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Abstract 
Elevated pipelines are commonly encountered in petro-chemical and industrial 

applications. Within these applications, pipelines normally span hundreds of meters and 

are thus analysed using beam-type one-dimensional finite elements when the global 

behaviour of the pipeline is sought at a reasonably low computational cost. Standard 

beam-type elements, while computationally economic, are based on the assumption of 

rigid cross-section. Thus, they are unable to capture the effects of cross-sectional 

localized deformations.  Such effects can be captured through shell-type finite element 

models. For long pipelines, shell models become prohibitively expensive. Within this 

context, the present study formulates an efficient numerical modelling which effectively 

combines the efficiency of beam-type solutions while retaining the accuracy of shell-type 

solutions. An appealing feature of the model is that it is able to split the global analysis 

based on simple beam-type elements from the local analysis based on shell-type 

elements. This is achieved through domain-decomposition procedure within the 

framework of the bridging multi-scale method of analysis. Solutions based on the present 

model are compared to those based on full shell-type analysis. The comparison 

demonstrates the accuracy and efficiency of the proposed method.  
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1. Introduction 
Thin-walled pipes are widely used in industrial applications. Usually, they are susceptible 

to buckling and it is important to accurately predict their nonlinear response. Pipes 

usually span much larger distances in comparison to their cross-sectional dimensions. As 

such, beam-type elements are commonly adopted in their analysis. Standard beam-type 

elements, however, are based on the assumption of rigid cross-section and thus, cannot 

consider the deformations of the cross-section such as local buckling [1] and only allow 

considerations of the global behaviour such as flexural-buckling [2]. In contrast, Shell-

type finite elements can capture local effects. The buckling response for long pipes under 

combinations of bending, axial force, and external pressure using shell analyses were 

investigated in [3-5]. On the other hand shell elements are computationally more 

expensive and time consuming, and for typical pipeline networks spanning hundreds of 

meters, such shell analyses become impractical.  

Research on computational mechanics has been increasingly focusing on adaptive 

numerical analysis strategies such as mesh-free methods e.g. [6-8], Generalized-FEM [9-

11] and Multi-scale methods [12-17], which improve the efficiency and accuracy of the 

numerical results by refining the model only where required and without changing the 

global simpler model of the whole structure. Common to these numerical methods is that 

the partition of unity concept is exploited to allow overlapping decompositions of the 

analysis domain so that a local enrichment can be seamlessly incorporated [18-21]. In 

various types of problems which naturally give rise to multiple scales in the deformation 

fields, such as crack propagation e.g., [22], or localized damage problems e.g., [23] multi-

scale numerical analysis techniques have been effectively used. In particular, the 

Bridging multi-scale method, which was originally developed to enrich the nodal values 

of the FEM solution with mesh-free solution [24], provides a basis to couple problems 
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based on two different physical assumptions. The appealing feature of the Bridging multi-

scale method is that it can split the global analysis, which is based on simplified 

assumptions, from the local analysis which requires more sophisticated modelling. 

Bridging multi-scale method was previously used to incorporate nano-mechanics and 

atomistic behaviour into the local model e.g., [25-27], and in strain localization problems 

considering micro-polar continuum model with different levels of resolution e.g., [28].  

In pipe buckling behaviour, the interaction of local with global modes also gives rise to 

multiple scales in the deformation fields. In order to capture the effect of local 

deformations, shell formulations have been utilised in the past e.g., [29-32]. Localized 

plasticity effects have also been incorporated into pipeline analysis through generalized 

plasticity models [33]. In order to capture ovalization in pipe elbows, efficient beam type 

formulations were developed in [34-36]. Recently, Erkmen [38] developed an analysis 

procedure based on the Bridging multi-scale method of Liu et al [25-28], in order to 

incorporate local deformation effects in the analysis of thin-walled members. This 

approach allows employment of two kinematic models within the numerical analysis, and 

while simple beam-type elements are used for the analysis of the overall structure, more 

sophisticated shell-type elements are employed for the local fine-scale analysis in a 

relatively narrow span of the member. In the present study, we extend the procedure 

developed in Erkmen [38] for the elasto-plastic analysis of pipes. Comparisons with full 

shell- and beam-type models are provided in order to illustrate the efficiency of the 

proposed analysis.  

The paper is organised as follows; the kinematics and the weak form of the equilibrium 

equations for shell-type analyses are briefly given in Section 2, those for beam-type are 

given in Section 3. In Section 4, we introduce the proposed multi-scale analysis 



5 

 

procedure in detail. Section 5 is the verification of the elasto-plastic shell element 

implemented in this study. Numerical examples are presented in Section 6 and 

conclusions are drawn in Section 7. 

2. Shell-type analysis  
2.1. Kinematic assumptions and strains 

Strains of the shell-type  analysis are composed of linear strains due to (a) membrane 

deformations ˆmmε , (b) plate bending deformations ˆbε , and (c) nonlinear components of 

strains due to membrane and plate bending action ˆ Nε , i.e., 

T
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆmm b N x y xy m      ε ε ε ε      (1) 

Figure 1.a shows the x and y axes defining a plane tangential to the mid-surface of the 

shell and z axis is normal to the mid-surface. The vector of linear components for the 

membrane strain ˆmε  can be written as  

0 0 0 0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1ˆ ˆ ˆˆ ˆ
2 2

T T
mm m z y z

v u u v u v v uf

x y x y r y x x y
  

          
                     

