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Abstract

We present a review of some recent results on estimation of location
parameter for several models of observations with cusp-type singularity
at the change point. We suppose that the cusp-type models fit bet-
ter to the real phenomena described usually by change point models.
The list of models includes Gaussian, inhomogeneous Poisson, ergodic
diffusion processes, time series and the classical case of i.i.d. obser-
vations. We describe the properties of the maximum likelihood and
Bayes estimators under some asymptotic assumptions. The asymp-
totic efficiency of estimators are discussed as well and the results of
some numerical simulations are presented. We provide some heuristic
arguments which demonstrate the convergence of log-likelihood ratios
in the models under consideration to the fractional Brownian motion.

Key words: Change-point models, cusp-type singularity, inhomogeneous
Poisson processes, Diffusion processes, Maximum likelihood and Bayes esti-
mators, fractional Brownian motion.

1 Models of observations
We consider several models of observations having a cusp-type singularity at
the point of location parameter. Such models can be considered as a natural
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alternative or extension to the change-point (in space and in time) models
with jumps in characteristics. The list of models of observations included in
this paper contains the case of independent identically distributed random
variables (i.i.d. r.v.s, the change point in space), a signal in white Gaussian
noise (the change point in time), Poisson process (the change point in time),
the ergodic diffusion process (the change point in space) and perturbed dy-
namical system (the change point in space).

For general illustration of our approaches we start with the model of
signal observed with a small additive white Gaussian noise:

dXt = S (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T. (1)

Here S (ϑ, ·) ∈ L2 [0, T ] is the signal, ϑ ∈ Θ = (α, β) is an unknown pa-
rameter and Wt is a standard Wiener process. The parameter ε > 0 is
supposed to be small. We are interested in the following problem: how the
asymptotic properties of estimators depend on the order of regularity of the
signal S (ϑ, t)? The special attention will be paid to the case of models with
cusp-type singularity.

Note that the case of the observations XT = (X (t) , 0 ≤ t ≤ T = nτ) of
type (1) with τ -periodic signal S (ϑ, t) (the period τ is supposed to be known)
and ε = 1 can be reduced to the previous model by setting

Xt =
1

n

n∑
j=1

[X (τ (j − 1) + t)−X (τ (j − 1))] , 0 ≤ t ≤ τ.

Now this averaging process satisfies (1) with ε = n−1/2 and another Wiener
process (see also Section 1.3 for the case of an inhomogeneous Poisson process
with τ -periodic intensity function).

To estimate the parameter ϑ and to describe the asymptotic properties
of the estimators as ε → 0 (a small noise asymptotics) we shall use the
likelihood ratio function

V
(
ϑ,XT

)
= exp

{
1

ε2

∫ T

0

S (ϑ, t) dXt −
1

2ε2

∫ T

0

S (ϑ, t)2 dt

}
, ϑ ∈ Θ. (2)

In this paper we shall discuss the asymptotic properties of the maximum
likelihood estimator (MLE) ϑ̂ε and Bayes estimator (BE) ϑ̃ε for the quadratic
loss function. These estimators are defined by the relations

V (ϑ̂ε, X
T ) = sup

ϑ∈Θ
V
(
ϑ,XT

)
, ϑ̃ε =

∫ β

α
ϑp (ϑ)V

(
ϑ,XT

)
dϑ∫ β

α
p (ϑ)V (ϑ,XT ) dϑ

.
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We suppose that the density p (·) of the prior distribution for ϑ is a positive
continuous function.

It is known that if the signal S (ϑ, t) is smooth w.r.t. ϑ, then the MLE and
BE are asymptotically normal and asymptotically efficient with the rate ε,
i.e.

ε−1(ϑ̂ε − ϑ) =⇒ ζ, ε−1(ϑ̃ε − ϑ) =⇒ ζ, ζ ∼ N
(
0, I (ϑ)−1) ,

where I (ϑ) is the Fisher information [8]. The arrow =⇒ means the conver-
gence in distribution.

In contrast to the above smooth case, in the following classical change-
point model of observations

dXt = 1I{t≥ϑ}dt+ εdWt, X0 = 0, 0 ≤ t ≤ T, (3)

the MLE ϑ̂ε and BE ϑ̃ε have the rate of convergence ε2 (see [9]), i.e.

ε−2
(
ϑ̂ε − ϑ

)
=⇒ ξ̂, ε−2

(
ϑ̃ε − ϑ

)
=⇒ ξ̃,

where the random variables ξ̂ and ξ̃ are defined by the relations

Z(ξ̂) = sup
u∈R

Z (u) , ξ̃ =

∫∞
−∞ uZ (u) du∫∞
−∞ Z (u) du

. (4)

Here Z (u) = exp{γW (u) − |u|
2
γ2}, u ∈ R, W (·) is a two-sided Wiener

process, γ is a constant (to be defined explicitly below). The uniqueness
with probability 1 of the solution of the first equation was shown in [18].

Typically, real physical phenomena and technical devices have a transition
phase from one state to another which can be described in many ways, for
example, with use a smooth function (signal) having a very large Fisher
information. The important question is what happens if the regularity of
the signal is different of the supposed one, see some results in this direction
in [14]. We consider here another model with the signals having cusp-type
singularities. As alternative to (3) one can consider (1) with, for example,
the signal

S (ϑ, t) =
1

2

(
1 + sgn (t− ϑ)

∣∣∣∣t− ϑ

δ

∣∣∣∣κ) 1I{|t−ϑ|≤δ} + 1I{t>ϑ+δ}. (5)

Here δ > 0 is some small parameter and κ ∈ (0, 1
2
). We suppose that

ϑ ∈ (α, β), where α > δ and β < T − δ. This signal is a continuous function
and for small δ and κ it can be a good L2 [0, T ] approximation for the signal
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in (3). Note that when the Fisher information does not exist, the problem of
estimation ϑ is singular.

