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Abstract—Data Science is a research field concerned with 

processes and systems that extract knowledge from massive 

amounts of data. In some situations, however, data shortage 

renders existing data-driven methods difficult or even impossible 

to apply. Transfer learning has recently emerged as a way of 

exploiting previously acquired knowledge to solve new yet similar 

problems much more quickly and effectively. In contrast to 

classical data-driven machine learning methods, transfer learning 

methods exploit the knowledge accumulated from data in 

auxiliary domains to facilitate predictive modeling in the current 

domain. A significant number of transfer learning methods that 

address classification tasks have been proposed, but studies on 

transfer learning in the case of regression problems are still 

scarce. This study focuses on using transfer learning techniques to 

handle regression problems in a domain that has insufficient 

training data. We propose an original fuzzy regression transfer 

learning method, based on fuzzy rules, to address the problem of 

estimating the value of the target for regression. A Takagi-Sugeno 

fuzzy regression model is developed to transfer knowledge from a 

source domain to a target domain. Experimental results using 

synthetic data and real world datasets demonstrate that the 

proposed fuzzy regression transfer learning method significantly 

improves the performance of existing models when tackling 

regression problems in the target domain.  

 
Index Terms—Fuzzy rules, fuzzy model, machine learning, 

regression, transfer learning.  

 

I. INTRODUCTION 

ATA science is an interdisciplinary field that involves the 

use of learning-based methods to analyze massive 

amounts of data and extract knowledge from them. Data-driven 

learning-based methods are not well-suited to situations where 

there is a data shortage, however, so the establishment of 

prediction models is impossible. This severely impedes the 

capacity of these methods to model in such environments. 

What makes the human learning process advanced is our 

ability to transfer knowledge from one situation to another. 
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Humans often draw upon more than just training for 

generalization: we continuously adapt to changing 

environments. Instead of learning from scratch, humans tackle 

new tasks on the basis of previously accumulated knowledge, 

and it is this unique ability that has inspired the application of 

transfer learning as a possible solution for the issue described 

above.  

In recent years, research has increased the focus on transfer 

learning and its application to real world problems in the field 

of computational intelligence [1], [2]. Generally speaking, 

transfer learning addresses the problem of how to leverage 

previously acquired knowledge to improve the efficiency and 

accuracy of learning in another domain which in some way, or 

to some extent, relates to the original domain [3]. It is clear that 

transfer learning is needed to address real world problems. One 

well-known example of transfer learning is the indoor WiFi 

location estimation problem, which seeks to estimate a user’s 

current location based on previously collected data [4], [5]. 

There have been many studies in the area of transfer 

learning, and related work can be divided into several 

categories, based on the problem setting: multi-task learning 

[6], domain adaptation [7], cross-domain adaptation [8], and 

heterogeneous learning [9]. When categorized by the approach 

applied, the main research streams include transferring 

knowledge of instances [10], [11], transferring knowledge of 

feature representations [12], transferring knowledge of model 

parameters [13], and transferring relational knowledge [14]. 

When classified from an application perspective, existing 

works can be generally categorized into three tasks: 

classification [15], [16], unsupervised learning (clustering [17], 

dimensionality deduction [18], [19]), and regression [20], [21]. 

There is a significant amount of research that studies transfer 

learning for classification problems, whereas studies on 

regression problems are still scarce. 

In this paper, we focus on addressing regression problems 

using regression transfer learning techniques. Given that fuzzy 

system modeling is an important category of modeling with 

extensive applications [22], [23], incorporating regression 

transfer learning to a fuzzy model holds promise. Additionally, 

domains which lack information tend to suffer from 

uncertainty, and fuzzy regression transfer learning can cope 

efficiently with uncertainty. In transfer learning, target tasks in 

new environments often exhibit this uncertainty, especially 

when there is insufficient information, therefore a fuzzy system 

combined with transfer learning might exhibit a substantial 
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capacity to model uncertainty [24]. 

Several researchers have recently used fuzzy modeling 

mechanisms to solve transfer learning problems and improve 

the effectiveness of the model for the target domain [25] – [31]. 

The concept of information granularity has been introduced to 

knowledge transfer, providing a more general and advanced 

view of transfer learning problems [32]. These models regard 

parameters as information granules that assist with knowledge 

transfer, rather than numeric entities, and their specific form 

depends heavily on the problem [33]. 

The main contributions of this paper are twofold. First, a 

novel approach to regression, based on the Takagi-Sugeno 

fuzzy model, is introduced to address situations in which 

insufficient training data is available in the target domain but 

there is sufficient training data in the source domain. The 

Takagi-Sugeno model’s fuzzy rules are constructed using 

source data, then modified through mappings to be reused to 

estimate values in the target domain. Second, this approach 

preserves the privacy of the source data because only the fuzzy 

rules are extracted. 

The rest of this paper is structured as follows. The 

Takagi-Sugeno fuzzy model is introduced in Section II. Section 

III describes the new fuzzy regression transfer learning method 

based on fuzzy rules. The experiments and results used to 

analyze and verify the method are presented in Section IV. The 

final section concludes the paper and outlines future work. 

