. These intermediate
experiments, while not optimized, still contain useful information about the state and may provide better
accuracy when the cost of optimization is included. Hence the need for experiment design heuristics that realize
the benefits of adaptivity without computing or optimizing over utility functions, providing significant
improvements in efficiency.

In the context of Hamiltonian learning, for example, heuristics have been used to obtain many of the benefits
of explicitly optimizing a utility, while avoiding much of the computational expense [55, 60]. Machine learning




10P Publishing

NewJ. Phys. 19 (2017) 113017 C Granade etal

techniques have recently been applied to the design of good heuristics for quantum characterization problems
[61], but we will take a different approach and instead use stochastic optimization to provide an efficient heuristic.

2.3. Self-guided quantum tomography

SGQT is an adaptive tomography scheme which avoids the linear inversion problem altogether by posing the
tomography problem as one of optimization rather than estimation [30]. In particular, self-guided tomography
finds a pure state | ¢) such that the overlap F (¢, p) = (¢|p|¢) is maximized for a true state p. If p = [¢) (¢ |isa
pure state, then F (¢, p) is maximized ifand onlyif |¢) = e!’|1)) for a phase 6, such that an optimal solution is
also an accurate estimate of the true state.

An earlier work took a similar approach by testing whether the unknown qubit state was symmetric with a
reference state [62], where the reference state is chosen adaptively to maximize fidelity. However, the method is
defined only for a single qubit and requires a second fully characterized and controllable qubit along with an
entangled measurement.

Having phrased state estimation as an optimization problem, self-guided tomography proceeds by
experimentally estimating the objective function F from empirical frequencies. This results in a stochastically
evaluated objective function, such that the optimization problem is amenable to attack by stochastic
optimization algorithms. We will in particular rely on the simultaneous perturbative stochastic approximation
(SPSA) [63].

The SGQT estimate is precisely defined as follows. We let | ) be a parameterization of pure states of a given
dimension in terms of a vector ¢ of real numbers; for instance, qubit states can be parameterized by their Bloch
angles. We then begin with a random state | ¢,) and iteratively produce new states | ¢, ) which serve the dual role
of specifying the current estimate of the state and next measurements to perform. Atiteration k, we perform the
measurements { Py 1, 1 — Py .}, where

Prt = |dp_ 1 £ & D) dp_1 + el (22)
and Ay is arandom vector that is constructed by setting each entry to &1 with equal probability. Here ¢, isa
step-size parameter chosen below. The outcomes of these measurements are denoted f, . The gradient of the
fidelity is estimated from these measurements to be

A ﬁ(,+ _ﬁC)_Ak.

& = (23)

2ex

Using these, and an additional gain parameter oy, the SPSA algorithm mimics standard gradient ascent, but
along the random direction Ay:

(o) = [Ppy + ak§k>- (24)
Convergence is guaranteed [63] given the specification of Ay above and
1
€k = W’ (25a)
g = 1 (25b)
k P

Unless otherwise noted, however, we shall use the parameters suggested by Spall [63],
e = 0.1/k%1% and ay = 10/k%602, (26)

SPSA has also been applied in quantum information to design high-fidelity control sequences given
randomized benchmarking experiments [64, 65]. In particular, Ferrie showed that self-guided tomography can
rapidly learn pure states for comparatively large quantum systems [30]. To the best of our knowledge, self-
guided tomography is the only adaptive tomography technique which has gone beyond two qubits, even in
simulation. SGQT has also recently been demonstrated in an optical experiment [24].

SGQT is not without its limitations, however. The aim of the current work is to mitigate the following three
limitations of SGQT: (1) it is restricted to pure state tomography, (2) it does not report error bars, and (3) it can
not be restricted to local measurements.

3. Practical adaptive quantum tomography

From the above discussion, we find that SGQT potentially offers many advantages for experimental practicality
over traditional protocols, but at the cost that it does not accurately report mixed states, and does not certify its
own errors. Happily, these are precisely the advantages of the Bayesian approach, such that we can collect data
using self-guided tomography, then post-process with offline estimation.

6
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Figure 1. Distinguishability between self-guided estimated states and true states drawn from the Hilbert—Schmidt prior for a qubit,
plotted versus the best achievable distinguishability for any estimator constrained to pure states p = |1) (¢, where the

distinguishability between p and o is defined as the trace distance %Hp — o)1, minimized for pure p and fixed o by
(1 — 2Tr(c?) — 1 )/ 2. The self-guided estimates are drawn from 10,000 iterations with either n = 5, 50 or 500 shots per
measurement, such that each measurement f; is drawn from a binomial distribution with # trials. As the number of shots per

measurement increases, the self-guided estimates approach the closest states allowed by the pure state assumption, demonstrating that
the self-guided procedure produces useful data even when the true state is mixed.

