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Abstract

This paper studies the data scheduling and admission control problem for a backscatter sensor

network (BSN). In the network, instead of initiating their own transmissions, the sensors can send their

data to the gateway just by switching their antenna impedance and reflecting the received RF signals.

As such, we can reduce remarkably the complexity, the power consumption, and the implementation

cost of sensor nodes. Different sensors may have different functions, and data collected from each

sensor may also have different status, e.g., urgent or normal, thus we need to take these factors into

account. Therefore, in this paper, we first introduce a system model together with a mechanism in order

to address the data collection and scheduling problem in the BSN. We then propose an optimization

solution based on the Markov decision process framework and a reinforcement learning algorithm based

on the linear function approximation method, with the aim of finding the optimal data collection policy

for the gateway. Through simulation results, we not only show the efficiency of the proposed solution

compared with other baseline policies, but also present the analysis for data admission control policy

under different classes of sensors as well as different types of data.

Index Terms

Backscatter communications, passive RFID, sensor networks, MDPs, Q-learning, SARSA with

linear function approximation.

I. INTRODUCTION

Radio frequency identification (RFID) and wireless sensor networks (WSNs) are two important

technologies which have a lot of practical applications in current and future wireless commu-

nication systems. While RFID systems are used to detect and identify tags attached to objects,

WSNs are employed to provide information about monitored objects. Each technology has its

own advantages as well as disadvantages, and thus if such two technologies can be combined

together, they can complement each other to improve the overall functionality and capacity

significantly [1]. As a result, a new type of wireless networks has been introduced recently, called
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backscatter sensor network (BSN), which integrates backscatter communication techniques used

in RFID systems into WSNs. In BSNs, sensors first collect data through sensing processes.

Then, the sensors send their data to the gateway node, i.e., the sink node, just by reflecting RF

signals received from the gateway, thereby minimizing energy consumption, complexity, as well

as the implementation cost of the sensors.

Although BSNs are very useful and they have many applications in practice such as envi-

ronment monitoring [2], body area sensor networks [3], vehicle networking [4], and real-time

tracking [5], the networks have to face an important problem, that is how to collect data from

sensors. Different from conventional WSNs where sensor nodes are assumed to be able to

transmit data directly to the gateway node, in BSNs, data from sensors is collected based on the

passive backscattering technique [6]. In particular, in the networks, the gateway first transfers RF

signals to the sensors. The sensor receives and reflects the signals with modulated information

using the same antenna. The reflected signals are then received by the gateway and processed to

extract the modulated information. Different sensors may have different priorities, and different

collected data may have different status, e.g., urgent or normal. Therefore, we need to find

efficient solutions to the data collection problem in BSNs such that the network performance is

maximized, while the important packet loss is minimized.

In this paper, we first introduce a system model together with a data scheduling mechanism for

the BSN which take priorities of sensors as well as the status of packets into considerations. We

then formulate an optimization problem of the gateway as a Markov decision process (MDP).

The optimization aims to find an optimal data transmission policy that minimizes the cost

defined in terms of the average packet delay (which also mitigates the average packet loss of

the system). We then apply the State-Action-Reward-State-Action (SARSA) learning algorithm

to obtain the optimal policy. The learning algorithm overcomes the curse-of-model issue when

some parameters may be unknown in advance and helps the gateway make optimal decisions in

an online fashion. After that, we investigate the use of approximation functions for the learning

algorithm, called SARSA with linear function approximation. This algorithm addresses the curse-

of-dimensionality when the state space of the problem becomes large. We also analytically prove

the convergence of the learning algorithm.

The paper is organized as follows. In Section II, we give an overview of related works in BSNs.

Section III describes the system model together with the proposed data scheduling strategy. We

then present the MDP formulation for the optimization problem in BSNs in Section IV. In
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Section V, we introduce learning algorithms together with using function approximations for

MDPs. Performance evaluation results are presented in Section VI and conclusions are presented

in Section VII.

II. RELATED WORK AND MAIN CONTRIBUTIONS

In this section, we first give a brief overview about BSN and some related work. We then

highlight main contributions and the novelty of the paper.

A. Backscatter Sensor Networks

Backscatter sensor network (BSN) is a new kind of wireless communication networks which

allows wireless sensor nodes to transmit data to a gateway/sink node by using the backscatter

communication technique. In particular, a BSN consists of multiple wireless sensor nodes

which want to transmit data to a gateway node as illustrated in Fig. 1 (a). Different from the

conventional wireless sensor networks (CWSNs) where sensors have to transmit data directly

to the gateway, in BSNs when the gateway wants to collect data from a sensor, it will transmit

RF signals to that sensor through the transmitter antenna (Tx). After receiving such RF signals,

the sensor will reflect these signals back to the gateway by simply switching on/off the RF

impedance circuit which is well connected to its antenna as shown in Fig. 1 (b). The switch

circuit of the sensor is controlled by a controller which generates a sequence of one and zero

bits according to the current data of the sensor. For example, if the sensor wants to transmit

a bit one, the controller will switch the RF impedance circuit to mode “On”, i.e., the sensor

will reflect back the received signals. After that, the gateway will use the receiver antenna (Rx)

to receive the modulated signals from the sensor. Through a demodulator and an analog-digital

converter, the gateway can extract the useful information from that sensor.

B. Related Work

Integrating backscatter communication techniques into CWSNs will bring many benefits

for BSNs, e.g., reducing the complexity, power consumption, and implementation cost for

sensor nodes, because the BSNs can take advantages of both sensor networks and backscatter

techniques. However, they also have to face some inherited limitations as highlighted in [1],

[9], [10]. Therefore, some research works studied solutions with the aim of improving the

performance as well as implementing BSNs in practice.
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Fig. 1. (a) A typical model of backscatter sensor networks and (b) a general architecture of backscatter communication.

1) Implementation: In [14], an experimental system was developed in practice for a BSN

in an indoor environment. In this test, the authors implemented the BSN including multiple

sensors transmitting data to a gateway at a range of approximately 15 meters. Fig. 1 (b) shows

block diagrams for the BSN implemented in [14] where the sensors are designed simply to

minimize its energy consumption with only one RF impedance switch circuit which is connected

to an antenna and controlled by a controller. Meanwhile, the gateway is equipped with a TX

antenna to transmit RF signals, and an Rx antenna to receive the backscattered signals. After

receiving the modulated signals, the gateway will use a homodyne detector to detect frequency-

modulated radiation and an ADC to decode information. In addition, to address the multi-

access problem in the BSN, the authors adopted minimum-shift keying (MSK) (a special case

of frequency-shift keying) to modulate signals for the sensors. With MSK, signals from sensors

will be backscattered at different subcarrier frequencies to avoid collision (interference) at the

gateway. Real experiments in [14] showed that, the sensors consume just 5 mW to transmit data

simultaneously at the bit rate of 10 bps to the gateway. In addition, the deployment problem

of BSNs was analytically investigated through studying the communication coverage problem

in [15]. It was pointed out that the optimal number of required RF-sources depends on the event

field, frequency, and transmission power. This analysis is especially useful in designing optimal

deployment strategies for sensors and RF sources in BSNs in practice.