II. THE TAKAGI-SUGENO FUZZY MODEL 

The proposed fuzzy regression transfer learning method 

transfers knowledge from a source domain to a target domain 

using a Takagi-Sugeno fuzzy model, which is an effective way 

to represent a fuzzy model in a nonlinear dynamic system. A 

Takagi-Sugeno fuzzy model composed of   fuzzy rules is 

formally represented as:  

Model   

 

if   is         , then   is                              (1) 

 

This fuzzy rule comprises one condition, which is described 

by the prototype   , and one conclusion, which is typically 

governed by the linear function of the input variables. 

The construction of this fuzzy rule-based model uses 

                              to formulate condition    

and optimize the parameters of the linear function   . The 

design procedure can be summarized as follows: 

Step 1: Forming the conditions            through fuzzy 

clustering 

Typically, fuzzy c-means (FCM) is used to construct the 

clusters and calculate the prototypes   . FCM partitions the   

data            into   clusters, where      . As a 

result, a collection of   prototypes,           , and a 

partition matrix,   [   ]                     are 

formed. The partition matrix satisfies two requirements 

    [   ], ∑       
   ,    , and   ∑       

   ,    . 
The objective function (2) is minimized in the FCM:  

 

   ∑ ∑      
 ‖     ‖

  
   

 
    (2) 

 

where ‖ ‖ stands for a distance function, and         is a 

fuzzification coefficient that affects the shape and overlap 

among the resulting membership functions.  

Since real-world data has variables located in different 

ranges, a weighted Euclidean distance avoids bias towards any 

particular variable. The distance is expressed in the form 

 

‖     ‖
   ∑

         
 

  
 

 
    (3) 

 

where    is the standard deviation of the  th feature, and   is 

the dimensionality of the input data. 

The prototypes are calculated as: 

 

    
∑         

 
   

∑        
   

 (4) 

 

and the entries of the partition matrix are expressed as follows:  

 

     
 

∑ (
‖     ‖

‖     ‖
)

 
   

 
   

 (5) 

 

The entire process is repeated until no significant changes to 

the entries of the partition matrix   are reported in successive 

iterations of the algorithm. 

Step 1 results in   prototypes,           , that determine 

          , and          which can be calculated in the 

form: 

 

          
 

∑ (
‖      ‖

‖     ‖
)

 
   

 
   

 (6) 

 

Step 2: Optimizing the parameters of the linear function 

         

Given a pair of data      , where the input is  , the output of 

the Takagi-Sugeno fuzzy model is denoted as  ̂ and determined 

as: 

 

 ̂   ∑         
 
            (7) 

 

where            
 [

 
 
],    is the coefficients vector of linear 

function    in the form of    [             ]
 , and   is 

n-dimensional input data,   [          ]
 . 

Next, we simplify (7): 

 

 ̂    ∑           
  

   [
 
 
]   ∑   

  
   [

        
         

] (8) 

 

We denote       [
        

         
] , then  ̂ can be rewritten as: 

 



TFS-2016-0208 

 

3 

 ̂   ∑   
  

          ∑   
  

                  (9) 

 

where       [                   ],   [         ]
 . 

Therefore we find  ̂          , i.e. for the given input  , 

the output of the Takagi-Sugeno fuzzy model is parameter  ’s 

linear function. Additionally we expect that  ̂ will approximate 

 , which is the target value corresponding to  . This can be 

achieved by an appropriate parameter   through a calculating 

process based on the dataset 

                             . 
For all the inputs           , the corresponding outputs 

are calculated as: 

 

 ̂                                     (10) 

 

We combine all the outputs and denote this as  ̂: 

 

 ̂   [

 ̂ 

 ̂ 
   
 ̂ 

]   [

        

        
   

        

]      (11) 

 

where    [

      

       
      

]   [

  
       

        
     

  
       

        
      

  
     

 
  
     

 
   

     

]. 

 ̂ is expected to be as close as   [         ] , which is 

the target value corresponding to inputs           . 

Our aim is to minimize the objective function as follows: 

 

                 (12) 

 

Since   is a quadratic function of  , the optimal   can be 

obtained analytically 

 

                 (13) 

III. TRANSFER LEARNING BASED ON THE TAKAGI-SUGENO 

FUZZY MODEL 

The main idea of our fuzzy regression transfer learning 

method is presented in subsection A, and the procedures 

required to implement it are described in subsection B. 

A. The Main Idea of the Fuzzy Regression Transfer Learning 

Method 

The Takagi-Sugeno fuzzy model   for the source domain, 

constructed using pairs of data in the form of       and 

described in the form of the fuzzy rules, is: 

Model   

 

if   is         , then   is                        (14) 

 

When the input of fuzzy model   is  , the output of the 

model   is an aggregate of the fuzzy rules as follows:  

 

   ∑         
 
            (15) 

 

We also have new data from the target domain that are 

expressed in the form of the input-output pairs        . 

However, the fuzzy model   does not yield good performance 

with the data        , since the new data follow the following 

fuzzy model  ̃ and the fuzzy rules, which are different to those 

in the fuzzy model  . To emphasize the changes in the 

parameters of the fuzzy model  , we describe it as: 

Model  ̃ 

 

if    is     
         , then    is     

          (16) 

          

 

The output    is therefore defined as (17) when the input is 

  :  

 

    ∑     
         

 
       

          (17) 

 

Given that there is insufficient data to train a new fuzzy 

model  ̃, we hope to use learned knowledge (fuzzy rules) in 

the existing model   to help construct a fuzzy model that is 

more compatible with the new data. This requires the 

optimization of a continuous mapping of each input variable in 

the input space of the new data. The input space is transformed 

to       by mapping  , and a new fuzzy model    is 

constructed using the fuzzy rules from fuzzy model  . The 

transformation process and resulting architecture are shown in 

Fig. 1. 