We introduce PAQT—practical adaptive quantum tomography—an optimized numerical approach which
implements the idea of merging self-guided tomography as an online experiment design heuristic into Bayesian
data analysis. In principle, post-processing of self-guided tomography data could be carried out with any
tomographic estimator. We define PAQT as the use of Bayesian estimation in particular on the data gathered
through the course of a self-guided tomography experiment, owing to the rich statistical principles underlying
Bayesian inference. In utilizing self-guided tomography, PAQT automatically selects experiments online and
can be implemented with modest experimental hardware, including modern embedded controllers such as
field-programmable gate arrays. The advantages of PAQT are that it provides the enhanced precision of adaptive
tomography together with fast data processing and experiment design. The framework provides robust and
easily interpretable error regions without additional overhead. Explicitly, PAQT uses the results of the
measurements (22) specified by SGQT with the Bayesian mean estimator (17). As described in section 1.1, the
frequencies f upon which the Bayesian estimator are conditioned are a description of the results of each
measurement. Since (22) specifies which measurements are to be performed, this is a complete specification of
our protocol. Although we demonstrate the algorithm for state tomography, the method is equally applicable to
channel tomography and other estimation tasks and can easily accommodate other estimators.

Our results use the QInfer 1.0al [66], QuTiP [67] 3.2.0, NumPy [68] 1.9.2, Pandas [69] 0.16.2 and SciPy
0.15.1 [70] libraries for Python 2.7 (Enthought Canopy 1.5.4) to perform the Bayesian analysis. We performed all
simulations on the University of Sydney School of Physics cluster. Full source code for our simulations, and for
our implementations of self-guided and least-squares tomography, as well as data summarizing all 554, 250 trials
used in our numerical results can be found online in the supplementary material [1]. These trials are split over
652 different experimental conditions, such that for most plots, each point is generated from approximately 850
trials. In all numerical experiments, true states are chosen at random for each trial from the Ginibre distribution,
which includes the Hilbert—Schmidt uniform and Haar uniform distributions as special cases [71]. For brevity,
we will indicate these special cases as ‘mixed” and ‘pure’, respectively. The supplemental material also includes
complete details for all figures in this paper, and can be used to reproduce all numerical results shown here.

We start by noting in figure 1 that, in the case of qubits, the states estimated by self-guided tomography are
almost as indistinguishable as the pure state closest to each true state in terms of the 1-norm. This makes it clear
that, although self-guided tomography should not be expected to return a useful estimate if the true state is
mixed, it is still heavily dependent on the true state such that we should expect self-guided tomography to collect
useful data.

Indeed, as we show in figure 2, PAQT effectively combines self-guided tomography with least-squares and
Bayesian estimators for both pure and mixed states on a qubit. In particular, even though self-guided
tomography has ceased to learn states when the true state is a mixed state, the data collected can be used by both
the Bayesian and LSF tomographic estimators to return very good estimates of the state.

Which estimator in particular gives the lowest error depends strongly, however, on the loss function that one
uses to quantify error. In figure 3, we compare the distribution over losses for the four tomographic procedures
as applied to qubit pure and mixed states, and as measured by the infidelity and quadratic loss functions.

7
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Figure 2. Median infidelity r = 1 — F for self-guided tomography on single qubit (top) pure and (bottom) mixed states, both without
post-processing the self-guided data (green), as well as post-processing via PAQT using Bayesian (orange) and least-squares estimators
(gray and blue). In both cases, Bayesian tomography is performed with a full-rank (Hilbert—-Schmidt) prior, using the particle filter
summarized in section 1.4 with 4000 particles and the resampling parameter a = 0.98. The shaded regions indicate the 16% and 84%
quantiles over trials. Note that, for a normal distribution, this region would coincide with the 1o0—confidence interval, but as illustrated
in figure 3, the losses are far from normally distributed, such that we cannot make the normal interpretation. The self-guided
procedure works very well for pure states (top), providing estimates with fidelity approximately 99.999% after 10” bits of data, while
the Bayes estimator uses a full-rank prior and thus underperforms on pure states due to this hedging. By contrast, for mixed states, the

self-guided procedure does not learn well on its own, but post-processing the self-guided data with Bayesian or least-squares
estimation produces high-fidelity estimates.