2) Energy management: In BSNs, sensors do not need to equip batteries for data transmission,

but they still need energy to remain their operations such as sensing and processing. To do so,

there were some proposed solutions using RF energy harvesting techniques to help sensor nodes

remain their operations without causing negative impacts to backscatter communication process
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as well as extra implementation costs. In particular, when the gateway transmits RF signals,

the sensor nodes can backscatter these signals to transmit data or receive it and apply RF

energy harvesting techniques to harvest energy. Therefore, the authors in [16] introduced an

optimal energy scheduling for sensor nodes through using Markov chain model. The proposed

scheduling allows sensor nodes to balance the time for backscattering data and harvesting energy.

Thus, the sensors can perform either communicating with the gateway or harvesting energy

to supply for their operations. In [17], the authors proposed a solution which allows sensors

to perform backscatter communications with the gateway and harvest energy simultaneously.

In particular, it is assumed that sensors can receive signals from two different sources at

two different frequencies, and hence they can perform separately backscattering signals and

harvesting energy concurrently at two different frequencies. In [19], a new design of wireless

backscatter platform was introduced, which minimizes the power consumption for sensor nodes,

while enabling bandwidth to scale up to support data rates of hundreds of Kbps. The core idea

of this platform is to eliminate the overheads of sensing, data handling, and communications in

BSNs, thereby minimizing the whole system power consumption and increasing the data rates.

3) Communication improvement: Different from RFID systems where the communication

range between tags and the tag reader is just within few meters and the bit rate is not really

high, in BSNs the distance between sensors and the gateway is often longer and the bit rate is

required higher than those of RFID systems. As a result, there were some solutions proposed

to improve the communication capacity of BSNs. In [18], the authors proposed a solution using

the multisine waveform (instead of a pure sinusoid) to enhance the communication range for

BSNs without a need of increasing the transmission power at the gateway. The paper showed

that the shape of the signal used to power the sensor nodes has a significant impact to the

operating distance, and thus if we can set up the RF source to radiate a multisine waveform,

then the communication range can be extended noticeably (with the same transmission power).

Different from [18], the authors in [20] proposed a novel coding mechanism to achieve a long

communication range for ambient backscatter systems. The key idea of this coding mechanism

is using longer chip sequences which can increase the signal-to-noise ratio for the transmitter-

receiver pair significantly, thereby enabling long-range communication for backscatter sensor

systems. In [21], the authors studied how a backscatter link layer should be optimized for

data transfer from sensor devices. Specifically, the authors in [21] designed a high link layer

framework, named BLINK, for backscatter communications which can reduce the channel
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probing overhead, select the optimal bitrate for data transfer, and optimize the use of channel

for communications. The experimental results then showed that BLINK can achieve up to 3

times greater goodput than those of other mechanisms.

Recently, a new communication architecture has been introduced, namely Bistatic Scatter

Radio [11], [12], [13], with the aim to extend the communication range for BSNs, while

minimizing the implementation cost for sensors. In the bistatic scatter networks, RF-signal

emitter is detached from the receiver, and the sensor acts as a signal modulator. When the sensor

receives signals from the emitter, it will scatter these signals to the receiver with modulated

information. Then, based on signals received from the emitter and the sensor, the receiver can

decode and obtain the useful information. Through experimental results, the authors showed

in [12] that the tag-to-reader communication range can be extended up to 150 meters with

transmission power of just 20 milliwatts at the emitter.

4) Multiple access: Different from CWSNs where sensors actively transmit data to the

gateway, in BSNs data from all sensor nodes is collected through energy transfer process of

the gateway. When the gateway transmits signals to the sensors, these nodes will reflect these

signals back to the gateway to transmit data. Therefore, how to control interference/collision

among received modulated signals from different sensors at the gateway is a challenge. In [14],

MSK modulation technique was adopted for sensors at which the sensors will be indicated

to backscatter signals at different frequencies to avoid the interference at the gateway when

the gateway demodulates received signals. However, this method requires that the subcarrier

frequency of each sensor node must be sufficiently different from all others to keep the in-

terference minimal. Therefore, the authors in [26] alleviated the interference at the gateway

by analyzing, and mathematically quantifying the impact of aggregate bandwidth savings for

BSNs. Nevertheless, the bit rate of this solution is still very low (10 bps) and it has to face

some problems such as multi-frequency, and high bit-error rate. Another approach which adopts

CSMA/CA medium access control mechanism was presented in [27], but the bit rate is still not

really high (approximately 106 packets/second). Alternatively, TDMA was also considered to

be adopted, and it seems to be a promising solution for multi-access problem in BSNs when

the bit rate of backscatter communication between the gateway and the sensors can achieve

up to many hundreds of Kbps [19]. In addition, a bulk transmission protocol for RFID-scale

sensors was developed in [22] which maximizes channel utilization and minimizes energy loss

and collisions. Through simulation results, the authors demonstrated that the proposed protocol
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can achieve 4.5x and 9.2x more goodput than that of the EPC Gen 2 protocol when there are

three and five tags transferring data concurrently, respectively.

Recently, some concurrent backscatter transmission mechanisms, e.g., [23], [24], and [25],

have been introduced to improve the network throughput for backscatter sensor systems. The key

point of these mechanisms is to design efficient decoding schemes to support high-speed con-

current backscatter communications. However, concurrent backscatter transmission mechanisms

often suffer from complex decoding processes which consume much more energy than those of

single-tag backscatter transmission mechanisms. For our considered system, the gateway is an

energy-limited device which needs to utilize the harvested energy efficiently. Hence, single-tag

backscatter transmission is more suitable.

C. The Novelty and Main Contributions

From all aforementioned works and others in the literature, there are some important problems

which have not yet been considered and addressed in BSNs, and they are the motivations for

this paper. Firstly, one of the most important characteristics of BSNs, which is different from

RFID systems, is that data collected at the gateway can be the real-time data obtained through

sensing processes of sensor nodes. Therefore, the gateway needs to take the urgency of data into

consideration. Secondly, different sensors may perform different functions, and thus they may

have different priorities in transmitting data to the gateway. Thirdly, in all existing works, it is

always assumed that the gateway has an abundant energy source. Nevertheless, in practice the

gateway may also be mobile which needs to harvest or receive energy from an external source,

e.g., a charger, to sustain its operation. Therefore, the gateway needs to have efficient energy

management policies to balance between the amount of harvested energy and consumed energy

for the data collection. Fourthly, communication links between the sensors and the gateway are

dependent on the states of wireless channels. At different time, the sensors’ communication

links may have different status, e.g., good or bad channel, which will impact the performance

of BSNs1, and hence the gateway must also take current channel status of sensors into account

when it collects data.

This paper is dedicated to investigating and addressing the four major aforementioned chal-

lenges in BSNs. The main contributions therefore are threefold. Firstly, we present a system

model using the MDP framework which takes all factors, i.e., the urgency of data, the priorities

1The impact of SNR to BER in BSNs can be found in [14].
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of the sensors, the energy constraint of the gateway, and the channel states of communication

links, into considerations. Secondly, we introduce a data scheduling scheme which can minimize

not only the packet loss, but also the delay for important packets collected at sensors. Thirdly,

we study the SARSA learning algorithm with linear function approximation to obtain the

optimal policy for the gateway. This learning algorithm not only overcomes the curse-of-model

issue when some parameters may be unknown in advance, but also addresses the curse-of-

dimensionality when the state space of the optimization problem becomes too large. Additionally,

we perform extensive experiments to demonstrate the efficiency of the proposed solution and

provide the proof of convergence for the proposed learning algorithm. To the best of our

knowledge, this is the first work which studies the optimization problem for a BSN with impacts

from the sensors, the gateway, and the communication channels carefully considered.