 
 

Fig. 1.  Transfer knowledge in fuzzy rule-based models: a general concept. 
  

Model   , described in the form of fuzzy rules, is: 

Model    

 

if    is                , then    is              (18) 

          

 

Therefore the output of model    is: 

 

    ∑                
 
                 (19) 

 

Suppose the new dataset is       
    

   , and the number 

of data in   is   , our aim is to find such   so that      ̃, 

i.e.  

 

∑   
   

      ∑   
   

    (20) 

 

or 

 

∑ ∑                
 
   

  

                  ∑   
   

    (21) 
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Mapping   is constructed by minimizing the objective 

function as follows: 

 

   ∑    
    

     

    (22) 

 

The key to our fuzzy regression transfer learning method is 

to map the input space through  . A nonlinear continuous 

function based on sigmoid functions is used to construct the 

mapping  . Other forms of mapping suitable for the problem 

could also be considered. 

Fig. 2 shows the structure of nonlinear continuous mapping 

for each input variable using the  th input variable of data   
  as 

an example. 

 

 
Fig. 2.  Architecture of nonlinear mapping 

 

The mapping for each input variable is constructed through a 

network that is composed of   nodes situated in the hidden 

layer and a single node placed at the output layer. The nodes in 

the hidden layer are two-parametric sigmoid functions, where 

the  th sigmoid function for the  th input variable of   
  is: 

 

      
 

   
        

      
 (23) 

         ,          ,       

 

The transformation of input variable    
  under mapping    

is therefore: 

 

      
    ∑         

 
    (24) 

 

where      represents the weight of the  th sigmoid function to 

the output, and satisfies ∑     
 
         

           
     

   

       
   .      is calculated by (23). 

By taking advantage of the nonlinear mappings, the input 

space is transformed so that the new input variables become 

more compatible with the fuzzy rules of the existing fuzzy 

model.  

Estimating an “optimal” number of clusters in the clustering 

algorithms is also still an open issue, and the solution to this 

problem greatly depends upon the data and the problem. In this 

paper, we adopt a strategy of dynamically changing the number 

of clusters (prototypes). The number of clusters (C) is chosen 

from a certain range and a fuzzy regression transfer learning 

model is constructed for each selected C. The model with the 

best transfer performance is then chosen to address the problem 

at hand. 

 

B. Transfer Knowledge in Fuzzy Rule-based Models 

The procedure for transferring knowledge from a source 

domain to a target domain requires two steps. First a 

Takagi-Sugeno fuzzy model, based on source data, is 

constructed, then a new fuzzy model for the target domain is 

built by modifying the input space using fuzzy rules from the 

source domain. 

Step 1: Constructing a Takagi-Sugeno fuzzy model   based on 

source data 

Suppose the dataset in the source domain is            , 
and the number of data in   is  . Based on the dataset  , a 

Takagi-Sugeno fuzzy model   for the source domain is 

constructed. 

Model   

 

if    is          , then    is           (25) 

         . 

 

The main blocks of a fuzzy rule are the condition and 

conclusion, which are dominated by the prototype and linear 

function respectively. The fuzzy model   is constructed by 

calculating the prototypes of the data and estimating the 

parameters of the linear functions standing in the conclusions of 

the rules. 

1) Forming the prototypes 

Fuzzy c-means is used to cluster the input data      and find 

the prototypes: 

 

  [          ]
  (26) 

 

where   is the number of clusters, i.e. the number of fuzzy 

rules. 

The input    therefore belongs to the prototype (cluster)    

with the membership degree          , which is calculated as 

follows: 

 

           
 

∑ (
‖     ‖

‖     ‖
)

 
   

 
   

 (27) 

 

2) Developing linear functions 

Since the functions in the conclusion are linear, they are 

uniquely described by the coefficients   ,          . Based 

on the analysis completed in Section II, the coefficients of the 

linear function are calculated as follows: 

 

[          ]              (28) 

 

where   [        
              ] ,        

 [
                   

                       
] 
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[          ]  is the coefficient matrix of the linear 

functions, where     [             ]
  is the coefficient 

vector of the  th linear function   ,          . 

As a consequence, the prototypes and linear functions are 

calculated to construct the fuzzy rules in (25). When a new 

datum   appears, the output of fuzzy model   is calculated as 

follows: 

 

   ∑                 
 
    (29) 

 

where              ∑ (
‖     ‖

‖     ‖
)

 

    
   ,               

             . 

This fuzzy model   will not perform well on the target data 

      
    

   ,           ,     , however. To 

improve its performance, the input space of the target domain 

must be made more compatible with M’s fuzzy rules.  

Step 2: Modifying the input space and using the fuzzy rules of 

the existing model 

The input space is modified by constructing a mapping for 

each input variable, say       
  , where    

  is the  th input 

variable of   
 . The input space is thus transformed by 

  [            ], and the input data   
  becomes     

  . 