ε ε , 

           (2) 

in which  x̂  and ˆ
y  are rotations in local x-z and y-z  planes respectively (Fig. 1a), ẑ  is 

the drilling rotation  about the z  axis, and 0û  and 0v̂  are the displacements of the mid-

surface in the local x-y plane (Fig. 1.a). In Eq. (2) the term   ˆ
yf r    is added according 

to Marguerre shallow shell theory [39]. As shown in Fig. 1.b,  f f r   is the 

expression for the elevation of the arch in Z-Y plane in terms of coordinate r. In 

calculating the element length and locations of the integration points, the arch length was 

considered. For the membrane component of the shell-type element, the finite element of 
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Ibrahimbegovic et al. [40] employing drilling degrees of freedom is adopted herein, so 

that non-coplanar elements can be easily assembled (Fig. 1.c). The last entry in Eq. (2) 

contains the skew symmetric part of the membrane strains which is introduced into the 

potential energy functional related to a penalty term to avoid numerical instability when 

drilling rotations ẑ  are used with Allman-type interpolations [41]. According to 

Mindlin-Reissner theory [42], the plate bending strains can be written as 

ˆ ˆˆ ˆ
ˆ ˆ 0 0

T

T y yx x
b z z

x y y x

    
    

   
ε χ ,    (3)  

in which χ̂  is the curvature vector. It is assumed that the second order longitudinal 

displacement derivatives, second order lateral strains and second order shear strains are 

negligibly small, i.e.,    2 2

0 0

1
ˆ ˆ 0

2
w y u y        ,   0 0ˆ ˆ 0w x w y     . Thus, the 

nonlinear strain component can be written as 

2 2

0 0ˆ ˆ1 1
ˆ 0 0 0

2 2

T

N

w v

x x

            
ε ,     (4) 

in which 0ŵ  is the out of plane deflection of the mid-surface in local z direction (Fig.1). It 

should be noted that the second order strain component is consistent with the second 

order strains of the beam formulation to be introduced in Section 3, so that the beam 

solution can be considered as a special case of the shell solution. The consistency 

between beam and shell strains should be examined when adopting higher order shell 

formulations, e.g., [43] within the proposed multi-scale analysis framework. 
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2.2. Constitutive relations and stresses 

The shell analysis is elasto-plastic. In this study, for convenience, we apply the one step 

forward Euler numerical procedure as described in [44]. Initially, the vector of total 

stresses at any point within the shell is 

  
T

ˆ ˆ ˆ ˆ ˆx y xy m   σ        (5) 

Assuming that the whole strain increment is elastic, the stress increment can be written as 

ˆˆ ˆ  σ E ε ,         (6) 

in which the matrix of elastic material properties of the shell element Ê  can be written as  

 

 
 

2

1 0 0

1 0 0

1ˆ 0 0 0
21

1
0 0 0

2

E









 
 
 
 

    
 

 
 

E  (7) 

in which E is Young’s modulus and   is the Poisson’s ratio. The last diagonal term in 

Eq. (7) arises from the penalty term introduced into the potential energy functional [41]. 

Within an incremental iterative solution, the trial stresses are obtained using stress 

increments. Under plane stress plasticity conditions, i.e. ˆ ˆ ˆ 0z yz zx     , the von Mises 

yield criterion is used to determine whether the trial stresses are elastic. According to the 

forward Euler procedure in [44] since 0z  , a four-dimensional yield surface f is 

assumed  as 

 ef Yf     (8) 
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in which      
1/22 2 2 2ˆ ˆ ˆ ˆ6 2ef x y y z z x xy                

 and Y  is the yield stress 

limit. When yielding occurs, the relation between the stress increment and the elastic 

strain increment is re-written in a four-dimensional context as 

  

 
 

 
 1

2

ˆˆ 1 0
ˆˆ 1 0

ˆ
ˆˆ 1 01 1 2
ˆˆ 0 0 0 1 2

x ex

y e y

a a ea
z e z

xy e xy

E

   
   
    
 

     
                                

eσ E ε   

  (9) 

The elastic part of the strain increment can be expressed as the plastic strain increment 

subtracted from the total strain, i.e., ˆ ˆ ˆea a pa  ε ε ε , where  

T ˆ ˆ ˆ ˆˆa x y z xy        ε . Strains ˆ
x , ˆ

y  and ˆ
xy  are obtained from the 

displacement increments as given in Eqs. (2)-(4). Strain ˆz  can be obtained by using the 

plane stress condition, i.e.,  0z   in Eq. (9) while assuming incompressible plasticity 

[45] yielding 

 
       

 
1 2

1 2 1z x y x y
ef

     
  


     

 
 (10) 

From the Prandtl-Reuss flow rule for associative plasticity, the plastic strain increment 

vector paε  can be written as  

 pa
a

f 
  


ε

σ
 (11) 

in which a a a

a a a

 
 

T e

T e

a E ε

a E a
. By setting 0z  , one obtains aa  as 

      
T

T 1
2 2 6

2a x y y x x y xy
ef

f       



     


a
σ

 (12) 
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It should be noted that ˆ
m  is assumed elastic. Updated stresses are collected in Eq. (5). 