The examples of the corresponding curves of signals are given in Figure 1.
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Figure 1: a) κ = 5
8
, b) κ = 1

2
, c) κ = 1

8
, d) κ = 0, e) κ = −3

8
.

The asymptotic properties of the MLE and BE for ϑ under the assump-
tions (1) and (5) with κ ∈ (−1

2
, 1
2
) are as follows:

ε−
2

2κ+1

(
ϑ̂ε − ϑ

)
=⇒ ξ̂, ε−

2
2κ+1

(
ϑ̃ε − ϑ

)
=⇒ ξ̃, (6)

where the random variables ξ̂ and ξ̃ are defined in (4) with

Z (u) = exp

{
γWH (u)− |u|2H

2
γ2

}
, u ∈ R. (7)

Here H = κ+ 1
2

is the Hurst parameter,

γ =
1

2δκΓ∗
, Γ2

∗ =

∫ ∞

−∞
[sgn (s− 1) |s− 1|κ − sgn (s) |s|κ]2 ds
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and WH (·) is a fractional Brownian motion (fBm), i.e. WH (u) , u ∈ R, is a
Gaussian process, WH (0) = 0,EWH (u) = 0 with the covariance function

EWH (u1)W
H (u2) =

1

2

(
|u1|2H + |u2|2H − |u1 − u2|2H

)
. (8)

Note that it was first A.N. Kolmogorov [11] who discussed this type of Gaus-
sian processes under the equivalent assumption to (8):

E|WH (u1)−WH (u2) |2 = |u1 − u2|2H .

The convergence in distribution, convergence of moments of these estimators
and the fact of the asymptotic efficiency of the BE were established in [1]
(for κ ∈

(
0, 1

2

)
) and in [12] (for κ ∈

(
−1

2
, 0
)
).

The rate of convergence of mean square error of the MLE and BE in the
model (1) with signal (5) essentially depends on κ.

We have the following asymptotics of the mean square error

a) Smooth signal, κ > 1
2
: Eϑ

(
ϑ̂ε − ϑ

)2
∼ ε2 (see [8]).

b) Smooth signal with κ = 1
2
: Eϑ

(
ϑ̂ε − ϑ

)2
∼ ε2

ln 1
ε

.

c) Continuous signal with cusp κ ∈
(
0, 1

2

)
: Eϑ

(
ϑ̂ε − ϑ

)2
∼ ε

4
2κ+1 . Note

that 2 < 4
2κ+1

< 4 (see [1]).

d) Discontinuous signal, κ = 0: Eϑ

(
ϑ̂ε − ϑ

)2
∼ ε4 (see [9]).

e) Discontinuous signal with cusp κ ∈
(
−1

2
, 0
)
: Eϑ

(
ϑ̂ε − ϑ

)2
∼ ε

4
2κ+1 .

In this case 4
2κ+1

> 4 (see [12]) .

Here Aε ∼ Bε means that there exist constants 0 < c ≤ C such that c ≤ Aε

Bε
≤

C as ε → 0. It must be noted that if κ ≤ −1
2
, then the probability measures

generated by the observation XT are singular for all different values ϑ and
hence the parameter ϑ can be estimated without error. To illustrate this
fact, suppose that S (ϑ, t) = |t− ϑ|κ and κ ∈

(
−1,−1

2

)
. Let κ∗ ∈

(
−1

2
, 0
)

such that κ+ κ∗ ≤ −1 and the integral

J (ϑ) =

∫ T

0

|s− ϑ|κ∗ dXs =

∫ T

0

|s− ϑ|κ∗ |s− ϑ0|κ ds+ ε

∫ T

0

|s− ϑ|κ∗ dWs.
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It is easy to see that here the stochastic integral above is always finite with
probability one and the ordinary integral diverges at the point ϑ = ϑ0. Using
this property we can construct an estimator of ϑ0 without error. For example,
ϑ0 is solution of the equation J (ϑ)−1 = 0.

The case b) can be treated similar to a), using the same method as in [8].
The goal of this work is to present the review of the range of models

with cusp-type singularities and to describe the asymptotic properties of the
MLE and BE. Below we consider the i.i.d. random variables X1, . . . , Xn with
a marginal density having the cusp-type singularity (as n → ∞), the ergodic
diffusion processes Xt, 0 ≤ t ≤ T with the trend coefficient having cusp-type
singularity (as T → ∞), τ -periodic Poisson process Xt, 0 ≤ t ≤ nτ with the
intensity function having a cusp-type singularity (as n → ∞), the diffusion
processes with small diffusion coefficient ε2 and with the trend coefficient
having cusp-type singularity as ε → 0. In all such models the normalized
likelihood ratio processes converge to the process (7) with some constant γ.
The proofs of week convergence of the likelihood ratio processes to the expo-
nent of fBm WH are rather tedious. Therefore, in this survey, we present only
heuristic arguments showing why convergence (7) should hold. The detailed
proofs can be found in the cited papers.

For illustrating our approaches to studying MLE and BE we start from (1)
with the specified signal (5) under the assumption ε → 0. The general tech-
nique to study for such models was developed by Ibragimov and Khasminskii
in series of papers and can be found in their fundamental monograph [10].
To use this technique we introduce the normalized likelihood ratio process

Zε (u) =
V (ϑ0 + φεu,X)

V (ϑ0, X)
, u ∈ Uε =

(
α− ϑ0

φε

,
β − ϑ0

φε

)
,

where we denoted ϑ0 the true value and the normalizing function φε = ε
1
H . In

all problems under consideration in this paper we represent the log-likelihood
ratios as follows

lnZε (u) = Aε (u)− Bε (u) + o (1)

demonstrating the following convergences

Aε (u) =⇒ γWH (u) , Bε (u) −→
|u|2H

2
γ2,

where −→ means convergence in probability. The particular forms of Aε (u)
and Bε (u) in the different problems are different and here we give a general
symbolic representation. We would like to show the universality of this local
structure for rather different models of observations without providing full
technical details of the proofs.
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Suppose that we have already proved the weak convergence to the process
Z(u) in (7)