The specific form of     
   depends on the construction 

method for  . As described in Part A, nonlinear continuous 

mappings, shown in Fig. 2, are used here, and the 

corresponding     
   is calculated through (30): 

 

    
    [

      
  

      
  

 
      

  

]  

[
 
 
 
 ∑                  

        
   

∑                 
         

   
   

∑                 
        

   ]
 
 
 
 

(30) 

 

Since   transforms the whole input space, both the dataset 

   
   and the prototypes in (26) need to be transformed using 

the mapping  . The prototype    becomes      . Model  ’s 

fuzzy rules are transferred to the new data space, and a new 

model    is built. 

Model    

 

if   
  is        

         , then    is        
       (31) 

 

where        
             ∑ (

‖    
         ‖

‖    
         ‖

)

 

    
   , 

       
                     

              
  , 

         . 

Therefore, when the input is   
 , the output of model    is: 

 

  
   ∑   (    

        ) 
 
          

       (32) 

 

For all the input data in dataset    
  , we find the output    

   
corresponding to (32). 

The parameters of   are optimized by minimizing (33). In 

the literature, Particle Swarm Optimization (PSO) and 

Differential Evolution (DE) are reported to be two of the most 

suitable global optimization algorithms [34]. In this paper, we 

apply PSO and DE to optimize the parameters, and their 

performance in the fuzzy regression transfer learning is 

compared in detail in Section IV. 

 

     
 

  
∑    

    
      

    (33) 

IV. EXPERIMENTAL STUDIES 

To evaluate the proposed fuzzy regression transfer learning 

method and its learning algorithm, both synthetic and 

real-world datasets are adopted, as will be described in Sections 

IV-A and IV-B. Section IV-A validates the new method and 

explores the impact of optimization algorithms in the new 

method. Section IV-B elaborates on the usefulness of the new 

fuzzy regression transfer learning technology in dealing with 

real world problems.  

A. Synthetic Data 

The focus of this paper is on using the new fuzzy regression 

transfer technology to address regression problems. Data 

outputs in regression problems are more complicated than 

outputs in classification problems, and as a result of the fuzzy 

model we use, the method of generating the synthetic data is 

crucial and must be reasonable. Therefore, prior to 

demonstrating the results of the experiments, we will describe 

the process of generating the source data and target data before 

constructing the fuzzy models based on the formula presented 

in Section III. A number of symbolic representations of the 

experimental results are denoted in this section so that the 

presentation of the experiment results is clearer. Section 

IV-A-1 presents the data generation and model construction 

process, and Section IV-A-2 outlines the experimental results. 

1) Data generation and model construction 

The procedures for the experiments in this section are more 

detailed and integrated than those in Section III-B, as they 

include an additional step, Step 3, to verify that the model using 

our method performs better than the model trained using scarce 

target data. The steps of the procedure are as follows: 

Step 1: Generate source data and construct fuzzy model  . 

Step 2: Generate target data, the number of which is much 

smaller than the number in the source domain, and use the 

existing model   to estimate the outputs of the target data. 

Step 3: Use the data in the target domain to construct a new 

model  ̅ for the target domain. 

Step 4: Modify the input space of model   using the target 

data to obtain a new model    for the target domain. 

We use the 5-fold cross validation, which is commonly used 

in model validation in machine learning, to construct the 

models in Steps 1, 3 and 4. 

More detail follows about these four steps, especially 

concerning the generation of the datasets. 

Step 1: Generate source data and construct the fuzzy model 

 . 

This step is divided into two sub-steps. 

Step1-1: Generate source data. 
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The process of generating source data includes the 

generation of the inputs and finding the corresponding outputs 

to constitute the input-output pairs. Referring to the input data 

 , we generate three sub-datasets          that have different 

distributions, and combine them to construct  . The parameters 

related to the input data are listed in Table I. 

 
TABLE I 

PARAMETERS OF INPUT DATA IN THE SOURCE DOMAIN 

                3,   ~  𝝁  𝝈   

            3         3,   ~  𝝁  𝝈   

              3       ,   ~  𝝁  𝝈   

 

We generate the input data       ,        , where   

is the number of source data in the source domain. Based on 

this, we calculate the output data in the following way. For the 

sake of reasonability, the outputs are generated according to 

(29), so the prototypes and linear function are needed in 

advance. Since the datasets follow normal distributions, we 

assume the mean values of the normal distributions as the 

prototypes, denoted as  ̅: 

 

 ̅  [ ̅   ̅   ̅ ]
   [𝝁  𝝁  𝝁 ]

  (34) 

 

The coefficients of linear functions  ̅ ,       3, are given 

in Table II. 

 
TABLE II 

COEFFICIENTS OF LINEAR FUNCTIONS IN THE SOURCE DOMAIN 

      ̅    ̅   [ ̅   ̅   ̅  ] 

      ̅    ̅   [ ̅   ̅   ̅  ] 

      ̅    ̅   [ ̅   ̅   ̅  ] 

 

Based on the prototypes and linear functions, when the input 

is   , the output    can be obtained as follows: 

 

    ∑       ̅        ̅  
 
    (35) 

 

We calculate the output       ,        , and finally 

obtain the data        . 