III. SYSTEM MODEL AND DATA SCHEDULING

In this section, we first describe the system model for the BSN. Then, we introduce a data

scheduling strategy for the sensor nodes and a data collection mechanism for the gateway.

A. System Model

We consider a BSN as illustrated in Fig. 2. The network consists of N sensors communicating

with a gateway using the passive backscattering communication technique. We assume that time

is slotted and each sensor has a data queue to store data before transmitting it to the gateway.

The data is classified by the sensor based on the importance of the information. We consider

two types of data, namely, normal and important data. For example, for a room temperature

sensor, if the average measured temperature per time unit is higher than 40 degree, the collected

data will be classified as important data. Otherwise, it is a normal data. The maximum data

queue size of sensor n (n = 0, 1, . . . , N ) is Dn, and the packet arrival probability of node n for

normal data is pmn and for important data is pin, respectively. Different sensor nodes may have

different priorities, and we denote the priority factor of node n by σn. Similarly, we denote the

weights of important and normal packets by δi and δm, respectively. The gateway is assumed to

be able to harvest energy wirelessly from an external energy source, and the harvested energy

will be stored in the energy storage of the gateway before it can be used to collect data from

the sensors. The maximum battery size of the gateway is denoted by E units of energy.

We then consider the channel conditions between the sensors and the gateway, and between the

gateway and the energy source. We refer to the former and the latter as “transmitting channel”
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Fig. 2. The system model of a backscatter sensor network in the case with two sensors.

and “charging channel”, respectively. The transmitting channel is used for data transmission

through backscattering from the sensor to the gateway, while the charging channel is used for

energy transfer from the energy source to the gateway. We denote cn(t) as the transmitting

channel condition between the sensor n and the gateway at time slot t, and we consider two

cases, i.e., good and bad channels in which cn(t) = 1 and cn(t) = 0, respectively. If the channel

is good, the gateway is required to use en units of energy to collect data, while it is required to

use ef units of energy when the channel is bad. The probability that the transmitting channel is

good or bad is independent over time slots and denoted as pg and pb, respectively. We denote

v(t) as the charging channel condition between the gateway and the energy source at time slot

t. The probability that the charging channel is good, i.e., v(t) = 1, at each time slot is denoted

as pc, and when the channel is good, the gateway can harvest eg(t) units of energy from the

charger, i.e., the energy source, with the probability pe. If the charging channel is bad, the

gateway cannot harvest energy from the charger.

B. Data Scheduling

To optimize the performance for the considered BSN, in this section, we present strategies

and mechanisms with the aims of helping the sensors to store data and the gateway to collect

data efficiently.

1) Data scheduling at sensors: After data is collected and classified at a sensor, it will be

packetized and stored in the data queue if the data queue of that sensor is not full as shown in
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Fig. 3. If the data queue is full, and a normal packet arrives, the normal packet staying longest

in the queue will be removed from the queue, and the new arriving normal packet will be put

into the data queue. However, if the data queue is full with important packets, the new arriving

normal packet will be dropped. Similarly, when a new important packet arrives and the data

queue is full, the normal packet staying longest in the queue will be removed from the queue and

the new arriving important packet will be put into the data queue. However, if a new important

packet arrives and the queue is full with important packets, the important packet staying longest

in the queue will be removed from the queue so that the new incoming important packet can

be stored in the queue. Additionally, if the sensor is allowed to transmit a packet and the data

queue has both normal and important packets, the sensor will transmit an important packet first.

This queuing policy is designed to ensure that the important data has a higher priority, and the

data will be transmitted to the gateway at the earliest.
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Fig. 3. Data scheduling at each sensor.

2) Energy transfer scheduling at the gateway: For the energy transfer and data transmission

scheduling, there are three phases in each time slot as shown in Fig. 4. In the first phase,

the gateway collects information from all sensors in the network based on the multiple-access

procedures with anti-collision [6] (Chapter 7) which are widely used in practice. Specifically,

the gateway first broadcasts power to sensor nodes and then these sensors use such energy to

send back information to the gateway. To avoid collisions among data flows sent back to the

gateway, the gateway can adopt one of the anti-collision multiple-access methods, e.g., TDMA.

The information which is sent from a sensor to the gateway including the status of the data

queues, and the type of sensor is very small in size and thus we can assume that the energy used
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in the first phase by the gateway is negligible. Moreover, based on the reflected signals from

sensors, the gateway can evaluate the quality of the current transmitting channels [7]. Then,

from all information collected, in the second phase, the gateway will make a decision to sleep,

to allow one of the sensors to transmit data, or to receive energy from the charger. In the third

phase, the gateway performs the action determined in the second phase and updates its observed

information.

A time slot

Time

Phase 1: Collect information from sensors

Phase 2: Gateway decision

Phase 3: Gateway performance

...

Initial time

t=0

...

Fig. 4. Time slot structure.

Here, we adopt the aforementioned energy transfer strategy for the BSN for the following

reasons. Firstly, in the considered system model, data obtained from sensors may have different

states at each time slot, e.g., important or normal, and thus the gateway must use the first

phase to examine the current status of the sensors in the entire network. Secondly, to avoid

the collision/interference among sensor nodes, we allow only one sensor to backscatter signals

to the gateway at a time. This method can achieve high backscatter communication bit rates

compared with the MSK modulation technique as explained in Section II-B4. In addition, with

the proposed scheme, when a sensor is communicating with the gateway, other sensors in the

network can still receive signals from the gateway, and thus they can harvest this RF energy [8].

Here, we note that although sensors are not required to be equipped with a battery for data

transmissions, they may still need a small energy storage, e.g., a capacitor, to store harvested

energy. This energy is used for their operations, e.g., sensing and processing, as explained in

Section II-B2.

IV. OPTIMIZATION FORMULATION

In this section, we formulate the cost optimization for the scheduling problem of the considered

BSN as a Markov decision process (MDP). The MDP is defined by a tuple < S,A, r > where

S is the system state space, A is the action space, and r is the reward or cost function.
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A. State Space

The state space of the system is defined as follows:

S , S† × E × V , (1)

where × is the Cartesian product, S† = S1×· · ·×Sn×· · ·×SN is the composite state space of

all sensors in the network, E = {0, 1, . . . , E} represents the set of energy levels of the gateway,

and v ∈ V = {0, 1} expresses the charging channel state between the gateway and the energy

source. When v = 1, i.e., the charging channel is good, the gateway can harvest eg units of

energy from the energy source. When v = 0, i.e., the charging channel is bad, the gateway cannot

harvest energy. Sn is the state space of sensor n that is defined by Sn = Dm
n ×Di

n ×Cn, where

dmn ∈ Dm
n = {0, 1, . . . , Dn} is the number of normal packets, din ∈ Di

n = {0, 1, . . . , Dn} is the

number of important packets in the data queue of node n (dmn+d
i
n ≤ Dn), and cn ∈ Cn = {0, 1} is

the transmitting channel state between the sensor n and the gateway with 0 and 1 corresponding

to the good and bad states, respectively. For cn = 0 or cn = 1, the gateway needs to use en

or ef (ef > en) units of energy to transfer wireless energy and collect data from the sensor,

respectively.