Zε (·) =⇒ Z (·) .
Then the limit distributions of the estimators can be obtained as follows. For
the MLE ϑ̂ε we can write

Pϑ0

(
ϑ̂ε − ϑ0

φε

< x

)
= Pϑ0

(
ϑ̂ε < ϑ0 + φεx

)
= Pϑ0

{
sup

ϑ<ϑ0+φεx
V
(
ϑ,XT

)
> sup

ϑ≥ϑ0+φεx
V
(
ϑ,XT

)}
= Pϑ0

{
sup

ϑ<ϑ0+φεx

V
(
ϑ,XT

)
V (ϑ0, XT )

> sup
ϑ≥ϑ0+φεx

V
(
ϑ,XT

)
V (ϑ0, XT )

}

= Pϑ0

{
sup

u<x,u∈Uε

Zε (u) > sup
u≥x,u∈Uε

Zε (u)

}
−→ Pϑ0

{
sup
u<x

Z (u) > sup
u≥x

Z (u)

}
= Pϑ0

(
ξ̂ < x

)
. (9)

For the BE ϑ̃ε with the change of variable ϑu = ϑ0 + φεu we have

ϑ̃ε =

∫
θp (θ)V

(
θ,XT

)
dθ∫

p (θ)V (θ,XT ) dθ
= ϑ0 + φε

∫
Uε

up (θu)V
(
θu, X

T
)
du∫

Uε
p (θu)V (θu, XT ) du

= ϑ0 + φε

∫
Uε

up (θu)
V (θu,XT )
V (ϑ0,XT )

du∫
Uε

p (θu)
V (θu,XT )
V (ϑ0,XT )

du
= ϑ0 + φε

∫
Uε

up (θu)Zε (u) du∫
Uε

p (θu)Zε (u) du
.

Hence
ϑ̃ε − ϑ0

φε

=

∫
Uε

up (θu)Zε (u) du∫
Uε

p (θu)Zε (u) du
=⇒

∫
R uZ (u) du∫
R Z (u) du

= ξ̃. (10)

Thus we have (formally) verified (6).
Moreover, in all such models under consideration the following lower

bound for the mean-square errors of all normalized estimators ϑ̄ε holds:

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|≤δ

Eϑ

(
ϑ̄ε − ϑ

φε

)2

≥ Eϑ0(ξ̃
2)

(see, e.g. [1]). This implies that an estimator ϑ∗
ε is asymptotically efficient

(i.e. optimal) if for all ϑ0 ∈ Θ we have

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|≤δ

Eϑ

(
ϑ∗
ε − ϑ

φε

)2

= Eϑ0(ξ̃
2).
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Note that if we put φε = ε
1
H γ− 1

H , then

Zε (·) =⇒ Z0 (·) ,

where Z0 (·) coincides with Z (·) in (7) with γ = 1.
Let ξ̂0 and ξ̃0 be defined by (4) with Z (·) replaced by Z0 (·). Obviously,

the distributions of ξ̂0 and ξ̃0 do not depend on ϑ0 and we obtain the following
relations: ξ̂ = γ− 1

H ξ̂0 and ξ̃ = γ− 1
H ξ̃0. In particular, Eϑ0(ξ̃

2) = γ− 2
HE(ξ̃20).

It is of interest to compare the limit variances of ϑ̂ε and ϑ̃ε for the different
values of H = κ + 1

2
. In [17] it was shown via numerical simulations that

the limit values E(ξ̂20) could be essentially larger than E(ξ̃20). The results are
presented in Figure 2 for H ∈ (0.4, 1] or, correspondingly, κ ∈ (−0.1, 0.5]. In
Figure 3 we present the densities of the random variables ξ̂0 and ξ̃0 obtained
by the numerical simulations in [12]. Note that on Panel B: H = 0.5 the
solid line shows the analytic curve for the density of MLE, this is the only
case where the density is known in an analytic form, see [12] for details.

Figure 2: Limit curves of the values
lnE(ξ̂20) > lnE(ξ̃20).

Panel A: H = 0.3
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Figure 3: Densities of the MLE and
BE for H = 0.3, 0.5, 0.75.

Below we consider several models of observations with the cusp-type sin-
gularity which lead to the same limit likelihood ratio process (7). To demon-
strate this we shall use the following representations of the fBm

WH (u) = Γ−1
∗

∫ ∞

−∞

[
sgn (v − u) |v − u|κ − sgn (v) |v|κ

]
dW (v) .
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Here, obviously, WH (0) = 0, EWH (u) = 0. Denoting sv,u = sgn (v − u) and
gv,u = sv,u |v − u|κ − sv,0 |v|κ we can write

EWH (u1)W
H (u2) = Γ−2

∗

∫ ∞

−∞
gv,u1gv,u2dv

=
1

2Γ2
∗

∫ ∞

−∞
g2v,u1

dv +
1

2Γ2
∗

∫ ∞

−∞
g2v,u2

dv − 1

2Γ2
∗

∫ ∞

−∞

[
gv,u2 − gv,u1

]2
dv

=
1

2

(
|u1|2H + |u2|2H − |u2 − u1|2H

)
.

Hence the process WH (·) satisfies (8). Here we used the elementary iden-
tity 2ab = a2 + b2 − (a− b)2 and changed the variables v = su1, v = su2,
v = u1 + s (u2 − u1).

We would like to mention here that a more general representation of fBm
is found in [12].

1.1 Independent random variables

We suppose that the observations Xn = (X1, . . . , Xn) have the marginal
density function

f (x− ϑ) = h (x− ϑ) exp {a sgn (x− ϑ) |x− ϑ|κ} , ϑ ∈ Θ = (α, β) .