Step 1-2: Construct the fuzzy model   based on data      . 

The construction of a Takagi-Sugeno fuzzy model depends 

on the prototypes    and linear functions         . The details 

are discussed in Step 1 in Section III-B. 

We apply the 5-fold cross validation when constructing 

model  , and split the dataset   into a training set   (80%) 

and a testing set   (20%). Once model   has been 

constructed, it is tested on the testing set   , and the mean 

square error (MSE) is denoted as: 

 

   
 

  
 ∑         

   
    (36) 

 

where    is the output of model   when its input is   , 

          .    is the number of data in the testing set   . 

We calculate the mean and standard deviation of  . 

Step 2: Generate target data, the number of which is much 

smaller than the number in the source domain, and use the 

existing model   to estimate the outputs of the target data. 

Step 2 is also divided into two sub-steps to better describe it. 

Step 2-1: Generate target data. 

The method of generating input data    in the target domain 

is the same as the method used in the source domain, and the 

parameters related to the input data in the target domain are 

listed in Table III. 
 

TABLE III 

PARAMETERS OF INPUT DATA IN THE TARGET DOMAIN 

  
     

            3,   
 ~  𝝁 

  𝝈 
   

  
     

        3          3,   
 ~  𝝁 

  𝝈 
   

  
     

          3        ,   
 ~  𝝁 

  𝝈 
   

 

The prototypes of the clusters are also the mean values: 

 

 ̅  [ ̅ 
   ̅ 

   ̅ 
 ]   [𝝁 

  𝝁 
  𝝁 

 ]  (37) 

 

The coefficients of the linear functions in the target domains 

are given in Table IV. 

 
TABLE IV 

COEFFICIENTS OF LINEAR FUNCTIONS IN THE TARGET DOMAIN 

      ̅ 
    ̅ 

   [ ̅  
  ̅  

  ̅  
 ] 

      ̅ 
    ̅ 

   [ ̅  
  ̅  

  ̅  
 ] 

      ̅ 
    ̅ 

   [ ̅  
  ̅  

  ̅  
 ] 

 

To make the source and target data different, the prototypes 

and linear functions in the source domain and target domain 

must also be different, i.e. 

 

 ̅ 
   ̅ ,    ̅ 

   ̅  (38) 

 

where   ,  ̅  and  ̅ 
 ,  ̅ 

  are the prototypes and coefficients of 

the linear functions in the source domain and target domain, 

respectively. 

Except for the prototypes, the covariance matrixes of the 

target data are not the same as those of the source data. This 

variety in the target data is beneficial for testing the validity of 

our algorithm. 

Based upon the input data   , the corresponding output 

      
   is calculated as follows:  

 

  
   ∑      

    
       

    
   

    (39) 

 

As a consequence, we have the data            

    
    

    in the target domain. The number of data in   is 

much smaller than in   (    ). 

Step 2-2: Use the existing model   to estimate the outputs of 

the target data. 
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Given that the source domain and target domain have 

different prototypes and linear functions, the fuzzy model   

does not perform well on the target data. This means that when 

the input is   
 , the output   

  calculated using the fuzzy rules 

for the source data may be quite different with   
 . We test 

model   on target data  , and the discrepancy between   
  and 

  
  is denoted as   : 

 

    
 

  
∑    

    
     

    (40) 

 

where   
  is the output of model   when the input is   

 , i.e. 

  
   ∑      

          
     

 
   ,    

    
    ,    is the 

number of data in the target domain. 

Step 3: Use the data in the target domain to construct a new 

model  ̅ for the target domain. 

Proving that a model does not perform as well when trained 

with less data in the target domain supports our assumption. 

Although only a small amount of data is available in the target 

domain, they can nevertheless be used to train a model; the 

problem is that the accuracy of the model cannot be guaranteed 

since the training data is insufficient. The procedures for the 

construction of  ̅ are exactly the same as are used to build 

model   for the source domain, and we also apply 5-fold cross 

validation procedure. The target dataset   is split into a training 

set   (80%) and a testing set   (20%). Model  ̅ is constructed 

based on the training set    and then used to predict the outputs 

for the testing set   . The MSE is denoted as: 

 

    
 

  
 ∑    

    
   

  
 

    (41) 

 

where   
  is the output of model  ̅  when its input is   

 , 

   
    

     ,   
  is the number of data in the testing set   . 

The mean and standard deviation of    are obtained. 

Step 4: Modify the input space of model   using target data 

to obtain a new model    for the target domain. 

The input space of model   is modified by the continuous 

mapping  , which is obtained by minimizing (42) using the 

training set   . 

 

    
 

  
 ∑    

    
   

  
 

    (42) 

 

where   
  is the output of model    calculated by (32) when the 

input is   
 ,    

    
     ,   

  is the number of data in the 

training set   . The optimization algorithms PSO and DE are 

used to find the optimal parameters of  . 

Following the construction of model   , it is tested on the 

testing set   , and the MSE is denoted as: 

 

    
 

  
 ∑    

    
   

  
 

    (43) 

 

where   
  is the output of model    when the input is   

 , 

   
    

     ,   
  is the number of data in the testing set   . 

The above process also involves a 5-fold cross validation 

procedure, so the mean and standard deviation of    are 

calculated. 