Infidelity Density
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- —— PAQT
—— Self-Guided
LSF
" --- Weighted LSF

1077 1076 10°° 10-* 1073 1072 107!

10° 1077 107° 10-° 107* 1073 1072 107!
Infidelity

Infidelity

10°

Quadratic Loss Density

Pure

1077 1076 1075 1074 1073 1072 107t 10° 1077 106
Quadratic Loss

10°° 1074 1073
Quadratic Loss

Figure 3. Kernel density estimate of the distribution over losses for self-guided quantum tomography without post-processing, as well
as PAQT which post-processes the SGQT data using Bayesian and least-squares fit estimators. Tomography simulations are shown for
single-qubit pure and mixed states. The top shows the density over the infidelity, as directly optimized by self-guided tomography,
while the bottom shows the density over the quadratic loss. When measuring the performance of each algorithm using the infidelity,
self-guided tomography is optimal for pure states, while Bayesian and least-squares post-processing provide the best estimates for
mixed states. On the other hand, if we use the quadratic loss to characterize estimation performance, Bayesian post-processing

produces the best estimates even in the pure-state case. The data for this figure was generated using 1000 iterations, 50 shots per
iteration, and 8000 SMC particles.

Whereas self-guided tomography directly optimizes the infidelity, we note that it performs very well according
to this measure in the pure-state case. Similarly, the Bayesian mean estimator is optimal for Bregman
divergences such as the quadraticloss L (8, 9): =(0 — 9)T(0 — é), so that it performs very well if we choose to
quantify errors accordingly.

In figure 4, we consider self-guided tomography of pure and mixed qutrit states, showing that the benefits of
using PAQT to combine SGQT with Bayesian tomography persist in this case. Notably, least-squares fitting does

significantly less well for self-guided datasets on pure qutrits. Reducing the resampling parameter a to 0.9 allows
the Bayesian estimator to remain robust in this case, however.
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Figure 4. Median infidelity for self-guided tomography on single-qutrit (top) pure and (bottom) mixed states. In both cases, PAQT is
performed with Bayesian post-processing using a full-rank (Hilbert—Schmidt) prior, 32 000 particles and the resampling parameter
a = 0.9. The shaded regions indicate the 16% and 84% quantiles over trials. In this case, Bayesian estimation via PAQT produces
high-quality estimates for pure and mixed true states.

We also consider the case in which the optimization procedure used by self-guided tomography is restricted
to an incorrect model of the system under study. In particular, in figure 5, we collect data under the restriction
that the true state is a mixed or pure product state of two qubits, then draw the true state from a Haar or Hilbert—
Schmidt prior on the full four-dimensional state. In this way, the self-guided algorithm is explicitly following an
incorrect model for the state. We note that, despite this, the Bayesian and least-squares estimators are both able
to improve on their initial uncertainty by using data collected from the product state measurements. It is also
interesting to note that the protocol with fewer measurements seems to perform better, which might be
counterintuitive. However, remember that for this scenario, the model is wrong. More data will produce an
estimate that is more accurate, but with respect to the wrong model. Thus, the procedure with fewer
measurements performs better in this scenario through less accurate (noisy) measurements.

Finally, we note that the performance of the Bayesian estimator can be dramatically improved if we
postselect on diagnostic information provided by the particle filtering algorithm. In figure 6, we show the kernel-
density estimated distribution over infidelity for each of the qutrit and two-qubit cases, postselecting on the
smallest effective sample size observed during a tomography run. That is, we accept a tomography trial if the
particle filter weights {w;} satisfy

= N (27)

1
Z w}
i

throughout the experiment, for some choice of threshold n¢,. For the qutrit case, using either 32 000 or 128 000
particles, we observe that as we increase this threshold (that is, as we demand a larger effective sample size), the
mean performance rapidly approaches the median performance. Thus, performing this postselection allows us
to exclude the worst-case performance of the Bayesian estimator. On the other hand, when the data are not
especially informative, as in the two-qubit product measurement case, the benefit of postselection is significantly
less pronounced.
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Figure 5. Median infidelity for self-guided tomography on pure (top) and mixed (bottom) states of two qubits, restricted to product
measurements. In both cases, we use PAQT for post-processing with 32 000 particles for the Bayesian estimator, and the self-guided
tomography data is collected with a gain of a = 31/k%°2and astep of ¢, = 0.1/k%10%.