 

2.3. Interpolation Functions 

Classical Kirchhoff plate theory is appropriate for thin plates. However, a four node low-

order thin plate element formulation is averted by the C1 continuity requirements of the 

Kirchhoff plate theory. On the other hand, standard four node low-order Reissner-

Mindlin-type elements experience shear locking in the analysis of thin plates. Therefore, 

we employ the Discrete Kirchhoff Quadrilateral of Batoz and Tahar [46] to express the 

bending rotations x̂  and ˆ
y  in Eq. (3), which starts with the Mindlin-Reissner plate 

theory, neglects the transverse shear strains, and then explicitly couples lateral 

displacements and rotation fields of the mid-surface normal line to enforce zero 

transverse shear strain at selected locations. For the buckling analysis of thin-walled 

beams, the Discrete Kirchhoff Quadrilateral element was previously adopted by Fafard et 

al. [47]. Similar to [47], we employ standard linear interpolation for the out of plane 

deflection ŵ  in Eq. (4) (Fig. 1.a.). The four-node membrane element with drilling 

degrees-of-freedom uses Allman-type interpolation functions for the in-plane 

displacements and the standard bilinear independent drilling rotation [40], and to form a 

shell element, the membrane element is superimposed onto the plate element. Thus, the 

displacement fields 
T

0 0 0
ˆ ˆ ˆˆ ˆ ˆ ˆz x yu v w  u of the shell element can be related to 

the nodal displacements 

T

1 1 1 1 1 1 2 4 4 4 4 4 4
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ...z x y z x yu v w u u v w     d  (where subscripts 

refer to each of the four end nodes) through 

ˆ ˆˆ u Xd          (13) 
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In Eq. (13), Matrix X̂  contains the shape functions and their derivatives which is 

explicitly given in Appendix A. 

2.4. Variational formulation and consistent linearization 

For the shell analysis, the equilibrium equations can be obtained in the variational form as 

T T ˆˆˆ ˆ ˆδ δ d d δ 0
L A

A z    ε σ d f ,      (14) 

in which ε̂  represents the vector of strain components. The virtual work functional of the 

shell element is modified in order to avoid numerical stability issues with Allman type 

interpolations of the membrane component as suggested in [40] and thus, the skew 

symmetric part of the membrane strains and associated drilling rotations are contained in 

the first term in Eq. (14). In the last term of Eq. (14), f̂  is the external load vector. The 

first variation of the strain field of the shell element used in Eq. (14) can be expressed as 

ˆ ˆ ˆˆδ δε SB d ,         (15) 

where B̂  and Ŝ  for an element are explicitly given in Appendix B. The incremental 

equilibrium equations for the shell formulation can be obtained by subtracting the first 

variation of the modified potential energy in Eq. (14) at two neighbouring equilibrium 

states and then linearizing the results by omitting the second- and higher-order terms, i.e. 

  ˆˆ ˆ ˆ ˆˆδ δ δ 0      T Td K d d f ,      (16) 

where K̂  is the tangent stiffness matrix of the shell model, i.e.,  

T Tˆ ˆˆ ˆ ˆ ˆ ˆd d dep

L A L

A z z   K B S E SB M ,      (17) 
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where T Tˆˆ ˆ ˆ ˆδ d
A

A  M d B S σ  and ˆ
epE  is the elasto-plastic constitutive matrix given in 

[40]. 

3. Beam-type analysis 
3.1. Kinematic assumptions, strains and stresses 

In order to simplify the global analysis a beam formulation is used, which is based on the 

classical kinematic assumptions of the Euler-Bernoulli beam theory. These are: (a) plane 

section remains plane after deformation; (b) longitudinal axis of the pipe stays 

perpendicular to the cross-sectional plane after deformation; (c) contour of the cross-

section does not deform in its plane; (d) normal stresses within the cross-sectional plane 

(hoop stresses) are zero. These assumptions imply that the nonzero strains in the pipe 

strain vector, i.e. ε  are due to the axial strains induced by membrane and bending 

actions, and shear strains induced by torsion only. The beam element strain vector can be 

written in terms of linear and second order nonlinear terms, i.e. L N ε ε ε . The linear 

axial and shear strains L  and L , respectively can be obtained in terms of the derivatives 

of displacements , ,u v w and the angle of twist   (Fig.1.d) as   

T
0 0L L L L  ε Sχ               (18) 

which can be decomposed in terms of a matrix of cross-sectional coordinates, i.e. 

1 0

0 0 0 0

0 0 0

0 0 0 0

x y

R

  
 
   
 
  

S                           (19) 

and a vector of linear displacement derivatives, i.e. 
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T ' '' '' 'L w u v χ                     (20) 

In Eq. (19), x and y  identifies coordinates of a point on the cross-section, and R  is the 

radius of the pipe (Fig. 1.a). In Eq. (20), prime denotes derivative with respect to the axial 

coordinate z, i.e. () =d() dz . The nonlinear strains can be written as  

T
0 0N N N N  ε Sχ        (21)  

in which N  is the nonlinear axial strain and N  is considered to vanish. Similar to linear 

strains, the nonlinear strain vector in Eq. (21) can be expressed by using the same matrix 

of cross-sectional coordinates S  post-multiplied by a vector of second-order 

displacement derivatives, i.e., 

 T 2 21
' ' 0 0 0 0

2N u v χ .      (22) 

3.2. Interpolation functions for the beam displacements 

The element is developed by using linear interpolations for w  and  and cubic 

interpolations for u  and v . Thus, the displacement vector of the beam axis is a au X d  , 

in which 

T

a w u v u  ,       (23) 

where the matrix of interpolation functions can be written as 

T

T

T

T

a

 
 
   
 
  

L 0 0 0

0 H 0 0
X

0 0 H 0

0 0 0 L

,        (24) 



13 

 

In Eq. (24), vectors L  and H  are used for linear and cubic interpolation, respectively, 

i.e., 

 
T

1
z z

L L
 L ,        (25) 

 and  

  
T2 3 2 3 2 3 2 3

2 3 2 2 3 2

3 2 2 3 2
1

z z z z z z z z
z

L L L L L L L L
       H ,   (26) 

The nodal displacement vector d  of the beam type finite element can be written as  