B. Action Space

The action space is defined by:

A ,
{
a : a ∈ {0, 1, 2}

}
, (2)

where

a =


0, the gateway does nothing (sleep),

1, the gateway allows one of sensors to transmit data,

2, the gateway harvests energy from the charger.

Note that 1 = (x1, . . . , xn, . . . , xN) where xn ∈ {0, 1} and
∑N

n=1 xn = 1. In other words, there

is at most one sensor allowed to transmit data in a time slot. Additionally, the action space given

the current state s ∈ S of the system, i.e., As, comprises all possible actions that do not make
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a transition to the state that is not allowed. We can express the action space As as follows:

As =



{0}, if v = 0 and
∑N

n=1(d
m
n + din) = 0,

OR if v = 0 and
∑N

n=1(d
m
n + din) > 0 and

∏N
n=1 cn = 0 and e < en,

OR if v = 0 and
∑N

n=1(d
m
n + din) > 0 and

∏N
n=1 cn > 0 and e < ef ,

OR if v = 0 and
∑N

n=1(d
m
n + din)(1− cn) = 0 and e < ef ,

OR if v = 1 and
∑N

n=1(d
m
n + din) = 0 and e = E,

{1}, if
∑N

n=1(d
m
n + din) > 0 and e = E ,

{2}, if v = 1 and
∑N

n=1(d
m
n + din) = 0 and e < E ,

OR if v = 1 and
∑N

n=1(d
m
n + din) > 0 and

∏N
n=1 cn = 0 and e < en ,

OR if v = 1 and
∑N

n=1(d
m
n + din) > 0 and

∏N
n=1 cn > 0 and e < ef ,

OR if v = 1 and
∑N

n=1(d
m
n + din)(1− cn) = 0 and e < ef ,

{0, 1}, if v = 0 and
∑N

n=1(d
m
n + din) > 0 and

∏N
n=1 cn = 0 and en ≤ e < E ,

OR if v = 0 and
∑N

n=1(d
m
n + din) > 0 and

∏N
n=1 cn > 0 and ef ≤ e < E ,

{1, 2}, if v = 1 and
∑N

n=1(d
m
n + din) > 0 and

∏N
n=1 cn = 0 and en ≤ e < E ,

OR if v = 1 and
∑N

n=1(d
m
n + din) > 0 and

∏N
n=1 cn > 0 and ef ≤ e < E .

(3)

Here, we do not have two combinations, i.e., {0,2} and {0,1,2} because they are the same as

the cases of {2} and {1,2}, respectively. The reason is that when the charging channel is good

and the energy storage is not full, the gateway will prefer to receive energy from the charger

or to transfer energy to a sensor to collect data instead of doing nothing.

C. Reward Function

The gateway aims to minimize the weighted queue length corresponding to data of different

types which also indirectly minimizes the average packet loss for the system. Therefore, we

define the immediate cost function as follows:

C =
N∑
n=1

σn(δ
mdmn + δidin), (4)

where σn is the priority factor of node n. δm and δi are the weights of normal and important

packets, respectively. dmn and din are the numbers of normal and important packets of node n,

respectively. Therefore, the reward function at state st after action at is taken and the system

transits to state st+1 is defined as follows:

r(st, at, st+1) = −
N∑
n=1

σn
(
δmdmn (t+ 1) + δidin(t+ 1)

)
. (5)



14

Here, the reward to be maximized is the negative cost.

V. THE OPTIMAL POLICY FOR THE GATEWAY

A. The Q-Learning Algorithm

In the BSN, we aim to find an optimal policy π∗ : S → A for the gateway to minimize

the overall cost for the system. Accordingly, we first define value function Vπ : S → R that

represents the expected value obtained by following policy π from each state s ∈ S. The value

function V for policy π quantifies the goodness of the policy through an infinite horizon and

discounted MDP that can be expressed as follows:

Vπ(s) = Eπ

[
∞∑
t=0

γtRt(st, at)|s0 = s

]
= Eπ

[
rt(st, at) + γVπ(st+1)|s0 = s

]
, (6)

where 0 ≤ γ < 1 is a discount factor, and rt(st, at) represents the immediate reward achieved

at state st after action at is taken. Since we aim to find optimal policy π∗, an optimal action at

each state has to be found through the optimal value function expressed as follows:

V∗(s) = max
a

{
Eπ
[
rt(st, at) + γVπ(st+1)

]}
. (7)

If we denote Q∗(s, a) , rt(st, at) + γEπ
[
Vπ(st+1)

]
as the optimal Q-function for all state-

action pairs, then the optimal value function can be written as follows:

V∗(s) = max
a

{
Q∗(s, a)

}
. (8)

Now, the problem is reduced to determining an optimal value of Q-function, i.e., Q∗(s, a), for

all state-action pairs, and this can be done through making samples iteratively. In particular, the

Q-function is updated according to the following rule:

Qt+1(s, a) = Qt(s, a) + αt

[
rt(s, a) + γmax

a′
Qt(s, a′)−Qt(s, a)

]
. (9)

The core idea behind this rule is to find the temporal difference between the predicted Q-value,

i.e., rt(s, a) + γmaxa′ Qt(s, a′) and its current value, i.e., Qt(s, a). In (9), the introduction of

the learning rate αt is to determine the impact of new information to the existing value. The

learning rate can be chosen to be a constant, or it can be adjusted dynamically during the

learning process. However, it must satisfy the Assumption 1 to guarantee the convergence for

the Q-learning algorithm.
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Assumption 1. The step size αt is deterministic, nonnegative and satisfies the following condi-

tions:

αt ∈ [0, 1],
∞∑
t=1

αt =∞, and
∞∑
t=1

(αt)
2 <∞. (10)

The step size adaptation αt = 1/t is one of the most common examples used in reinforcement

learning. More discussions for selecting an appropriate step size can be found in [28].

The detail of the Q-learning algorithm is provided in Algorithm 1.

Algorithm 1 The Q-learning algorithm
Input: For each state-action pair (s, a), initialize the table entry Q(s, a) arbitrarily, e.g., to

zero. Observe the current state s, initialize a value for the learning rate α and the discount

factor γ.

for t := 1 to T do

From the current state-action pair (s, a), execute action a and obtain the immediate reward

r and a new state s′.

Select an action a′ based on the state s′ and then update the table entry for Q(s, a) as

follows:

Qt+1(s, a)← Qt(s, a) + αt

[
rt(s, a) + γmax

a′
Qt(s′, a′)−Qt(s, a)

]
(11)

Replace s← s′.

end for

Output: π∗(s) = argmaxaQ
∗(s, a).

Once either all Q-values converge or a certain number of iterations is reached, the algorithm

will be terminated. This algorithm yields an optimal policy indicating an action to be taken

at each state such that Q∗(s, a) is maximized for all states in the state space, i.e., π∗(s) =

argmaxaQ
∗(s, a). Under the assumption of the step size (i.e., Assumption 1), it was proved

in [29] that “Q-learning converges to the optimum action-values with probability one so long as

all actions are repeatedly sampled in all states and the action-value are represented discretely.”