The function f (x) has at the point x = 0 the cusp-type singularity κ ∈
(
0, 1

2

)
.

The constant a ̸= 0 and the function h (·) are known, h (0) > 0. We suppose
that the function h (·) is continuously differentiable. Our goal is to describe
the behavior of the MLE ϑ̂n and BE ϑ̃n. According to (9)–(10) we describe
the asymptotics of the normalized likelihood ratio process

Zn (u) =
V (ϑ0 + φnu,X

n)

V (ϑ0, Xn)
, u ∈ Un =

(
α− ϑ0

φn

,
β − ϑ0

φn

)
,

where φn = n− 1
2κ+1 . In particular, we have to verify the convergence of

Zn (u) to Z (u) defined in (7). Let us see how the fBm appears in the limit
log-likelihood ratio, using just heuristic arguments. Below we do it for u ≥ 0.
Let us denote fu,x = f (Xj − ϑ0 − φnu), then we have

lnZn (u) =
n∑

j=1

ln
f (Xj − ϑ0 − φnu)

f (Xj − ϑ0)
=

n∑
j=1

ln
fu,Xj

f0,Xj

=
n∑

j=1

ln

(
1 +

fu,Xj
− f0,Xj

f0,Xj

)

=
n∑

j=1

fu,Xj
− f0,Xj

f0,Xj

− 1

2

n∑
j=1

(
fu,Xj

− f0,Xj

f0,Xj

)2

+ o (1) ,
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where we used Taylor expansion ln (1 + x) = x− x2

2
+ o (x2).

Introduce the further notations: g (u, x) = asx,u |x− ϑ0 − φnu|κ and
sx,u = sgn (x− ϑ0 − φnu) . Using the expansion ex − 1 = x + o (x) we can
write

n∑
j=1

(
fu,Xj

− f0,Xj

f0,Xj

)2

=
n∑

j=1

[g (u,Xj)− g (0, Xj)]
2 (1 + o (1)) .

Recall the relation: for any continuous function g (x) we have

1

n

n∑
j=1

g (Xj) =

∫ ∞

−∞
g (x) dF̂n (x) , F̂n (x) =

1

n

n∑
j=1

1I{Xj<x},

where F̂n (x) is empirical distribution function. Let us denote

Bn (u) =
1

2

n∑
j=1

[g (u,Xj)− g (0, Xj)]
2.

Below y = x− ϑ0, y = vφn, v = su:

Bn (u) = n
1

2n

n∑
j=1

[g (u,Xj)− g (0, Xj)]
2 =

n

2

∫
R
[g (u, x)− g (0, x)]2 dF̂n (x)

≈ n

2

∫
R
[g (u, x)− g (0, x)]2 dF (x− ϑ0)

≈ a2n

2

∫
R
[sgn (y − φnu) |y − φnu|κ − sgn (y) |y|κ]2 f (y) dy

=
a2nφ2κ+1

n

2

∫
R
[sgn (v − u) |v − u|κ − sgn (v) |v|κ]2 f (vφn) dv

=
a2h (0) |u|2κ+1

2

∫
R
[sgn (s− 1) |s− 1|κ − sgn (s) |s|κ]2 ds.

Hence

Bn (u) −→
a2h (0) |u|2κ+1

2
Γ2
∗ =

|u|2κ+1

2
γ2.

It is known that Bn (x) =
√
n
(
F̂n (x)− Fϑ0 (x)

)
⇒ B (Fϑ0 (x)), where B (t),

t ∈ [0, 1] is a Brownian bridge, B (t) = W (t)− tW (1), t ∈ [0, 1]. Recall that
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Eϑ0

fu,Xj
−f0,Xj

f0,Xj
= 0. Hence we can write formally

An (u) =
√
n

∫
R

fu,x − f0,x
f0,x

dBn (x) ≈
√
n

∫
R

fu,x − f0,x
f0,x

dWn (Fϑ0 (x))

−
√
nWn (1)

∫
R

fu,x − f0,x
f0,x

dFϑ0 (x)

=
√
n

∫
R
[g (u, x)− g (0, x)] dWn (Fϑ0 (x)) + o (1) .

Below once more y = x− ϑ0, y = vφn and sy,u = sgn (y − u):

An (u) = a
√
n

∫
R
[sy,u |y − φnu|κ − sy,0 |y|κ] dWn (F (y)) + o (1)

= a
√

f (0)nφ
κ+ 1

2
n

∫
R
[sgn (v − u) |v − u|κ − sgn (v) |v|κ] dwn (v) + o (1)

=⇒ a
√

h (0)

∫
R
[sgn (v − u) |v − u|κ − sgn (v) |v|κ] dW (v) = γWH (u) .

Here we used the relations

wn (v) =
Wn (F (φnv))−Wn (F (0))√

f (0)φn

=⇒ W (v) .

Therefore

Zn (u) = eAn(u)−Bn(u)+o(1) =⇒ Z (u) = eγW
H(u)− |u|2κ+1

2
γ2

.

The MLE ϑ̂n and the BE ϑ̃n are consistent, have different limit distribu-
tions

n
1

2κ+1

(
ϑ̂n − ϑ0

)
=⇒ ξ̂, Z(ξ̂) = sup

u
Z (u) ,

n
1

2κ+1

(
ϑ̃n − ϑ0

)
=⇒ ξ̃, ξ̃ =

∫
uZ (u) du∫
Z (u) du

,

their moments converge and the BE are asymptotically efficient:

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|≤δ

n
2

2κ+1Eϑ

(
ϑ̃n − ϑ

)2
= Eϑ0(ξ̃

2).

For the proof see [10], Section 6.4, where this case is called singularity of
order 2κ of the second type.