T

1 2 1 1 2 2 1 1 2 2 1 2x x y yw w u u v v     d ,   (27) 

in which subscripts 1 and 2 refer to each of the two end nodes, x  and y  refer to 

bending rotations in z x and z y  planes (Fig.1.d) respectively. Under the rigid sectional 

contour assumption of the beam theory, the displacement vector of a point   on the 

cross-section can be written as u Nd  where 

 
T

w u u v v      u ,       (28) 

and N YZ  in which Z  is a matrix of interpolation functions, i.e., 
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T

T

T

T

T

T

T

d

d

d

d

d

d

z

z

z

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

L 0 0 0

0 H 0 0

0 0 H 0

0 0 0 L

HZ 0 0 0

H
0 0 0

L
0 0 0

,      (29) 

and Y is a matrix of cross-sectional coordinates, i.e., 

1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0 0

x y

y

y

x

x

  
  
 

  
 
  
 

 

Y .     (30) 

 

3.3. Variational formulation and consistent linearization 

The equilibrium equations for static analysis can be obtained in the variational form as 

Tδ δ d d δ 0
L A

A z    Tε σ d f ,           (31) 

in which A is the cross-sectional area, L is the beam span and f  is the external load 

vector. In this study, in the region where no local deformations occur, the material 

behaviour is assumed elastic. Thus, in Eq. (31), the beam stresses can be obtained directly 

from the strains using the linear stress-strain relationship for an isotropic material, i.e., 

σ Eε , where the vector of beam stresses can be written as  

T
0 0 σ ,        (32) 
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and the beam constitutive matrix E  can be written as 

 

0 0 0

0 0 0 0

0 0 0
2 1

0 0 0 0

E

E



 
 
 
 
  
 
 

E        (33) 

The first variation of the strain vector for the beam element can be written as 

δ δε SB d ,         (34) 

where for an element B  can be written as 

 

1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

a

u v  
 
  
 
 
 

B X ,  (35) 

in which 

 

T

2

2

2

2

d
0 0 0 0 0 0

d

d d
0 0 0 0 0

d d

d d
0 0 0 0 0

d d
d

0 0 0 0 0 1
d

z

z z

z z

z

 
 
 
 
 

   
 
 
 
 
  

.     (36) 

The incremental equilibrium equations can be obtained by subtracting the virtual work 

expressions at two neighbouring equilibrium states and then linearising the result by 

omitting the second- and higher-order terms, i.e., 

 δ δ δ 0      T Td K d d f       (37) 

where K  is the stiffness matrix of the global beam model, i.e.,  
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T T d d d
L A L

A z z   K B S ESB M ,      (38) 

in which T Tδ d
A

A  M d B S σ .  

4. Multi-scale analysis procedure 
4.1. Overlapping multi-scale domain decomposition: 

Proposed multi-scale analysis is performed only in a critical part of the analysis domain 

depicted as m  in Figure 2. In the multi-scale analysis domain, the beam and shell 

models overlap. The whole analysis domain including sub-domain m  is represented 

with c  in Figure 2. The beam model is used for the whole analysis domain c . 

Following the Bridging multi-scale approach of Liu and his co-workers [24-28], we 

decompose the shell nodal displacement vector d̂  into a coarse-scale component and a 

difference term, by using a decomposition matrix N  that projects the beam solution onto 

the nodal points of the shell model, i.e.,  

ˆδ δ δ  d N d d ,        (39) 

in which the first term on the right-hand side represents the variation of the coarse-scale 

solution and the second term represents the difference from the fine-scale solution. The 

decomposition matrix N  constrains the shell model to behave as a beam and thus the 

strain vector ε  of the beam formulation can be obtained by using the displacement field 

u Nd  in the shell strain derivations ε̂  in Eq. (1). By adopting N  and thus, imposing 

beam kinematics on the shell model, we define a unique coarse-scale decomposition of 

the shell solution. In this case, the variation of the coarse scale strain component of the 

shell solution, i.e. δε  is equal to that of the beam, i.e. ˆ ˆ SBN SB . 
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4.2. Coupled coarse- and fine-scale equilibrium equations 

Based on the above decomposition, by substituting Eq. (39) into Eq. (15), i.e., 

 ˆ ˆˆδ δ δ  ε SB N d d , the first variation of the shell strains can be decomposed into two 

components, i.e., ˆδ δ δ  ε ε ε as  

ˆ ˆδ δε SBN d ,         (40) 

 and  

ˆ ˆδ δ ε SB d .         (41)  

In Eq. (41), δ ε  is due to the difference between the variations of the fine and coarse-

scale strain fields. The stress fields are also decomposed into two components i.e. 

ˆ  σ σ σ . By considering the constitutive relations, the stress field components can be 

obtained from the associated strain fields. From Eqs. (39)-(41), by substituting into Eq. 

(14), the weak form of the shell equilibrium equations can be decomposed into two 

simultaneous equations, i.e.,  

 T T T T T T T
1

ˆ ˆˆδ δ d d δ δ 0
L A

A z     d N B S σ d N f d F ,      (42) 

and 

T T
2

ˆ ˆˆ ˆδ δ d d δ 0
L A

A z     T Td B S σ d f      (43) 

It is observed that starting with the equilibrium condition for the shell analysis (Eq.(14)) 

and substituting Eq. (15), one obtains  T
T Tˆ ˆˆ ˆδ δ d d 0

L A

A z
 

    
 
 d B S σ f . Since δd is 

arbitrary, it can be replaced by δ Td  yielding Eq. (43). It is also noted that within the 
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Bridging multi-scale framework, the coarse- and fine-scale decomposition is applied to 

the discrete nodal values, and thus the relation T T T T T Tˆ ˆˆ ˆd d d d
L A L A