Remark 1. In practice, selecting action “a” can be done through using a popular method, i.e.,

ε-greedy strategy [33], [35]. This strategy introduces a parameter ε which suggests for an agent

in choosing a random action with probability ε, otherwise the agent will select an action that

maximizes the Q(s, a). This strategy is necessary in exploring the whole state space. Thus, in Q-
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learning algorithm, we need to balance between the exploration time, i.e., ε, and the exploitation

time, i.e., 1− ε.

B. SARSA: An Online Q-Learning Algorithm

Although using the Q-learning algorithm we can find an optimal policy for the gateway

without requiring the knowledge about the environment, the algorithm works in an offline

fashion. In particular, Algorithm 1 can obtain the optimal policy only after the iterations are

terminated, i.e., when Q-values converge. Therefore, in this section, we consider an alternative

online learning algorithm, i.e., the SARSA algorithm (Algorithm 2).

Algorithm 2 SARSA: An online Q-learning algorithm
Input: For each state-action pair (s, a), initialize the table entry Q(s, a) arbitrarily, e.g., to

zero. Observe the current state s, initialize a value for the learning rate α and the discount

factor γ.

for t := 1 to T do

From the current state-action pair (s, a), execute action a and obtain the immediate reward

r and a new state s′.

Select an action a′ from As′ using a policy derived from Q-learning policy, e.g., ε-greedy,

and then update the table entry for Q(s, a) as follows:

Qt+1(s, a)← Qt(s, a) + αt

[
rt(s, a) + γQt(s′, a′)−Qt(s, a)

]
(12)

Replace s← s′ and a← a′.

end for

Different from the Q-learning algorithm, the SARSA algorithm is an online algorithm which

allows the gateway to choose an optimal action at each time epoch in a real-time fashion without

waiting until the algorithm converges. In the Q-learning algorithm, the policy is updated based

on the maximum reward of available actions regardless of which policy is applied, i.e., an

offline method. In contrast, the SARSA algorithm interacts with the environment and updates

the policy directly from the actions taken, i.e., an on-policy method. Note that the SARSA

algorithm updates Q-values from the quintuple Q(s, a, r, s′, a′), where s and a are the current

state and action, respectively, r is the immediate reward obtained after action a is taken, and

s′ and a′ are the new state-action pair. The parameters α and γ have the same meanings as in

Algorithm 1.
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Since the SARSA algorithm is an online learning algorithm, its conditions for convergence

are much dependent on the selected learning policy. Therefore, to achieve the convergence to

the optimality for SARSA algorithm, it was shown in [30] that the selected learning policy

must be greedy in the limit of infinite exploration (GLIE). In particular, a policy is GLIE if all

states are infinitely visited and each action is executed with an infinite number of times. One

example of GLIE is the ε-greedy policy as mentioned in Remark 1. Then, the convergence of

the SARSA algorithm as given in Algorithm 2 is provided in Theorem 1.

THEOREM 1. The sequence {Qt} converges to Q∗ with probability one, and the sequence {πt}

converges to π∗ if the following conditions are satisfied.

1) The Q-values are stored in a lookup table.

2) αt ∈ [0, 1],
∑∞

t=1 αt =∞, and
∑∞

t=1(αt)
2 <∞.

3) Var[rt(s, a)] <∞.

4) {πt} is greedy in the limit of infinite exploration (GLIE).

In Theorem 1, the second condition guarantees that the step size of Algorithm 2 approaches

zero when the time goes to infinity. The third condition is for the variance function of the

immediate reward function to be lower than infinity. This condition implies that the immediate

reward function is bounded. The fourth condition enforces learning policies to follow the GLIE.

The detailed proof of Theorem 1 can be found in [30].

C. SARSA with Linear Function Approximation

With the SARSA algorithm, we can apply optimal policies for the gateway in an online fashion

such that at each time slot the gateway can select the best action to optimize its objective function

without having knowledge about the environment. However, when we implement Algorithm 2

for the gateway, it requires the gateway to store a lookup table for all Q-values. For example, if

we have two sensor nodes with the maximum data queue size of 5 packets, and the maximum

energy storage capacity of the gateway is 10 units of energy, the total number of states is

422 × 22 = 38, 808. Then, if we have 4 actions per state, then the number of Q-values in

the lookup table will be 155, 232, which is intractable especially when the number of sensors

grows. Additionally, a large state space requires much more time of experiments to collect

enough information for a successful learning process. To address the curse-of-dimensionality

issue, we adopt a common approach from machine learning for representing values, i.e., the
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linear function approximation.

By adopting an appropriate feature function φ(s, a) which may yield similar feature vectors

for similar state-action pairs, we can provide a generalization over the state space and the action

space for a specific task. If such a function is available, the Q-value function can be approximated

as a linear combination of these features as follows:

Qπ(s, a) ≈ Qπ
θθθ (s, a) =

F∑
f=1

φf (s, a)θf = φφφ>(s, a)θθθ, (13)

where F is the total number of features, θf is a weight of feature f , and > represents the transpose

operation. Here, we denote φφφ>(s, a) =
[
φ1 · · · φf · · · φF

]
. Now, instead of learning the

optimal Q-values for all state-action pairs directly, it is sufficient to learn the vector of weights

θθθ> =
[
θ1 · · · θf · · · θF

]
which can lead to an approximation of the Q-function.

Given the approximation function, we aim to minimize the mean-squared error (MSE) over

a probability distribution Z of the state space S, i.e.,

ζ(θθθ) = EZ
[
(Qπ(s, a)−Qθθθ(s, a))

2
]
, (14)

where Qπ(s, a) is an actual value of Q-function over the policy π, and Qθθθ(s, a) is the estimated

value of Q-function given the vector of weights θθθ. Note that different from the steady state

distribution π, the probability distribution Z represents a frequency of revisiting a pair of state-

action. In other words, the probability distribution Z describes how often a pair of state-action

is revisited.

However, it is intractable to compute the mean-squared error for a system with large state

space. Thus, we can find a local minimum for the mean-squared error by using the Stochastic

Gradient Descent (SGD) method2. The SGD method allows us to calculate the updated value of

θθθ′ by following an approximation of the gradient of the error function. Specifically, the learning

rate factor α will be used to adjust the step size of the SGD method and prevent overshooting.

Then, we can update the weight vector θθθ in the direction of the gradient as follows:

θθθt+1 = θθθt −
1

2
αt∇θθθtζ(θθθt), (15)

= θθθt + αtEZ
[(
Qπ(s, a)−Qθθθt(s, a)

)
∇Qθθθt(s, a)

]
. (16)

In (15)-(16), to compute the second term, i.e., EZ
[(
Qπ(s, a) − Qθθθt(s, a)

)
∇Qθθθt(s, a)

]
, we

need to know the probability distribution Z which may not be possible in practice. This leads

2The gradient methods for minimizing mean-squared error are commonly used in the literature, especially in machine learning.

More information of using gradient methods can be found in [33].
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to the idea of adopting the bootstrapping method [31], [32] for estimating the second term.

Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by

sampling with replacement from the original sample, most often with the purpose of deriving

robust estimates of standard errors. Now, instead of calculating over the whole distribution Z ,

we can update the value of θθθ at each sample gradient as follows:

θθθt+1 = θθθt + αt

(
Qπ(st, at)−Qθθθt(st, at)

)
∇Qθθθt(st, at). (17)

Since each sample gradient is an unbiased estimate of the true gradient, this converges to a

local minimum of the MSE if the step size α decreases appropriately with t, e.g., α satisfies

Assumption 1 [33].