Remark 1. The so-called generalized Gaussian distribution with the
density of the form

f (x− ϑ) = h (x− ϑ) exp {−a |x− ϑ|κ} , ϑ ∈ Θ = (α, β) , κ > 0,

was discussed by H.Daniels [4] for the case κ > 1
2
. The case κ ∈ (0, 1

2
) was

first studied by Prakasa Rao [19].
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1.2 Signal in white Gaussian noise

Consider the observations XT = (Xt, 0 ≤ t ≤ T ) of the stochastic process
satisfying the equation

dXt =
[
a sgn (t− ϑ) |t− ϑ|k + h (t− ϑ)

]
dt+ εdWt, 0 ≤ t ≤ T. (11)

Here X0 = 0, the parameters a ̸= 0, κ ∈
(
−1

2
, 1
2

)
and function h (·) are known

and we have to estimate the parameter ϑ. The function h (·) is continuously
differentiable and {Wt, 0 ≤ t ≤ T} is a standard Wiener process. The model
defined by (1) and (5) is similar to (11). We assume the T is fixed and
consider the case ε → 0 (small noise asymptotics).

The unknown parameter ϑ ∈ Θ = (α, β), where 0 < α < β < T and
the likelihood ratio function is defined in (2), where the signal is of the form
S (ϑ, t) = a sgn (t− ϑ) |t− ϑ|k+h (t− ϑ). We have to verify the convergence

Zε (u) =
V
(
ϑ0 + φεu,X

T
)

V (ϑ0, XT )
=⇒ Z (u) = exp

{
γWH (u)− |u|2H

2
γ2

}
. (12)

Here we set φε = ε
1

κ+1
2 and γ = aΓ∗.

We shall demonstrate the validity of (12) for u > 0. Below we denoted
st,u = sgn (t− ϑ0 − φεu). We have

lnZε (u) =
a

ε

∫ T

0

[st,u |t− ϑ0 − φεu|κ − st,0 |t− ϑ0|κ] dWt

− a2

2ε2

∫ T

0

[st,u |t− ϑ0 − φεu|κ − st,0 |t− ϑ0|κ]2 dt+ o (1) ,

because
1

ε2

∫ T

0

[h (t− ϑ0 − φεu)− h (t− ϑ0)]
2 dt ≤ C

φ2
ε

ε2
≤ C ε

2

κ+1
2

−2
−→ 0.

Further,

Bε (u) =
a2

2ε2

∫ T

0

[st,u |t− ϑ0 − φεu|κ − st,0 |t− ϑ0|κ]2 dt

=
a2

2ε2

∫ T−ϑ0

−ϑ0

[sgn (y − φεu) |y − φεu|κ − sgn (y) |y|κ]2 dy

=
a2φ2κ+1

ε

2ε2

∫ T−ϑ0
φε

−ϑ0
φε

[sgn (v − u) |v − u|κ − sgn (v) |v|κ]2 dv

=
a2 |u|2κ+1

2

∫ T−ϑ0
uφε

− ϑ0
uφε

[sgn (s− 1) |s− 1|κ − sgn (s) |s|κ]2 ds −→ |u|2κ+1

2
γ2,

12



where we did the change of variables t = y + ϑ0, y = φεv and v = su. The
similar change of variables in stochastic integral gives us the following limit

Aε (u) =
a

ε

∫ T

0

[st,u |t− ϑ0 − φεu|κ − st,0 |t− ϑ0|κ] dWt

=
a

ε

∫ T−ϑ0

−ϑ0

[sgn (y − φεu) |y − φεu|κ − sgn (y) |y|κ] dW̃y

=
aφ

κ+ 1
2

ε

ε

∫ T−ϑ0
φε

−ϑ0
φε

[sgn (v − u) |v − u|κ − sgn (v) |v|κ] d ˜̃Wv

= a

∫ T−ϑ0
φε

−ϑ0
φε

[sgn (v − u) |v − u|κ − sgn (v) |v|κ] d ˜̃Wv =⇒ aΓ∗W
H (u) .

Therefore we verified the convergence (12) and the MLE ϑ̂ε and the BE ϑ̃ε

are consistent, have limit distributions The MLE ϑ̂n and the BE ϑ̃n are
consistent, have different limit distributions

ε
− 1

κ+1
2

(
ϑ̂ε − ϑ0

)
=⇒ ξ̂, Z(ξ̂) = sup

u
Z (u) ,

ε
− 1

κ+1
2

(
ϑ̃ε − ϑ0

)
=⇒ ξ̃, ξ̃ =

∫
uZ (u) du∫
Z (u) du

,

their moments converge and the BE are asymptotically efficient. For the
proofs see [1].

1.3 Inhomogeneous Poisson processes

Suppose that we observe a trajectory of an inhomogeneous Poisson process
XT = (Xt, 0 ≤ t ≤ T ) with τ -periodic intensity function λ (t− ϑ) admitting
the representation

λ (t− ϑ) = a sgn (t− ϑ) |t− ϑ|κ + h (t− ϑ) , 0 ≤ t ≤ τ,

on the first period and periodically continued on the whole real line. Here
ϑ ∈ Θ = (α, β), 0 < α < β < τ . The function λ (t) > 0, t ∈ [0, τ ] and the
parameter, κ ∈

(
0, 1

2

)
are known. For simplicity we assume that T = nτ and

study asymptotics n → ∞.
The likelihood function is (see [16])

V
(
ϑ,XT

)
= exp

{∫ T

0

lnλ (t− ϑ) dXt − n

∫ τ

0

[λ (t− ϑ)− 1] dt

}
, ϑ ∈ Θ.

13



We have to show that the normalized (φn = n− 1
2κ+1 ) likelihood ratio process

converges

Zn (u) =
V
(
ϑ0 + φnu,X

T
)

V (ϑ0, XT )
=⇒ Z (u) = exp

{
γWH (u)− |u|2H

2
γ2

}
. (13)

Here γ = ah (0)−
1
2 Γ∗ with the same Γ∗ as before.