A z A z   N B S σ N B S σ  

holds. Accordingly, it can be shown that the first term in Eq. (31) satisfies the 

identity T ˆˆδ d d δ d d
L A L A

A z A z   T Τ Τ Τε σ d N B S σ . For a loading case where T ˆ N f f (i.e., 

the same loading is applied to the fine and coarse-scale analyses), one can show that the 

second term of Eq. (31) satisfies the identity T ˆδ δT Td f d N f .  By using Eqs. (31) and 

(43), one obtains Eq. (42) from the relation 1 2
ˆδ δ δ 0     . What separates the 

equilibrium condition for the beam as given in Eq. (31) from that of Eq. (42) is the 

presence of the last term Tδd F , in which F  is a complementary force vector due to fine 

and coarse-scale differences in the stress field, expressed as 

 T T T T Tˆˆ ˆ d d d d
L A L A

A z A z     F N B S σ σ B S σ .    (44) 

4.3. Linearization of the equilibrium equations  

Linearization of Eq. (42) produces  

 1δ δ δ 0      T Td K d d f ,      (45) 

where T T Tˆ ˆˆ ˆ d d d
L A L

A z z

 
  

 
  K N B S ESB M N  and can be replaced with the beam 

stiffness matrix in Eq. (38), in which M  is defined as T Tˆˆ ˆ ˆδ d
A

A  M d B S Eε . In 

obtaining Eq. (45), the variation of the difference between nodal displacements of fine- 

and coarse-scales is decomposed as δ δ δ d N c Q q , in which δc  can be selected as 

 1
T T T Tˆ ˆˆ ˆ ˆ ˆδ d d δ

L A

A z

          c N KN N B S E E SB k N d ,   (46) 
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in which  T Tˆˆ ˆ ˆ ˆδ δ  k d B S E E ε  and matrix Q  can be selected as [26], 

1
T Tˆ ˆ

    Q I N N KN N K ,       (47) 

so that the orthogonality relation between N  and Q  is satisfied for an arbitrary nodal 

vector of displacements δq , i.e. T ˆ 0N KQ  in which K̂  is as in Eq. (17).  

On the other hand, linearization of Eq. (43) produces;  

 2
ˆˆ ˆδ δ δ 0       T Td K d d f .      (48) 

Since δ d  in Eq. (48) is arbitrary, both Eq. (16) and Eq. (48) admit the same solution, 

which is the solution of the shell model on the entire analysis domain. However, where 

the beam solution is accurate enough, the shell model solution is avoided for economy. 

4.4. Interface boundary conditions and partitioning of the linearized fine-scale equations  

In obtaining the shell solution, we deviate from the original applications of the Bridging 

multi-scale method, e.g. [25-28] in which the coarse-scale solution within the overlapping 

domain is used to obtain the difference between the fine- and coarse-scale displacements. 

Instead, it is more convenient to obtain the shell solution within the overlapping domain 

by imposing the displacements of the beam solution as the interface boundary conditions 

of the shell model. An important issue to be addressed before imposing the shell 

boundary conditions is that even though there are no local buckling deformations, the 

Poisson ratio effect causes change in the cross-sectional contour dimensions throughout 

the analysis domain. However, beam analysis does not produce a displacement field 

within the plane of the cross-section that captures the changes in cross-sectional 

dimensions due to Poisson ratio effect. Thus, it is required to consider the changes in the 
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cross-sectional contour dimensions before imposing shell model boundary conditions at 

the interface of the multi-scale region ( s  in Fig.2). At both boundaries of the shell 

model, fine scale displacement vector due to Poisson ratio effect, i.e. Bd  (where subscript 

B denotes the boundaries &i j  at both ends of the local shell model as shown in Fig. 2) is 

obtained by numerically integrating the hoop strains   over the cross-sectional contour, 

and then setting the summation of these displacements to zero in order to eliminate the 

rigid body translations due to Bd . Thus, the displacement boundary conditions imposed 

onto the shell model can be written as ˆ
B B B d Nd d . From Eq. (48), by decomposing the 

shell displacement vector into boundary and internal displacement vectors, one obtains 

T

ˆ ˆ ˆ

ˆˆˆ ˆ

ˆˆ ˆ ˆ

BBa b

b c sIN

 

             
          

K d f

fdK K

K K fd 

      (49) 

The stiffness matrix K̂  of the shell model in Eq. (17), is partitioned such that specified 

boundary displacements are multiplied with sub-matrix Tˆ
bK . In Eq. (49), ˆ

sf  is the 

vector of increment in specified external loads that fall into the multi-scale analysis 

domain and ˆ
Bf  is the vector of increment in traction forces at the boundaries of the 

multi-scale analysis domain. Specified displacements and loads in Eq. (49) are placed in 

the box symbol ( ). 

4.5. Solution procedure for the nonlinear equilibrium equations 

Firstly, the global problem is solved for the coarse-scale displacements d  while keeping 

the fine-scale solution of the local shell model fixed. Then, given the global results 

imposed on the local model as the interface boundary conditions, the local problem is 
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solved for the fine-scale values d̂ , while keeping the boundary conditions and the global 

displacements d  fixed. In order to terminate the loading step k, we use double criteria as 

suggested in Qian et al [26] within the framework of Bridging multiscale method. The 

first criterion is due to geometric nonlinearity and confirms that the nonlinear global 

equilibrium condition is satisfied at the end of n iterations. A second criterion is required 

to confirm that the difference in the stress vectors of the local shell model and the beam 

model is eliminated through the complementary force in Eq. (44), thus synchronizing the 

local and global solutions. Within the multi-scale analysis scheme developed herein, the 

span of the overlapping domain can be adjusted at any load level, because the local shell 

model is solved for the current loading conditions at the beginning of each step, 

regardless of the results of the shell model obtained in the previous steps. A flow chart of 

the solution procedure is given in Fig. 3. 