In (17), by using the Q-value approximation function in (13), we derive the following result:

θθθt+1 = θθθt + αt

(
Qπ(st, at)−Qθθθt(st, at)

)
φφφ(st, at). (18)

We are now ready to present an online learning algorithm with linear function approximation

for the gateway of the BSN as in Algorithm 3.

In Algorithm 3, κt denotes the temporal difference which is used to adapt the prediction

for the agent by comparing the Q-value at the current state and the prediction at the next state.

Vector eee denotes the approximation of the gradient ∇θθθQθθθ(s, a). We then introduce the following

theorem.

THEOREM 2. Let the learning policy πθθθ be an ε-greedy policy with respect to θθθ and let C

be the Lipschitz constant of the learning policy πθθθ with respect to θθθ. Assume that the step size

satisfies Assumption 1. Then, there is C0 > 0 such that, if C < C0, the Algorithm 3 converges

with probability one.

The proof of Theorem 2 is provided in Appendix A.

Remark 2. Algorithm 3 is straightforward to implement for the gateway. It just requires a small

amount of the gateway’s memory to store the parameters with very simple computations at

each time step to update the parameters. However, one of the challenges in Algorithm 3 is to

find appropriate features for the linear function approximation. Chosen features must not only

indicate the best action to execute, but also convey the information about what future states

are useful. For example, in our proposed system, we aim to minimize the average delay and

the packet loss especially for important data in the system. Therefore, we need to have the

features for different types of packets at different sensors. One example is given in (21) for



20

Algorithm 3 SARSA with linear function approximation
Input:

Initialize a set of features φφφ>(s, a) =
[
φ1 · · · φf · · · φF

]
along with arbitrary weights

θθθ> =
[
θ1 · · · θf · · · θF

]
with the same dimensionality F as the feature vector φφφ.

We set Qθ0(s, a) = 0 for all state-action pairs of (s, a) at the beginning.

Observe the current state s, initialize the learning rate α and the discount factor γ.

for t := 1 to T do

From the current state-action pair (s, a), execute action a and obtain the immediate reward

r and a new state s′.

Select an action a′ from As′ using a policy derived from Q-learning policy, e.g., ε-greedy.

Then, let
eeet = φφφ(s, a), and

κt = r(s, a) + γQθθθt(s
′, a′)−Qθt−1θt−1θt−1(s, a)

(19)

Then, the weights are updated as follows:

θθθt+1 = θθθt + αtκteeet (20)

Replace s← s′ and a← a′.

end for

the performance evaluation. Further discussions on building features for the linear function

approximation can be found in [33], [34], [35].

We provide the comparison for the complexity in terms of the storage requirement and the

computation of Algorithm 1, Algorithm 2, and Algorithm 3 in Table I to show the efficiency of

Algorithm 3. In Table I, while Algorithm 3 requires to store only F variables corresponding to

F features, Algorithm 1 and Algorithm 2 require |S||A| variables, in which |S||A| is the total

number of states multiplied with the total number of actions. Consequently, the computation

complexities of Algorithm 1 and Algorithm 2 also become intractable as the number of states

is very large. By contrast, with Algorithm 3, we need to update only few equations at each

iteration depending on the number of features that we define.
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TABLE I

THE COMPLEXITY OF LEARNING ALGORITHMS

Algorithm The storage requirement The computation complexity

Algorithm 1 (Q-learning) |S||A| variables O(|S||A|)

Algorithm 2 (SARSA) |S||A| variables O(|S||A|)

Algorithm 3 (SARSA with linear function approximation) F variables O(F )

VI. PERFORMANCE EVALUATION

A. Parameter Setting

We perform the simulations using MATLAB to evaluate the performance of the proposed

learning algorithm, i.e., Algorithm 3 under different parameter settings. First, we consider the

case with two sensor nodes. The packet arrival probabilities of sensor nodes 1 and 2 are 0.5 and

0.4, respectively. 30% and 20% of the arriving packets at sensor nodes 1 and 2 are important

packets, respectively. The maximum data queue size of both nodes are 5 packets. We assume

that node 1 has higher priority than that of node 2, and thus the priority factors are set to 1.3

and 1, respectively. Furthermore, the probability that the transmitting channel between node 1

(node 2) and the gateway is good is 0.7 (0.9). The weight of the important packet is 1.5 and

that of the normal packet is 1. For the gateway, the maximum energy storage size is 10 units

of energy. The gateway uses 1 unit and 2 units of energy to collect data from a sensor when

the transmitting channel is in good and bad condition, respectively. The good charging channel

probability is 0.6. The probability that the gateway can harvest 1 unit or 2 units of energy from

the charger is 0.5 when the charging channel is good. The parameters of the learning algorithm

are set as follows. The discount factor is 0.98, and the exploration parameter is 0.01. For the

feature function, one of the most effective ways is to find key features based on the objective

function. In our proposed system, the objective function is the cost defined in (4). From (4), the

feature function can be defined as follows:

Qθθθ(s, a) =
N∑
n=1

θinφ
i
n(s, a) + θmn φ

m
n (s, a), (21)

where N is the number of sensor nodes and in our case N = 2. φxn (n = 1, . . . , N ) are

numerical features corresponding to the types of packets of the nodes, and θxn are the weights of

such features. Here, x = i and x = m correspond to the cases of important packet and normal

packet, respectively. We choose an initial arbitrary weight of 5, i.e., θxn = 5.
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Based on actions of the gateway presented in (2), the feature functions can be defined as

follows.

• Action = “Charging”

– if dxn = 0: φxn = σnδ
x

– if dxn > 0: φxn = (−e/E)σnδx + (1− cn)

• Action = “Do nothing”

– φxn = −(σnδx + (1− cn))1(dxn) , where 1(y) = 0 if y = 0 and 1(y) = 1 if y > 0

• Action = “Accept one important packet from node n”

– φi
n = σnδ

i + (2− cn) and φm
n = 0

– φxn = −σnδx1(dxn) (where n represents all nodes except node n)

• Action = “Accept one normal packet from node n”

– φm
n = σnδ

m + (2− cn) and φi
n = 0

– φxn = −σnδx1(dxn)

We consider the case that the sensor nodes and gateway have no information about the environ-

ment, e.g., the good channel probabilities. Therefore, to compare and evaluate the performance

of the proposed learning algorithm, we consider two baseline schemes, i.e., a greedy-myopic

(GM) policy and greedy-charging (GC) policy. For the GM policy, the gateway always takes

action “transmit” as long as it has enough energy. For the GC policy, the gateway always takes

action “charging” when the charging channel is good, and it always takes action “transmit” if

it has enough energy and the charging channel is bad.

B. Simulation Results

We first evaluate the performance of the proposed learning algorithm with the linear function

approximation defined in (21) by analyzing the convergence results and the obtained policy. We

then vary the probability of charging channel to be good, and the priority factor of sensor node

1 to show the efficiency of the proposed learning algorithm compared with the GC policy and

the GM policy. Additionally, to further gain more insight, we present results obtained by the

learning algorithm with linear function approximation defined as follows:

Qθθθ(s, a) = θgφg(s, a) +
N∑
n=1

θinφ
i
n(s, a) + θmn φ

m
n (s, a). (22)

In (22), we define a new feature, denoted as φg, together with its weight θg, the aim of which is

to show that by defining more specific feature for the system, we can obtain better performances.
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The feature θg can be expressed as the feature of energy levels of the gateway, and it can be

defined as follows:

φg =

 1− e/E, if action = “Charging”

0, otherwise.
(23)

Note that we denote the linear function approximation defined in (21) and (22) as feature

function 1 and feature function 2, respectively.