4. Discussion

Though the point of SGQT is to avoid solving a large system of linear equations, the data collected from the
performed measurements still define a set of equations that can be inverted in one way or another. This is the
approach of LSF and weighted LSF. However, we note that these approaches do not perform well in all but a few
of the cases considered. The explanation for this observation is that the constructed linear system is in general ill-
conditioned.

Given infinite precision data, SGQT measurements would trace out a straight path through state space from
the initial guess to the true state, following the gradient of the fidelity. This set of measurements will not be
informationally complete. Due to the stochasticity of the algorithm, for finite data, a sufficiently large number of
SGQT iterations will be informationally complete, but most of the measurements will be linearly dependent.
This frustrates the stability of attempting to solve the linear equations defined by (6). The standard approach to
quantify the stability of a linear system is through the condition number

_ 01(X)
K(X) = —Udz(X), (28)

where 07(X) is the largest and o ;2(X) is the smallest singular value. Smaller condition numbers lead to more
stable linear systems. We will argue and demonstrate that self-guided tomography leads to measurements which
define a linear system with large condition number. Importantly, it is only the process by which data is gathered
(rather than analyzed) that determines the condition number. We will therefore restrict our discussion of
condition numbers to SGQT as a data gathering procedure and the resultant effect on the numerical stability of
different estimation strategies. In particular, our use of the condition number is distinct from its use in assessing
the utility of a set of measurements for tomographic estimation [72, 73], as we are concerned not with
tomographic completeness but with numerical stability.

The largest singular value will be related to the total number of SGQT iterations since most of the late
measurements will be nearly co-linear, clustering around the true state. The smallest singular value would be 1 in
the ideal case of performing a subset of orthogonal basis measurements. However, as noted above, the system is
only barely informationally complete—the matrix X is nearly rank-deficient (rank<d*> — 1), in other words.

10



I0OP Publishing NewJ. Phys. 19 (2017) 113017 C Granade et al

Qutrit Pure States (32,000 particles, 500 shots)

A Min Ness Threshold . —— Median
3.0~ ,r — 0 > 10 E —— Mean
— 500 )
S
2.5 1000 =
- 2000 = 107
- 2.0- —— 4000 ]
G 0 500 1000 1500 2000 2500 3000 3500 4000
& 1.5 s
[a} B 10%:
1.0- %
2
0.5- B0
b
5
0.0- ;
I ; I I R T
107 1074 102 100 10?2 & 0 500 1000 1500 2000 2500 3000 3500 4000
Infidelity min ness Threshold
Qutrit Pure States (128,000 particles, 50 shots)
1.75- min ness Threshold 4% 10~ — Median
— 0 by —— Mean
= 4
1.50 - 5000 g 3x10
¢ € 2x10
1.25- --- 8000 =
N —— 16000 —_—
g 1.00- 0 2500 5000 7500 10000 12500 15000
E 0.75 s
5 10°
<
0.50 9 6x107!
2 4x10
0.25 T 3x107!
-
===== ©2x107t
0.00- = °
. o . ) . ) . . .
102 10-! o 0 2500 5000 7500 10000 12500 15000
Infidelity min ness Threshold
Qutrit Pure States (128,000 particles, 500 shots)
A min ness Threshold — Median
3.0- ““ 0 z — Mean
n — 2000 3
2.5- 4000 & 107
—--- 8000 -
> 20- L5900 i i " " " " " " "
G 0 2000 4000 6000 8000 10000120001400016000
g 1.5-

o o =~
o un o
Prob. of Postselection
S -
L 2

1077 10°¢ 1075 107 1072 1072 107! 10° 10t 0 2000 4000 6000 8000 10000120001400016000
Infidelity min ness Threshold

Two-Qubit Pure States (32,000 particles, 500 shots)

1751 min Ness Threshold 107" - —— Median
—0 ol X —— Mean
1.50 - — 250 T 1
< -2
T 6x10
500 = )
1.25- ~=- 1000 =
4%1072-
2 1.00- ! ! ! ! ! g
G 0 200 400 600 800 1000
g 075 s
o 0. I =4
g 10%:
Qo E
0.50- E} ]
8 10-1-
0.25- & 107
b :
5 ]
0.00- 8 -
! ! ! ) ° ) ) ) ) ! 0
1073 1072 10! 10° & 0 200 400 600 800 1000
Infidelity min ness Threshold