The global equations are solved using a Newton-Raphson incremental-iterative scheme in 

a step-by-step manner, i.e. 

n n
k k k k    K d f R         (50) 

where kK  is the tangent stiffness matrix at the beginning of each incremental step, kf  is 

the external load increment in step k, and n
kR  is the unbalanced force vector obtained 

from Eq. (42) at the nth iteration of step k, i.e. 

T T d dn n n n
k k k k k

L A

A z     R B S σ F f       (51) 

The incremental nodal displacements obtained from Eq. (50) are used in updating the 

displacement configuration of the current state, i.e. 1+n n n
k k k

 d d d , based on which the 
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internal strain field n
kε  and consequently the stress field n

kσ  of the coarse-scale solution 

can be updated. Within the load step k, fine-scale displacements can be obtained again in 

an incremental-iterative step-by-step manner; firstly, displacement boundary conditions 

and the load within the global step k, are imposed in s steps and; secondly, the 

displacement increments of the internal nodes are determined in l iterations, i.e. ˆ l
IN sd , 

because the unbalanced terms due to the geometric nonlinearities, i.e. ˆ l
IN sr  should also 

be corrected in the local model. Thus, from the second line of Eq. (49), this fine-scale 

displacement vector of the internal nodes at the lth  iteration ˆ l
IN sd can be written as  

 1 Tˆˆ ˆ ˆ ˆˆl l
IN s c s IN s b s B

      d K f r K d       (52) 

in which  ˆ
s Bd indicates the specified displacement increments at the boundaries of the 

fine-scale domain. In Eq. (52), ˆ l
IN sr  is the unbalanced load vector due to geometric 

nonlinearities involved in the local shell problem, which can be obtained as 

T Tˆ ˆˆˆ ˆ d dl l l
s s s s

L A

A z    r B S σ f        (53) 

The incremental shell nodal displacements obtained from Eq. (52) are used in updating 

the displacement configuration of the current state, i.e. 1ˆ ˆ ˆ+l l l
s s s

 d d d , based on which the 

internal strain field ˆ l
sε  and consequently the stress field ˆ l

sσ  of the fine-scale solution can 

be updated. If the local convergence criterion is satisfied, i.e. ˆ l
s tol r  then ˆ ˆn l

k sσ σ  is 

used for the complementary force calculations within the kth step of the nth iteration, i.e. 

T T T T Tˆˆ ˆ d d d dn n n n n
k k k k k

L A L A

A z A z    F N B S σ B S σ . It should be noted that for a stable global 

system the global equilibrium should be satisfied for any complementary force vector. 
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Therefore, even though we reach the convergence criterion for global equations, i.e. 

n
k tol R , step k deemed complete only when n

k tol F  is satisfied, so that the local 

and global solutions are synchronized. If both convergence criteria are not satisfied, the 

analysis should be repeated for a reduced load increment within the same step k. Within 

the multi-scale analysis scheme developed herein, the span of the overlapping domain can 

be adjusted at any load level, because the local shell model is solved for the current 

loading conditions at the beginning of each step, regardless of the results of the shell 

model obtained in the previous steps.  

 

5. Verification of shell analysis 
Before using multi-scale developments in the present model, the elasto-plastic shell 

model implemented in Section 2 was verified. Towards this goal, a cylinder panel under 

point load was considered. As shown in Fig. 4.a, the curve edge nodes of the panel are 

assumed to be free in all directions while the side nodes are fixed against translation in all 

three directions. The modulus of elasticity, the Poisson ratio and the yield stress is taken 

as 3.103kN/mm2, 0.3, and.001kN/mm2, respectively. The results are obtained by using 

20x10 elements, i.e., 20 elements along the curved direction and 10 elements along the 

fixed edge direction, and compared with those obtained by the TRIC continuum 

formulation of Argyris et al [48] as shown in Fig. 4.b and excellent agreement is observed 

6. Numerical examples 
6.1. Cantilever pipe under compression, lateral force, and pinching forces 

As shown in Fig. 5.a, the pipe analysed has a 17.15m span ,  a 1m diameter and a 25mm 

wall thickness. The pipe is fixed at the bottom end and is subject to a compressive force 

up to 15000N kN acting at the top and a total lateral load up to 15 kN ( 7.5YF  kN).  The 
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pipe is pinched at height z 3430mm through two equal and opposite sets of five forces 

5Py as shown in Fig. 5 (up to a value of 1800YP  kN), in order to cause distortional 

deformations on the cross-section as well as plastic deformations. Modulus of elasticity 

and the Poisson’s ratio used in this example and the next example are 3200 10E  MPA 

and 0.3  , respectively.  The yield stress was taken as 300MPa and no hardening was 

assumed.   

For the beam-type and multi-scale analyses four equal-span elements are used. In the 

shell analysis, the cross-section was divided into 12 shell elements and the pipe span was 

sub-divided into 30 elements. The axial load is applied as distributed load acting at the 

nodes of the cross-section of the shell model. In the multi-scale analysis the cross-section 

is again divided into 12 shell elements and span was sub-divided into 14 elements. In 

order to verify the validity of the beam-type analyses, we also present a comparison 

against the constrained shell solution which is obtained by applying multiple-point 

constraints on the nodal displacements of the shell model based on the decomposition 

matrix N  and adopting the beam constitutive matrix E . 

Firstly, a linearly elastic analysis was conducted. The applied loads were a compressive 

force (i.e., 15000N kN) and a small lateral force, ( 7.5YF  kN). The load versus tip 

horizontal deflection and tip rotation curves are plotted as shown in Figs 6a, and b 

respectively.  