1) Convergence and Policy: We first show the convergence and the optimal policy obtained

by the proposed algorithm, i.e., Algorithm 3. The convergence in terms of the average cost

is shown in Fig. 5 (a) and the weights of the feature function is shown in Fig. 5 (b). The

convergence rates of the weights of the feature function are relatively fast with around 4× 103

iterations, while the convergence of the average cost of the proposed learning is slightly slower

with around 4 × 105 iterations. The reason is because the average cost converges only after

the weights converge. In particular, in the first 104 iterations, the average cost of the learning

algorithm increases to 9.5. Then, in the next 105 iterations, it reduces gradually and becomes

stable at 8.35 after 4× 105 iterations. Although the convergence rate of the learning algorithm

is relatively slower than those of the GM and GC policies, the average cost obtained by the

proposed learning algorithm is much lower, i.e., 8.35 versus 10.6686 and 10.2254, respectively.

Then, in Fig. 5 (c), we increase the number of sensor nodes and compare the average costs

among algorithms. As shown in Fig. 5 (c), the learning algorithm always achieves the best

performance (i.e., the average cost is lowest) compared with the GC and the GM policies.
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Fig. 5. The convergence of (a) average cost of the system and (b) the parameters of weights in the feature function, and (c)

the average cost of the system as the number of nodes is increased.

After the converged weights are reached for the learning algorithm, we obtain the policy

through Algorithm 3 with the Q-function from (21). Next, we evaluate the common scenarios,

i.e., when all two nodes have both important and normal packets in the data queue. We analyze
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Fig. 6. The Q-value functions of (a) both transmitting channels are bad, (b) transmitting channel 1 is bad and transmitting

channel 2 is good, (c) transmitting channel 1 is good and transmitting channel 2 is bad, and (d) both transmitting channels are

good.

the impact of the energy and transmitting channel conditions to the policy. In particular, in

Fig. 6, we consider four cases, i.e., when both transmitting channels are bad (Fig. 6 (a)), when

transmitting channel 1 is bad and transmitting channel 2 is good (Fig. 6 (b)), when transmitting

channel 1 is good and transmitting channel 2 is bad (Fig. 6 (c)), and when both transmitting

channels are good (Fig. 6 (d)). In these figures, the Q-values of different actions are shown,

and the gateway will choose the action that has the highest Q-value. In Fig. 6 (a), when both

transmitting channels are bad, the gateway will take action “charging” to reserve energy for

future transmissions. However, when both transmitting channels are good, i.e., Fig. 6 (d), the

gateway only takes action “charging” when the energy level is lower than 2 units. The gateway

will select node 1 for data transmission if the current energy level is higher than 1 unit. In

the cases when one transmitting channel is good, the gateway will choose the node with good

transmitting channel for data transmission if the energy level is higher than or equal to 2 units.

In Fig. 7, we compare the percentages of the gateway taking different actions. As shown

in Fig. 7, by adopting the learning algorithm, the gateway is able to balance between actions

“charging” and “transmitting” while action “do nothing” is minimally chosen. With enough

energy, the learning algorithm is able to take action “transmitting” more frequently than the
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baseline schemes, resulting in higher throughput. In particular, the charging rate of the learning

algorithm is 40% which is lower than that of GC policy, i.e., 48%. However, the data transmitting

rate of the learning algorithm is higher than that of the GC policy, i.e., 59% versus 52%.
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22%
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Fig. 7. The percentages of taking different actions obtained by (a) the GC policy, (b) the GM policy, and (c) the learning

algorithm.

2) Average cost and energy: In the aforementioned analysis, the most important factor

influencing the learning policy is energy of the gateway. The energy is limited, and thus the

gateway has to balance between taking the charging action and the data transmission action.

To obtain more insights, in Fig. 8, we vary probability of charging channel to be good from

0.1 to 0.9 and compare the average cost (Fig. 8 (a)) and the average available energy of the

gateway (Fig. 8 (b)). As shown in Fig. 8 (a), as probability of charging channel to be good

increases from 0.1 to 0.5, the average costs of the GM policy, the GC policy, and the learning

algorithms decrease gradually to 11, 10.2 and 8.9, respectively. However, as this probability

increases from 0.5 to 0.9, the average costs of the GM policy and the learning algorithms keep

decreasing while that of the GC policy slightly increases. When probability of charging channel

to be good is 0.9, the average cost of the learning algorithm becomes 7.8 which is lower than

those of the GM and GC policies around 22% and 27%, respectively. The reason for the cost

increment of the GC policy is that when probability of charging channel to be good is high, the

received energy is more than that required since the GC policy always takes “charging” action

as shown in Fig. 7. For the learning algorithm, although the available energy of the gateway is

not as high as the GC policy, the algorithm is able to balance between energy receiving and data

transmission so that the best performance can be achieved (as shown in Fig. 7). Consequently,

we observe that the average energy of the learning algorithms are between those of the GM and

GC policies as shown in Fig. 8 (b). Furthermore, when probability of charging channel to be

good is not high, the average cost obtained by the learning algorithm with feature function 2 is

slightly lower than that of the leaning algorithm with feature function 1. This reveals that the
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gateway can reserve more energy to achieve better performance when the energy is scarce.
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Fig. 8. (a) The average cost of the system and (b) the average available energy of the gateway when probability of charging

channel to be good is varied.

3) Average packet loss: Next, we examine the impact of the available energy to the packet loss

probability and the average number of packets waiting in the data queues in Fig. 9. In the system

under consideration, the average loss of important packets is always kept at a very small level.

Specifically, when probability of charging channel to be good is 0.1, the packet loss probability

for important packets of all four algorithms is relatively high, i.e., around 10% due to the lack

of enough energy. However, this probability drops dramatically to around 3% when probability

of charging channel to be good is 0.2 and is approximately zero when probability of charging

channel to be good is higher than 0.2. This result clearly shows that the important packets are

well prioritized. However, normal packets can experience high packet loss probability. This is

to yield a transmission opportunity to the important packets. In particular, when probability of

charging channel to be good is low, i.e., 0.1, the packet loss probability of the normal packets is

very high (around 67%), and this probability decreases as the good channel probability increases

for the GM policy and the learning algorithm. For the GC policy, because it spends too much

time for charging, when probability of charging channel to be good is high, the time for data

transmission increases. Consequently, the average packet loss rate is reduced. For all the cases,

the learning algorithm always achieves the best performance in terms of the minimal packet

loss.

We now examine the impact of the priority factor to the average packet loss in Fig. 10. In

particular, we fix probability of charging channel to be good at 0.6, keep the priority factor of

node 2 at 1, and vary the priority factor of node 1 from 0.2 to 1.8. As the priority factor of node

1 increases, the average packet losses of node 1 obtained by the GC and GM policies have a
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Fig. 9. The average loss of (a) important packets and (b) normal packets in the system.

down trend, while those of node 2 have an up trend as shown in Figs. 10 (a), (b), (d), and (e).