Let us introduce the random processes

Xj (t) = X{τ(j−1)+t} −X{τ(j−1)}, 0 ≤ t ≤ τ, j = 1, . . . , n,

Wn (t) =
1√
n

n∑
j=1

[Xj (t)− Λ (ϑ0, t)] , Λ (ϑ0, t) =

∫ t

0

λ (s− ϑ0) ds,

and denote ϑu = ϑ0 + φnu, st,u = sgn (t− ϑu). Then using the relations
ln (1 + x) = x+ o (x) , x− ln (1 + x) = x2

2
+ o (x2) and

λ (t− ϑu)

λ (t− ϑ0)
= 1 +

λ (t− ϑu)− λ (t− ϑ0)

λ (t− ϑ0)

= 1 +
ast,u |t− ϑu|κ − ast,0 |t− ϑ0|κ

λ (t− ϑ0)
+

h (t− ϑu)− h (t− ϑ0)

λ (t− ϑ0)

we can write

lnZn (u) =
n∑

j=1

∫ τ

0

ln

(
λ (t− ϑu)

λ (t− ϑ0)

)
[dXj (t)− λ (t− ϑ0) dt]

− n

∫ τ

0

[
λ (t− ϑu)

λ (t− ϑ0)
− 1− ln

(
λ (t− ϑu)

λ (t− ϑ0)

)]
λ (t− ϑ0) dt

=
n∑

j=1

∫ τ

0

(
λ (t− ϑu)− λ (t− ϑ0)

λ (t− ϑ0)

)
[dXj (t)− λ (t− ϑ0) dt]

− n

2

∫ τ

0

(λ (t− ϑu)− λ (t− ϑ0))
2

λ (t− ϑ0)
dt+ o (1)

= a
n∑

j=1

∫ τ

0

(
st,u |t− ϑu|κ − st,0 |t− ϑ0|κ

a st,0 |t− ϑ0|κ + h (t− ϑ0)

)
[dXj (t)− λ (t− ϑ0) dt]

− na2

2

∫ τ

0

(st,u |t− ϑu|κ − st,0 |t− ϑ0|κ)2

a st,0 |t− ϑ0|κ + h (t− ϑ0)
dt+ o (1) ,

because

n

∫ τ

0

(h (t− ϑu)− h (t− ϑ0))
2

λ (t− ϑ0)
dt ≤ Cnφ2

n = C n1− 2
2κ+1 −→ 0.
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Below we change the variables t = y + ϑ0, y = φnv, v = su

Bn (u) =
na2

2

∫ τ

0

(st,u |t− ϑ0 − φnu|κ − st,0 |t− ϑ0|κ)2

a st,0 |t− ϑ0|κ + h (t− ϑ0)
dt

=
na2

2

∫ τ−ϑ0

−ϑ0

(sgn (y − φnu) |y − φnu|κ − sgn (y) |y|κ)2

a sgn (y) |y|κ + h (y)
dy

=
na2φ2κ+1

n

2

∫ τ−ϑ0
φn

− ϑ0
φn

(sgn (v − u) |v − u|κ − sgn (v) |v|κ)2

aφκ
nsgn (v) |v|

κ + h (vφκ
n)

dv

=
a2 |u|2κ+1

2h (0)

∫ τ−ϑ0
uφn

− ϑ0
uφn

(sgn (s− 1) |s− 1|κ − sgn (s) |s|κ)2 ds+ o (1)

−→ a2 |u|2κ+1

2h (0)
Γ2
∗ =

|u|2κ+1

2
γ2.

The same change of variables (t = ϑ0+φnv) in the stochastic integral provide
us the relations

An (u) = a
√
n

∫ τ

0

(
st,u |t− ϑ0 − φnu|κ − st,0 |t− ϑ0|κ

a st,0 |t− ϑ0|κ + h (t− ϑ0)

)
dWn (t)

=
a
√
nφ

κ+ 1
2

n√
h (0)

∫ τ−ϑ0
φn

− ϑ0
φn

(sgn (v − u) |v − u|κ − sgn (v) |v|κ) dwn (v)

=⇒ a√
h (0)

∫ ∞

−∞
(sgn (v − u) |v − u|κ − sgn (v) |v|κ) dW (v) = γ WH (u) ,

where
wn (v) =

Wn (ϑ0 + φnv)−Wn (ϑ0)√
φn

=⇒ W (v) .

Therefore we have the convergence (13). The MLE ϑ̂n and the BE ϑ̃n are
consistent, have limit distributions

n
1

2κ+1

(
ϑ̂n − ϑ0

)
=⇒ ξ̂, n

1
2κ+1

(
ϑ̃n − ϑ0

)
=⇒ ξ̃,

the moments of these estimators converge and the BE are asymptotically
efficient. For the proofs see [2].

1.4 Ergodic diffusion process

Consider the observations XT = (Xt, 0 ≤ t ≤ T ) of the ergodic diffusion pro-
cess

dXt = [a sgn (Xt − ϑ) |Xt − ϑ|κ + h (Xt − ϑ)] dt+ dWt, X0. (14)
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Here a ̸= 0, κ ∈
(
0, 1

2

)
, the function h (·) is known and has bounded deriva-

tive. Moreover we suppose that the function S (x) = a sgn (x) |x|κ + h (x) is
such that the conditions ES, EM and A0 (Θ) in [13] are fulfilled. For exam-
ple, these conditions are fulfilled if h (x) = −bx with b > 0. These conditions
provide the existence and uniqueness of the solution of this equation, the
existence of finite invariant measure with the density

f (ϑ, x) = f (x− ϑ) = G exp

{
2

∫ x−ϑ

0

[a sgn (z) |z|κ + h (z)] dz

}
and finiteness of all polynomial moments. Here G > 0 is the normalizing
constant. The likelihood function is (see [16])

V
(
ϑ,XT

)
= exp

{∫ T

0

S (Xt − ϑ)dXt −
1

2

∫ T

0

S (Xt − ϑ)2dt

}
, ϑ ∈ Θ.