In the following experiments,       and    are compared, 

and the desired outcome is that    will be smaller than both    

and   .       shows that the modified model    is 

improved compared to the existing model  , and       

demonstrates that the modified model    is better than model 

 ̅  trained using few data in the target domain. Next, the 

experimental results are given to verify the effectiveness of the 

proposed fuzzy regression transfer learning method. 

2) Experiments 

The details of three experiments are provided in this section. 

The first experiment illustrates the application scope of our 

method. The second compares the outcomes of using PSO and 

DE, and validates the new fuzzy regression transfer learning 

method. The third experiment discusses an alternative method 

of constructing the mapping for the input space, and compares 

it with the method shown in Fig. 2 when the interactions 

between the features are considered. 

Experiment 1 

The assumption is that the data in the target domain is 

insufficient to train a good model; however, because of the 

characteristics of the model we use, i.e. a Takagi-Sugeno fuzzy 

model, there is one special situation in which, even though the 

number of available data in the target domain is small, the data 

will construct a model that performs well.  

The fuzzy rules of the Takagi-Sugeno fuzzy model are 

distinguished by the data partitions, so when the data has good 

division of clusters, even if the number of data is small, a good 

model can be built without the need to transfer knowledge from 

another domain, which may even be harmful. However, this 

situation is dependent on the distribution of the data, and is rare 

in real applications, so our method is able to handle most 

scenarios in transfer learning. In Experiment 1, we provide an 

example of this special situation where, although the data in the 

target domain is scarce, there is no need to transfer knowledge 

from other domains. 

Source data and target data both follow normal distribution. 

The mean values and covariance matrixes of the source data 

and target data in Experiment 1 are shown in Table V.  

 
TABLE V 

DISTRIBUTIONS OF SOURCE DATA AND TARGET DATA 

Source data Target data 

Mean values Covariance  Mean values Covariance  

𝝁  [  ] 𝝈   [ .5
  

  .5 ] 𝝁 
   [  ] 𝝈 

   [ .4
  . 

 .  .4 ] 

𝝁  [5  ] 𝝈   [ .5
  

  .5 ] 𝝁 
   [5 3] 𝝈 

   [ .5
  . 

 .  .5 ] 

𝝁  [3 4] 𝝈   [ .5
  

  .5 ] 𝝁 
   [ 4] 𝝈 

   [ .5
  . 

 .  .5 ] 

 

The linear functions in the source domain and target domain 

shown in Table VI are also different. 
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TABLE VI 

THE COEFFICIENTS OF LINEAR FUNCTIONS IN TWO DOMAIN 

Source domain Target domain 

    ̅    ̅   [   ]     ̅ 
    ̅ 

   [ .5  .5  .5] 

    ̅    ̅   [   ]     ̅ 
    ̅ 

   [   .5] 

    ̅    ̅   [   3]     ̅ 
    ̅ 

   [  .5  .5 4.5] 

 

The input of the source data and the target data is shown in 

Fig. 3. 

 
                             (a)                                                     (b) 

Fig. 3.  Input data. (a) Source data. (b) Target data 

 

There are 1500 instances in the source domain and 15 

instances in the target domain. Fig. 3(b) shows that there is 

good partition for the target data. To show the differences 

between the source data and the target data, the input data in 

both domains is displayed in Fig. 4, and the 3-dimension points 

in the form of input-output pairs are displayed in Fig. 5. 

 
Fig. 4.  Source (circle) and target (asterisk) 

 
Fig. 5.  Source (circle) and target (asterisk)(input-output) 

 

From Fig. 4 and Fig. 5, we see that the input and output of the 

source data and the target data have different distributions. 

In this experiment, PSO is applied to optimize the parameters 

and build the model    for the target domain. Parameters in 

PSO are as follows: the number of the initial population is 200, 

the maximum iteration is 200, the inertia weighting factor   is 

0.8, and two auxiliary parameters determining the dynamics of 

the population    and    are equal to 2. We apply a 5-fold 

cross validation procedure to construct the models. Table VII 

outlines the experimental results. 
 

TABLE VII 

THE RESULTS OF EXPERIMENT 1 

 Mean±Standard deviation 

  0.00±0.00 

   32.30±0.06 

   0.00±0.00 

   4.00±3.40 

 

From the results listed in Table VII, we can see that although 

few data are available in the target domain, they are still able to 

train a very good regression model  ̅, and the MSE of  ̅ on the 

testing set (  ) is 0.00. However,    is much larger than    

(4.00>0.00), which indicates that knowledge from the source 

domain cannot improve the performance of the target domain, 

and is regarded as noise that harms the model’s construction for 

the target domain. 

Experiment 2 

The purpose of this experiment is to apply and compare two 

optimization algorithms, namely PSO and DE, and to optimize 

the parameters of the mappings and build the new fuzzy 

regression transfer learning model    for the target domain. 

Further, the validation of the new method is confirmed.  