Secondly, buckling loads based on a linearized buckling analysis corresponding to beam-

type, constraint-shell-type and full-shell-type analysis are found as AP  15,277kN, 

AP  15,740kN and AP  15,587kN, respectively, thus verifying the validity of beam 
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analysis model, and suggesting that ovalization in this case have a negligible effect on the 

results. In the shell analysis, it was verified that no plastic deformations have taken place.  

Thirdly, a nonlinear analysis was conducted, in which the loads were incremented 

from 0, 0yN F   to a maximum of 15000N kN, 7.5YF  kN without pinching loads 

(i.e., 0YP   ). As shown in Figs. 6a-b, excellent agreement is observed between the beam 

analysis and the shell analysis.  

Fourthly, in addition to the applied compressive loads, pinching loads were incrementally 

applied from zero to 1800YP  kN in order to induce additional distortional deformations 

as well as plastic deformation. The corresponding load versus deflection curves are also 

shown in Fig. 6.a and b. It should be noted that comparison with fully elastic solution 

under local loads shows that plastic deformations are attained. The load versus deflection 

curves for the constrained shell and beam-type solutions are observed to be identical to 

those of the case where 0YP  . On the other hand, when local deformations are 

introduced, the plastic deformations cause softening effect and increase the overall 

deflections of the full shell-type solution, which are not captured using the beam-type 

analysis given the rigid cross-section and elastic material response assumptions. In 

contrast, the multi-scale solution is very efficient in capturing the same behaviour as that 

predicted by the full shell-type analysis. In the multi-scale analysis, an overlapping region 

was considered between z 0 and z 8003.33mm. The results are in very good 

agreement as can be verified from Fig. 6. In Fig. 7, the deformed shape and the stress 

contour for stresses in the longitudinal direction based on full shell-type analysis are 

shown for the loading of 7340N kN, 3.67YF  kN and 880.8YP  kN. In Figs. 8, stresses 

in longitudinal direction based on shell-type analysis are compared with those of the 
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multi-scale solution. The stresses are obtained at the middle of the elements by averaging 

the stresses at four integration points of the element. It can be verified that the multi-scale 

analysis results are very close to those of the shell analysis results.    

6.2. Ovalization in a simply supported pipe 

As shown in Fig. 9, a 5m span simply supported horizontal pipe with a 200.25mm 

diameter and 3.25 wall thickness is analyzed. The horizontal pipe is subject to a 

compressive force up to 6000N kN. Self –weight of the beam is also considered in the 

analysis.  In order to suppress inelastic behaviour, the yield stress was taken as 1450MPa. 

For the beam-type and multi-scale analyses, four equal-span elements are used. For the 

shell analysis the cross-section was divided into 12 elements and the span was divided 

into 16 elements. In the multi-scale analysis the cross-section is again divided into 12 

shell elements and span was sub-divided into 12 elements.  Buckling loads based on the 

linearized buckling analysis corresponding to beam-type and full-shell-type analysis are 

AP  6477kN and AP  6022kN, respectively. 

As shown in Fig. 10, load versus mid-span deflection curves are plotted up to a 

compressive load of 6000kN. A comparison of the displacements at the top and side 

nodes suggests the model successfully captures ovalization induced by bending. Results 

based on the multiscale analysis nearly exactly match those based on the shell solution 

and thus successfully capture the effects of ovalization. The deformed shape based on 

shell analysis is shown in Fig. 11 and the stress contours based on full shell-type, full 

beam-type and multi-scale analyses are shown in Figs. 12. Very good agreement is also 

observed between the longitudinal stresses predicted by the shell model and that based on 

the multi-scale model. 
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6. Conclusions 
In this paper, an analysis method based on the Bridging multi-scale approach was 

developed for the elasto-plastic analysis of pipes. The multi-scale domain decomposition 

allows the method to incorporate the effects of local deformations on the overall 

behaviour of the pipe by using a shell model only within the region of local deformations. 

A pipe buckling case was analysed and the results of the multi-scale analysis procedure 

proposed herein were compared with those of the full shell- and beam-type analyses. It 

was shown that very accurate results are obtained using the proposed analysis procedure. 

Effect of ovalization on the behaviour of a thin-walled pipe is also illustrated and it was 

shown that ovalization effect was successfully captured by using the multi-scale analysis 

procedure. 
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Appendix A Matrix of Shell Shape functions 

Matrix X̂  in Eq. (8) which relates the displacement fields to the nodal displacements is 

explicitly given in the following 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 2 3 4

1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 ... ... ... ... ... ...

0 0 0 0 ... ... ... ... ... ...

0 0 0 0 0 ... ... ... ... ... ...ˆ
0 0 0 0 0 .... .. .... .. .... ..

0 0 0 ... ... ...

x x x x

y y y y

x x x x x x x x x x x x

N N N N N N N N

N N N N N N N N

N N N N

N N N N

H H H H H H H H H H H H

X

1 2 3 4 5 6 7 8 9 10 11 120 0 0 ... ... ...y y y y y y y y y y y yH H H H H H H H H H H H

 
 
 
 
 
 
 
 
  

  

           A. (1) 

where the interpolation functions ,i jN H  for membrane displacements and plate 

components are respectively provided in Sections A.1 and A.2  

 

A.1 Interpolation functions of the membrane component of the shell element 

In Eq. A.1 iN  is the standard bilinear shape function defined as 

  1
1 1

4i i iN      , 1,2,3,4i        A. (2)  

where x a   and y b  , a and b are the half lengths of the rectangular member in x 

and y directions respectively. Coordinates x  and y  are measured from the middle of the 

rectangular element, i.e. 1 1    and 1 1   . It should also be noted that 2x2 

Gaussian quadrature was used for the numerical integration of both plate and membrane. 