For the normalized likelihood ratio process we have to show the convergence

ZT (u) =
V
(
ϑ0 + φTu,X

T
)

V (ϑ0, XT )
=⇒ Z (u) = exp

{
γWH (u)− |u|2H

2
γ2

}
. (15)

Here φT = T− 1
2κ+1 and γ = aΓ∗G

1/2.
Let us see once more how the fBm WH (u) appears in this limit likelihood

ratio. Denote ϑu = ϑ0 + φTu, g (x) = a sgn (x) |x|κ and write

lnZT (u) =

∫ T

0

(S (Xt − ϑu)− S (Xt − ϑ0)) dWt

− 1

2

∫ T

0

(S (Xt − ϑu)− S (Xt − ϑ0))
2 dt

=

∫ T

0

(g (Xt − ϑu)− g (Xt − ϑ0)) dWt

− 1

2

∫ T

0

(g (Xt − ϑu)− g (Xt − ϑ0))
2 dt+ o (1)

because∫ T

0

(h (Xt − ϑu)− h (Xt − ϑ0))
2 dt ≤ C u2φ2

T T = C u2T− 2
2κ+1

+1 −→ 0.

Let us denote ΛT (x) the local time of the diffusion process (14) and put
f ◦
T (x) = 2T−1ΛT (x). Recall that f ◦

T (x) is the local time estimator of the
invariant density. This estimator is consistent

(
i.e. f ◦

T (x) → f (ϑ0, x)
)

and
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√
T -asymptotically normal. Recall that for any continuous function H (x)

we have

1

T

∫ T

0

H (Xt) dt =

∫ ∞

−∞
H (x) f ◦

T (x) dx −→
∫ ∞

−∞
H (x) f (ϑ0, x) dx.

We have

BT (u) =
a2

2

∫ T

0

[sXt,u |Xt − ϑu|κ − sXt,0 |Xt − ϑ0|κ]2 dt

=
a2T

2

∫ ∞

−∞
[sx,u |x− ϑu|κ − sx,0 |x− ϑ0|κ]2 f ◦

T (x) dx

=
a2T

2

∫ ∞

−∞
[sgn (y − φTu) |y − φTu|κ − sgn (y) |y|κ]2 f ◦

T (ϑ0 + y) dy

=
a2Tφ2κ+1

T

2

∫ ∞

−∞
[sgn (v − u) |v − u|κ − sgn (v) |v|κ]2 f ◦

T (ϑ0 + φTv) dv

=
a2 |u|2κ+1

2

∫ ∞

−∞
[sgn (s− 1) |s− 1|κ − sgn (s) |s|κ]2 f ◦

T (ϑ0 + φTus) ds

−→ |u|2κ+1

2
a2Γ2

∗f (ϑ0, ϑ0) =
|u|2κ+1

2
a2Γ2

∗G =
|u|2κ+1

2
γ2. (16)

Let us denote

AT (u) = a

∫ T

0

[sgn (Xt − ϑu) |Xt − ϑu|κ − sgn (Xt − ϑ0) |Xt − ϑ0|κ] dWt.

From the convergence (16) and the central limit theorem for stochastic inte-
grals we obtain

AT (u) =⇒ γWH (u) .

More detailed analysis allows verify the convergence of the finite-dimensional
distributions(

AT (u1) , . . . ,AT (uk)
)
=⇒

(
γWH (u1) , . . . , γW

H (uk)
)
.

Therefore we have (15).
For the MLE ϑ̂T and the BE ϑ̃T we have the convergences

T
1

2κ+1

(
ϑ̂T − ϑ0

)
=⇒ ξ̂, T

1
2κ+1

(
ϑ̃T − ϑ0

)
=⇒ ξ̃.

Once more we have the convergence of all polynomial moments and the BE
are asymptotically efficient. For the detailed proof see [3], [13]. Note that
the case κ ∈

(
−1

2
, 0
)

was discussed in [7].
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1.5 Dynamical system with small noise

Suppose that the observed process XT = (Xt, 0 ≤ t ≤ T ) is a solution of the
stochastic differential equation

dXt = [a sgn (Xt − ϑ) |Xt − ϑ|κ + h (Xt − ϑ)] dt+ εdWt, 0 ≤ t ≤ T,

where the initial value X0 = x0 is deterministic, a > 0, κ ∈
(
0, 1

2

)
and the

function h (·) is known and has bounded derivative. Moreover we suppose
that the function S (x) = a sgn (x) |x|κ + h (x) > 0 for all x. We have to
estimate ϑ and describe the asymptotic (ε → 0) properties of the MLE ϑ̂ε

and BE ϑ̃ε. The likelihood ratio function is (see [16])

V
(
ϑ,XT

)
= exp

{∫ T

0

S (Xt − ϑ)

ε2
dXt −

∫ T

0

S (Xt − ϑ)2

2ε2
dt

}
, ϑ ∈ Θ.

The set Θ will be defined below.
We have to verify the convergence of the normalized likelihood ratio

Zε (u) =
V
(
ϑ0 + φεu,X

T
)

V (ϑ0, XT )
=⇒ Z (u) = exp

{
γWH (u)− |u|2H

2
γ2

}
.

Here φε = ε
1

κ+1
2 and γ = aΓ∗h (0)

−1/2.
The stochastic process Xt converges uniformly on t ∈ [0, T ] to xt = xt (ϑ)

— solution of the ordinary differential equation

dxt

dt
= a sgn (xt − ϑ) |xt − ϑ0|κ + h (xt) , x0, 0 ≤ t ≤ T.