Figure 6. Performance of PAQT Bayesian post-processing when postselecting on trials during which the effective sample sizes #1es
remains above various thresholds during out the estimation procedure, for qutrit data and for two-qubit data restricted to product
measurements. For each of the three data sets, the left-hand subfigure shows the kernel density estimate over infidelity, demonstrating
that more demanding thresholds can ‘shift’ the distribution over infidelity, especially for the product-measurement case. The upper-
right subfigures for each data set show the approach of the mean infidelity to the median fidelity as a function of the post-selection
threshold, while the lower-right subfigures show the probability of the postselection succeeding. Importantly, in three of the four
cases, we observe that post-selection on the diagnostics produced by Bayesian particle filtering can help eliminate trials with less
accurate estimates. For the case in which both a large number of particles are used and a large amount of data is taken, the effect of
post-selecting on diagnostics is much less pronounced. The data in this figure was generated using 10 000 iterations, with the number
of shots per iteration and SMC particle count indicated in the subfigure titles.

The actually value of 0,2 (X), and hence,  (X), will vary quite a bit from run to run, but the scaling with the total
number of measurements, K, will be O (v/K). This is because most of the measurements will be approximately
co-linear. In the exact case where X consists of (4> — 1) x (d*> — 1) orthogonal submatrixand K — 1repeated
rows, the condition number is identically VK .

In figure 7, we plot the empirical condition number of X as a function of the total number of SGQT
iterations. We see the expected behavior. The condition number starts high as there are simply not enough
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Figure 7. Condition numbers for least-squares fitting matrices in the single qubit, single qutrit, two-qubit product measurement,
d = 5andd = 7 cases, as a function of the number of iterations of self-guided tomography data collection.

measurements to ensure informational completeness. Then, the condition number reaches a minimum value
before rising at a rate of approximately /K due to many nearly (but not exactly) identical measurements”.

This effect identifies a fundamental tension between the benefit of measurement adaptivity and offline data
analysis, which is why PAQT does well in spite of this tension. We note that in most cases using PAQT with a
Bayesian mean estimator performs quite well and comes with many added benefits, as discussed above. In the
cases where the Bayesian mean estimator does not perform well, we conjecture this is due to non-optimal
choices of the particle filtering algorithm parameters rather than a fundamental problem of ill-conditionedness.
This is not a problem to be swept under the rug, however, and a non-trivial optimization will need to be
performed to find good operating points for the particle filtering algorithm.

A second comment concerns the standard claim in quantum state tomography work that all results obtained
for states will immediately apply to quantum process tomography due to the isomorphism between quantum
states and channels. Though this claim is broadly true, there is an important subtlety that we must consider.
Under the Choi-Jamilokowski isomorphism [74, 75], process tomography is equivalent to state tomography
with a restriction on allowable priors and measurements. Thus, the product-state model of figure 5 is especially
important in that it immediately shows that our adaptive state tomography protocol also provides a protocol for
process tomography. Indeed, the Choi-Jamitokowski isomorphism gives that product measurements on two
copies of a quantum system are equivalent to preparing a state, evolving under an unknown map, and then
measuring the output state [ 13, 76]. This observation has recently been utilized by Pogorelov et al[16] to
perform adaptive quantum process tomography with Bayesian estimation implemented by particle filtering.

For the case of d = 7, the condition number has some interesting transient behavior that we do not yet understand. However, it is still
consistent with the asymptotic behavior described above.
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With this in mind, then, our results show that self-guided state tomography is an efficient heuristic for designing
quantum process tomography experiments, and may pose an interesting tradeoff for the computational cost of
explicit adaptivity, in the same sense as self-guided tomography without the product measurement constraint
provides a useful tradeoff for adaptive state tomography. The generalization to process tomography will be
explored further in future work.

5. Conclusion

In summary, we have shown how to mitigate the drawbacks of SGQT using PAQT to provide explicit and
statistically principled adaptive quantum tomographic estimates. In numerically testing PAQT, we have shown
that SGQT alone is extremely efficient when the true state is pure, such that it is computationally challenging to
compete with SGQT in high-dimensional problems where the pure state assumption is explicitly met. This
allows us to more carefully deliniate between the advantages of each protocol, and to provide practical solutions
for adaptive tomography.

However, more work needs to be done to refine the self-guided heuristic for mixed states and restricted
measurement scenarios. An interesting open problem suggested by our work is to investigate if the scaling
advantages of SGQT remain when using mixed states and, in the case of two or more qubits, when using product
measurements. We expect that designing good heuristics for the challenging estimation problems which lie
ahead for quantum technology will become an active area of research, as it has for classical machine learning
problems.
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