This implies that the node with higher priority factor has more opportunities to transmit data,

and thus its average packet loss will be lower. Similar trends are observed for average packet

losses of node 1 and node 2 obtained by the learning algorithm. However, when the value of

the priority factor of node 1 is close to 1, i.e., equals to the value of priority factor of node 2,

the average normal packet losses of node 1 and node 2 are fluctuated. The reason is that when

the priority factors of both nodes are close to each other, the learning algorithm can randomly

choose one of the nodes to transmit data as long as the cost function is minimized. Thus, the

average packet loss of normal packets obtained by the learning algorithm for the whole system is

much lower than those of the GC and GM policies as shown in Fig. 10 (f). Through this result,

we are able to set appropriate priority factors of the nodes to achieve performance requirements.

VII. CONCLUSION

In this paper, we have considered the backscatter sensor network (BSN) in which sensors

communicate with the gateway node using the backscatter communication technique. To mini-

mize the delay together with the packet loss, we have first formulated the energy transfer and

data transmission scheduling problem as a Markov decision process. We then have adopted

learning algorithms to find optimal policies for the gateway to avoid the curse-of-model issue.

Moreover, we have also investigated linear approximation functions integrating to the learning

algorithms, which can significantly reduce the complexity as well as the memory storage for

the gateway in finding the optimal policy. Simulation results have validated the convergence and

the efficiency of the proposed learning algorithm.
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Fig. 10. The average packet loss when the priority factor of node 1 is varied.

APPENDIX A

THE PROOF OF THEOREM 2

To prove Theorem 2, we adopt the Ordinary Differential Equations (ODE) approach. From (20),

we can rewrite the update for the weight parameters as follows:

θθθt+1 = θθθt + αtφφφ(s, a)
(
r(s, a) + γQθθθt(s

′, a′)−Q(s, a)
)
. (24)

Recall that the standard Euler scheme for numerically approximating a trajectory of the ODE

ẋ = h(x(t)) would be xn+1 = xn + αth(xn) (Chapter 2 [36]). Then, from (13), (15), (16)

and (24), the associated ODE of θθθ can be expressed as follows:

θ̇θθ = Eθθθ
[
φφφ(s, a)

(
r(s, a) + γQθθθ(s

′, a′)−Q(s, a)
)]
,

= Eθθθ
[
φφφ(s, a)

(
r(s, a) + γφφφ>(s′, a′)θθθ − φφφ>(s, a)θθθ

)]
.

(25)

In (25), we omit the dependence of θθθ on t for the convenience of presentation. Now, we

will follow Theorem 17 from [37] and show that if the associated ODE of θθθ has a globally

asymptotically stable equilibrium point, Algorithm 3 will converge with probability one. To

determine the global asymptotic stability for the associated ODE of θθθ, we rewrite (25) in the

following form:

θ̇θθ = Aθθθθθθ + bbbθθθ, (26)
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where Aθθθ = Eθθθ
[
φφφ(s, a)(γφφφ>(s′, a′)− φφφ>(s, a))

]
and bbbθθθ = Eθθθ

[
r(s, a)φφφ(s, a)

]
.

Denote θθθ∗ as the equilibrium point of (26)3 and let θ̃θθ(t) = θθθ(t)−θθθ∗. Then, from the Lyapunov

stability theory, we have the following statement. Given ODE: ~̇x = f(~x), if there exists function

V(~x) : Rn → R such that

V(~x = ~0) = 0,V(~x) > 0 (∀~x 6= ~0), and V(~x)→∞ as ~x→∞, (27)

then if V̇(~x) < 0 (∀~x 6= ~0), ODE ~̇x = f(~x) is globally asymptotically stable.

Now, let ~x = θ̃θθ and V(~x) =‖ θ̃θθ ‖22, it is straightforward to verify the conditions of V(θ̃θθ)

in (27). Hence, if we can prove that V̇(θ̃θθ) < 0, then the ODE (26) is globally asymptotically

stable.

We derive the following results:

d

dt
‖ θ̃θθ ‖22 = 2θ̃θθ

> d

dt
θ̃θθ,

= 2θ̃θθ
> d

dt

(
θθθ(t)− θθθ∗

)
,

= 2θ̃θθ
>
(Aθθθθθθ −Aθθθ∗θθθ

∗ + bbbθθθ − bbbθθθ∗),

= 2θ̃θθ
>
(Aθθθθθθ −Aθθθ∗(θθθ − θ̃θθ) + bbbθθθ − bbbθθθ∗),

= 2θ̃θθ
>
Aθθθ∗θ̃θθ + 2θ̃θθ

>
(Aθθθ −Aθθθ∗)θθθ + 2θ̃θθ

>
(bbbθθθ − bbbθθθ∗),

≤ 2θ̃θθ
A

θθθ∗θ̃θθ + 2 ‖ θ̃θθ ‖2‖ (Aθθθ −Aθθθ∗)θθθ ‖2 +2 ‖ θ̃θθ ‖2‖ bbbθθθ − bbbθθθ∗ ‖2,

≤ 2θ̃θθ
>
Aθθθ∗θ̃θθ + 2 ‖ θ̃θθ ‖2 sup

θθθ

‖ Aθθθ −Aθθθ∗ ‖2‖ θθθ ‖2 +2 sup
θθθ 6=θθθ∗

‖ bbbθθθ − bbbθθθ∗ ‖2
‖ θθθ − θθθ∗ ‖2

‖ θ̃θθ ‖22,

≤ 2θ̃θθ
>
Aθθθ∗θ̃θθ + ϑ ‖ θ̃θθ ‖22 sup

θθθ

‖ Aθθθ −Aθθθ∗ ‖2 +2 sup
θθθ 6=θθθ∗

‖ bbbθθθ − bbbθθθ∗ ‖2
‖ θθθ − θθθ∗ ‖2

‖ θ̃θθ ‖22,

(28)

where ϑ is a positive small constant. Then, let

λA = sup
θθθ

‖ Aθθθ −Aθθθ∗ ‖2, and λB = sup
θθθ 6=θθθ∗

‖ bbbθθθ − bbbθθθ∗ ‖2
‖ θθθ − θθθ∗ ‖2

(29)

where λA is the operator norm (induced form) and λB is the operator norm corresponding to the

2-norm for vectors, i.e., the regular Euclidian norm [39]. Then, we derive the following results:

d

dt
‖ θ̃θθ ‖22≤ 2θ̃θθ

>
Aθθθ∗θ̃θθ + 2(

ϑ

2
λA + λB) ‖ θ̃θθ ‖22 . (30)

Denote λ = ϑ
2
λA + λB, then we have

d

dt
‖ θ̃θθ ‖22≤ 2θ̃θθ

>
(Aθθθ∗ + λI)θ̃θθ. (31)

3The existence of such an equilibrium point was provided in [38].
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Due to the fact that learning policy is assumed to be a Lipschitz constant with regard to vector

θθθ and the uniform ergodicity of the corresponding induced chain implies that Aθθθ and bbbθθθ are also

Lipschitz constants with regard to vector θθθ. This implies that λA and λB → C. Additionally,

from Theorem 1 of [40], it is shown that Aθθθ is a negative definite matrix. Therefore, given a

sufficiently small value of C, (Aθθθ∗ + λI) is a negative definite matrix. Consequently, the ODE

in (26) is globally asymptotically stable.

The proof is completed.
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