Suppose that ϑ ∈ (α, β), where α > x0 and β < inf{α<θ} xT (ϑ).
We can write

Bε (u) =
1

2ε2

∫ T

0

(S (Xt − ϑu)− S (Xt − ϑ0))
2dt

=
a2

2ε2

∫ T

0

(sXt,u |Xt − ϑu|κ − sXt,0 |Xt − ϑ0|κ)2dt+ o (1)

=
a2

2ε2

∫ T

0

(sxt,u |xt − ϑ0 − φεu|κ − sxt,0 |xt − ϑ0|κ)2dt+ o (1)

=
a2

2ε2

∫ T

0

(sxt,u |xt − ϑ0 − φεu|κ − sxt,0 |xt − ϑ0|κ)2

S (xt − ϑ0)
d (xt − ϑ0) + o (1)

=
a2

2ε2

∫ xT−ϑ0

x0−ϑ0

(sgn (y − φεu) |y − φεu|κ − sgn (y) |y|κ)2

a sgn (y) |y|κ + h (y)
dy + o (1)
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=
a2φ2κ+1

ε

2ε2

∫ xT−ϑ0
φε

−ϑ0−x0
φε

(sgn (v − u) |v − u|κ − sgn (v) |v|κ)2

a sgn (v) |v|κ φκ
ε + h (vφε)

dv + o (1)

−→ a2

2h (0)

∫ ∞

−∞
(sgn (v − u) |v − u|κ − sgn (v) |v|κ)2dv =

|u|2κ+1

2
γ2.

Using the same change of variables as above we have

Aε (u) =
1

ε

∫ T

0

(S (Xt − ϑu)− S (Xt − ϑ0))dWt

=
a

ε

∫ T

0

[sXt,u |Xt − ϑ0 − φεu|κ − sXt,0 |Xt − ϑ0|] dWt + o (1)

=
a

ε

∫ T

0

[sxt,u |xt − ϑ0 − φεu|κ − sxt,0 |xt − ϑ0|] dWt + o (1)

=⇒ a√
h (0)

∫ ∞

−∞
[sgn (v − u) |v − u|κ − sgn (v) |v|κ] dW (v) .

As above this leads to the following limit distributions for the MLE ϑ̂ε

and BE ϑ̃ε

ε
− 1

κ+1
2

(
ϑ̂ε − ϑ0

)
=⇒ ξ̂, ε

− 1

κ+1
2

(
ϑ̃ε − ϑ0

)
=⇒ ξ̃,

convergence of moments of these estimators and the asymptotic efficiency of
the BE. For the full proofs see [15].

2 Discussion
The proofs presented above can be applied to the other models of observa-
tions. For example, suppose that we have a nonlinear stationary time series

Xj+1 = a |Xj − ϑ|κ + h (Xj − ϑ) + εj, j = 1, . . . , n

with i.i.d. noise (εj)j≥1. Assume the density q (x) of the random variable εj
and the function h (x) > 0 are sufficiently smooth functions. The likelihood
function is

V (ϑ,Xn) =
n−1∏
j=1

q (Xj+1 − a |Xj − ϑ|κ − h (Xj − ϑ)) , ϑ ∈ Θ.

Introduce the notation: qj,u = q (Xj+1 − a |Xj − ϑu|κ − h (Xj − ϑu)), ϑ0 is
the true value, ϑu = ϑ0 + φnu and gj,u = a |Xj − ϑu|κ. Then following the
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same steps as in the i.i.d. case above the normalized log-likelihood can be
written as follows

lnZn (u) =
n−1∑
j=1

ln
qj,u
qj,0

=
n−1∑
j=1

ln

[
1 +

qj,u − qj,0
qj,0

]

=
n−1∑
j=1

qj,u − qj,0
qj,0

− 1

2

n−1∑
j=1

(
qj,u − qj,0

qj,0

)2

+ o (1)

=
n−1∑
j=1

gj,u − gj,0
qj,0

q′ (εj)−
1

2

n−1∑
j=1

(
gj,u − gj,0

qj,0

)2

q′ (εj)
2 + o (1)

= a
n−1∑
j=1

|Xj − ϑ0 − φnu|κ − |Xj − ϑ0|κ

q (εj)
q′ (εj)

− a2

2

n−1∑
j=1

(
|Xj − ϑ0 − φnu|κ − |Xj − ϑ0|κ

q (εj)

)2

q′ (εj)
2 + o (1)

= An (u)− Bn (u) + o (1) .

For nonlinear regression models with cusp-type singularity the properties of
estimators were studied in [20], [5] and [6].

Another interesting problem to discuss is the estimation of the other
parameters of the model. For example, consider the simplest model

dXt = a |t− b|κ dt+ εdWt, X0 = 0, 0 ≤ t ≤ T.

Remind that the parameter ε ∈ (0, 1) can be estimated without error as
follows. By Itô formula for X2

t we have for any t ∈ (0, T ]

X2
t = 2

∫ t

0

XsdXs + ε2t, and ε2 = t−1X2
t − 2t−1

∫ t

0

XsdXs.

The problem of estimation ϑ = (a, κ) is regular and the MLE and BE of this
parameter are consistent and asymptotically normal with the regular rate ε
(see, e.g. [8]). There is no difficulty to describe the behavior of the MLE and
BE in the case ϑ = (a, b), where κ ∈

(
0, 1

2

)
. It can be shown that, say, the

MLE ϑ̂ε = (âε, b̂ε) has the following limit distribution

ε−1 (âε − a0) =⇒ ζ, ε
− 1

κ+1
2

(
b̂ε − b0

)
=⇒ ξ̂,

where ζ (Gaussian) and ξ̂ are independent random variables.
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The problem of estimation ϑ = (b, κ) is technically more complicate be-
cause the rate of convergence of the estimator b̂ε depends on the unknown
parameter κ. It seems that the general results from the monograph [10] can
not be applied directly here and this problem requires a special study.
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