PSO and DE are computational methods that determine an 

optimal solution by iteratively navigating a population of 

solutions, which minimizes a certain predetermined objective 

function (performance index). There are three parameters in 

PSO that demonstrate significant impact on optimization 

performance: the inertia weight factor  , and two auxiliary 

parameters determining the dynamics of the population,    and 

  . Typically,  ,   , and    assume value coming from several 

ranges, specifically   [ .4  . ] ,    [ .4  ] ,    
[ .4  ] , whereas     is equal to    [35]. In DE, optimization 

performance is largely dependent upon the values of the 

differential weight   and the crossover probability   . The 

value range of   is [   ], and the value range of    is [   ] 
[36]. Based on the complexity of the problems, we apply the 

same initialization strategy in PSO and DE for all the 

experiments below; 200 candidate solutions are generated, and 

the maximum number of iterations is set to 200. 

The distributions of the datasets applied in this experiment 

are shown in Table VIII. 

 
TABLE VIII 

DISTRIBUTIONS OF SOURCE DATA AND TARGET DATA 

Source data Target data 

Mean values Covariance  Mean values Covariance  

𝝁  [   ] 𝝈  [ .5
  

  .5 ] 𝝁 
  [ .5  .5] 𝝈 

  [ .4
  . 

 .  .4 ] 

𝝁  [   ] 𝝈  [ .5
  

  .5 ] 𝝁 
  [   .5] 𝝈 

  [ .5
  . 

 .  .5 ] 

𝝁  [ .5  ] 𝝈  [ .5
  

  .5 ] 𝝁 
  [   ] 𝝈 

  [ .5
  . 

 .  .5 ] 

 



TFS-2016-0208 

 

9 

The linear functions in the source and target domains are the 

same as those in Experiment 1 in Table VI. The input of the 

source data and the target data is displayed in Fig. 6. As can be 

seen, there are some crossover regions between the source data 

and the target data. There are 1500 instances in the source 

domain, and 15 instances in the target domain. 

 

 
                                   (a)                                                     (b) 
Fig. 6.  Input data. (a) Source data. (b) Target data 

 

To see the difference between the source data and target data 

more clearly, we combine them in one figure (Fig. 7). The 

3-dimension points of the source data and the target data in the 

form of input-output pairs are drawn in Fig. 8.  

 
Fig. 7.  Source (circle) and target (asterisk) 

 
Fig. 8.  Source (circle) and target (asterisk)(input-output) 

 

We see from Figs. 6-8 that the distributions of both the input 

and output of the source data and the target data are different.  

The results of      and    are shown in Table IX. 

 
TABLE IX 

RESULTS OF   ,    AND    

 Mean ± Standard deviation 

  0.01 ± 0.00 

   7.23 ± 0.12 

   183.80 ± 405.14 

 

In the process of constructing a new fuzzy model    for the 

target domain to obtain   , the experiment includes two parts 

to analyze the stability of the PSO and DE algorithms, and the 

generalization of the new fuzzy regression transfer learning 

model. 

(a) The stability of the PSO and DE algorithms is analyzed. 

The stability of PSO in different  ,   , and    is tested, and 

similarly, the stability of DE in different   and    is tested. 

For comparison, the same source and target datasets in Table 

VIII are applied, and the experimental results of the new fuzzy 

regression transfer learning model on the target domain (  ) 

are displayed in Table X. Each experiment is run 10 times and 

we report the mean and standard deviation to quantify the 

stability of the solutions and the performance of the method.  
 

TABLE X 

THE STABILITY OF PSO AND DE  

PSO DE 

 ,                  

0.6, 1.4 2.07 ± 0.86 0.5, 0.4 1.75 ± 0.15 

0.6, 1.7 2.24 ± 1.30 0.5, 0.6 1.59 ± 0.11 

0.6, 2 1.84 ± 0.89 0.5, 0.9 1.66 ± 0.19 

0.9, 1.4 1.84 ± 1.04 1, 0.4 1.741 ± 0.21 

0.9, 1.7 2.19 ± 1.21 1, 0.6 1.77 ± 0.25 

0.9, 2 2.35 ± 1.05 1, 0.9 1.71 ± 0.50 

1.2, 1.4 1.66 ± 0.73 1.5, 0.4 1.62 ± 0.43 

1.2, 1.7 2.30 ± 1.26 1.5, 0.6 1.61 ± 0.32 

1.2, 2 2.81 ± 1.42 1.5, 0.9 1.74 ± 0.37 

 

We observe from Table X that the optimization performance 

of DE is better than that of PSO. Furthermore, the standard 

deviation in DE is smaller than the standard deviation in PSO, 

so the algorithmic stability of DE is superior to that of PSO. 

(b) The generalization of the new fuzzy regression transfer 

learning model is studied. 

Five-fold cross validation is applied in all the experiments. 

The dataset is split into five subsets, four of which are chosen as 

the training set, while the remaining subset forms the testing 

set. There are consequently five results for each model. The 

standard deviation of the five results indicates the 

generalization of the constructed model. The large standard 

deviation indicates either overfitting, or indicates that the data 

characteristics forming the training set do not coincide with the 

nature of the testing set. Conversely, the low value of the 

standard deviation shows that the model constructed on the 

basis of the training data has good generalization capability. 

The generalization of the newly constructed model for the 

target domain is tested. PSO and DE with varying parameters 

are used to construct the model, and each experiment is run 10 

times. The experimental results are shown in Table XI. 