Membrane related functions x
iN  and y

iN according to Allman-type interpolation are 

defined as 
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 1

8
x
i ij l ik mN y N y N  , ( 1,2,3,4i  )      A. (3)  

 1

8
y

i ij l ik mN x N x N  , ( 1,2,3,4i  )      A. (4) 

in which  

            
  21
1 1

2m mN      , ( 8,5,6,7m  )                A. (5)  

  21
1 1

2l lN      , ( 5,6,7,8l  ).                 A. (6)  

where ij j ix x x  , ij j iy y y  , 2 2 2
ij ij ijl x y  , ( 41,12,23,34)ij   and ( 12,23,34,41).ik 

 

A.2 Interpolation functions of the plate component of the shell element 

Shape functions of the Discrete Kirchhoff Quadrilateral can be explicitly written as   

 1 5 5 8 81.5xH a N a N  , 2 1 5 5 8 8
xH N c N c N    , 3 5 5 8 8

xH b N b N  ,  4 6 6 5 51.5xH a N a N   

5 2 6 6 5 5
xH N c N c N   , 6 6 6 5 5

xH b N b N  ,  7 7 7 6 61.5xH a N a N  , 8 3 7 7 6 6
xH N c N c N     

9 7 7 6 6
xH b N b N  ,  10 8 8 7 71.5xH a N a N  , 11 4 8 8 7 7

xH N c N c N    , 12 8 8 7 7
xH b N b N   

 1 5 5 8 81.5yH d N d N  , 2 5 5 8 8
yH b N b N  , 3 1 5 5 8 8

yH N e N e N    ,  4 6 6 5 51.5yH d N d N 
 

5 6 6 5 5
yH b N b N  , 6 2 6 6 5 5

yH N e N e N    ,  7 7 7 6 61.5yH d N d N  , 8 7 7 6 6
yH b N b N   

9 3 7 7 6 6
yH N e N e N   ,  10 8 8 7 71.5yH d N d N  , 11 8 8 7 7

yH b N b N  , 12 4 8 8 7 7
yH N e N e N    

                              A. (7) 
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l
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ij ij
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ij

x y
e

l

 


  

( 5,6,7,8)k  ( 1,2,3,4)i  , ( 2,3,4,1)j   and ( 12,23,34,41)ij 
 

Appendix B 
In Eq. (15), the incremental strains ˆδε were expressed in terms of the incremental nodal 

displacements d̂  through ˆ ˆ ˆˆδ δε SB d  in which matrix Ŝ  can be written as 

 ˆ z S I I                     B. (1) 

in which I  is a 4x4 unit matrix and matrix B̂ can be written as 

  ˆ ˆm Nm Nb

b

             

B B B
B X

0 B

  
        B. (2) 

and 

 

1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

1 1
0 0 1

2 2

m

 
 
 

  
 
  
  

B


,

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

b

 
 
 
 
 
 

B


0ˆ0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Nm

v

x
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  

  
 
 
  
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

 
         

 

0ˆ
0 0 0 0 0 0
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Nb

w

x

 
  

  
 
 
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B


, B. (3)-(6) 

and 
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(a) Local deflections of the shell element        (b) Arch elevation used in shell 
formulation       

 

  

x,
y,

R

v

wz,
u

 

(c) Global vs. local coordinate system                 (d) Deflections of the beam-type 

formulation         

Fig.1: Deflections and coordinate systems  

 

 

Fig.2: Decomposition of the analysis domain  
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Fig.3: Flow-chart of the concurrent multi-scale analysis algorithm 
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(a) Dimensions and loading       (b) Load-deflection relations in the 
middle 

 
Fig.4: Description of the arch and load-deflection relations 
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(a) Dimensions and loading of the pipe             (b) Equivalent multi-scale model 

 
Fig.5: Description of the modelling of the pipe 

 
 
 
 
 
 



40 

 

0

5000

10000

15000

0 10 20 30 40 50

L
oa

d 
 (

kN
)

Tip horizontal deflection (mm)

Full-beam-type linear
Full-shell-type for PY=0 linear
Constraint shell linear
Full-beam-type nonlinear
Full-shell-type for PY=0 nonlinear
Constraint shell nonlinear
Full-shell-type nonlinear
Multi-scale-12x14 shell elements
Full-shell-type nonlinear elastic
Linearized buckling beam
Linearized buckling constrained shell
Linearized buckling shell

Linear 
analysis

Non-linear 
analysis with
local effects

 
(a) Tip lateral deflection  
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(b) Rotation at the tip 

Fig.6: Load-deflection relations based on different modelling types  
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                                Front   Back   Side 

 
              

Fig.7: Deformed shape and contour stress in longitudinal direction based on the shell-type 
nonlinear analysis (displacements scaled by a factor of 10) 
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Fig.8 Stress in longitudinal direction based on multi-scale and full shell-type analyses. 
 
 
 
 

                                   

 
   
         (a) Dimensions of the pipe           (b) Equivalent multi-scale model 

 
Fig.9: Description of the modelling of the pipe 
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Fig.10: Load-deflection relations based on different modelling types 
                         
 
 
 



44 

 

                 
                                      Front    Back  
 
Fig.11: Deformed shape and stress contour based on shell-type nonlinear analysis 
(displacements scaled by a factor of 30) 
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Fig.12 Stress in longitudinal direction based on multi-scale and full shell-type analyses. 
 
 
 
 
 
 