From the results, we observe that the values of the standard 

deviation, which reflects the generalization aspects of the 

constructed model, are not always very low. We claim that this 

situation is commonly encountered in transfer learning. Our 

assumption in the transfer learning problem is that the data in 

the target domain are limited in number and insufficient to 
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develop a good model. Therefore, there is only a small set of 

training data with which to construct a new fuzzy regression 

model for the target domain, and an even smaller set of testing 

data. The high values of the standard deviation in the 5-fold 

cross validation are anticipated, and clearly, these would 

decrease as the number of data in the target data increased. 

However if the size of the target data increases, the target data 

themselves could achieve the formation of a good model, with 

no need to transfer knowledge from another domain. The high 

values of the standard deviation in the 5-fold cross validation 

procedure are thus reasonable and to be expected. 

 
TABLE XI 

THE VALUES OF    UNDER DIFFERENT PARAMETERS 

PSO DE 

 ,                  

0.6, 1.4 2.39±3.03 0.5, 0.4 2.32±1.51 

0.6, 1.7 
3.92±5.91 

0.5, 0.6 
2.14±1.44 

0.6, 2 3.75±5.82 0.5, 0.9 2.16±1.51 

0.9, 1.4 2.86±3.18 1, 0.4 2.46±1.83 

0.9, 1.7 2.91±3.13 1, 0.6 2.36±1.81 

0.9, 2 4.34±6.27 1, 0.9 2.40±1.77 

1.2, 1.4 
2.92±3.07 

1.5, 0.4 
2.31±1.81 

1.2, 1.7 3.10±3.57 1.5, 0.6 2.42±1.82 

1.2, 2 4.77±6.76 1.5, 0.9 2.27±1.73 

 

In all the experiments in (a) and (b), the values of    are 

always smaller than the values of    and   , and this 

demonstrates that the new fuzzy regression transfer leaning 

model   is better than the existing model   and the model  ̅ 

trained using few data in the target domain. 

 

Experiment 3 

This experiment investigates the impact of different input 

space reconstruction methods when there are interactions 

between the features. As there are two datasets in the source 

domain and target domain in transfer learning problems, we 

consider the following four cases in Table XII. 
 

TABLE XII 

FOUR CASES OF FEATURE INTERACTION 

 Source domain Target domain 

Interaction between 

features 

N N 

Y Y 

Y N 

N Y 

 

Here, “N” indicates that there is no interaction between the 

features, and “Y” stresses that there is interaction between the 

features. 

In the synthetic datasets, we generate data in the following 

way to highlight interaction scenarios between the features. The 

synthetic datasets are all two-dimensional. If the functions in 

the conclusion part of the fuzzy rules are in the form       
                , we suppose that there is interaction 

between features    and   . If we consider linear functions in 

the form                , we suppose that there is no 

interaction between the features.  

We apply the two methods to construct the mappings for the 

input space with the structures shown in Fig. 9. In structure 1, 

the nonlinear mapping is constructed for each input variable. In 

structure 2, the nonlinear mapping is constructed for the entire 

input space (viz. all variables).  

 

2x

1x 1 1( )x

2 2( )x

11z

12z

13z

21z

22z

23z

2x

1x 1 1( )x

2 2( )x

23r

22r

21r

11r

12r

13r

method 1 method 2  
Fig. 9.  Two methods of constructing the mappings for the input space  

 

These two methods of constructing mappings for the input 

space are applied to the above four cases and the results are 

compared to determine whether there is an interaction between 

the features, and which method of transforming the input space 

is superior.  

The same datasets as used in Experiment 2 are considered 

and every experiment is run 10 times. The experimental results 

of the proposed fuzzy regression transfer learning model in the 

target domain are reported in Table XIII. 

 
TABLE XIII 

SUMMARY OF THE EXPERIMENTAL RESULTS 

   (Mean ± Standard deviation) 

Cases method 1 method 2 

(N, N) 0.51±0.08 2.41±1.78 
(Y, Y) 0.35±0.13 1.77±3.55 

(Y, N) 0.29±0.06 2.42±4.95 

(N, Y) 0.48±0.04 0.98±0.54 

 

From the results, we note that in all cases, whether or not 

there is an interaction between the features in the source 

domain and target domain, the performance of the first method 

is far better than the performance of the second method. 

Therefore, in a real-world problem where it is unknown 

whether there are interactions between features, it is advisable 

to use the first method to construct the transformation of the 

input space, i.e., construct the mapping for each input variable. 

 

B. Real-world Datasets 

In this paper, we apply our fuzzy regression transfer learning 

method on two public datasets. 

1) Housing dataset 

The UCI Machine Learning Repository is a public dataset for 

regression problems. We use the “Housing Data Set” from this 

repository and revise it for the purpose of transfer learning. The 

dataset is split into two datasets using the attribute “TAX” to 

represent the full-value property-tax rate per $10,000. Instances 
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of “TAX” being smaller than 600 form the source dataset, and 

instances of “TAX” being larger than 600 constitute the target 

dataset. There are 360 instances in the source domain and 60 

instances in the target domain. We select two attributes to 

construct the feature spaces (average number of rooms per 

dwelling, and weighted distance to five Boston employment 

centers), and use the attribute “MEDV”, representing the 

median value of owner-occupied homes in $1000’s, as the 

output value. The input data in the source and target domains 

are shown in Fig. 10, and the 3-dimensional input-output data 

points are displayed in Fig. 11.  

 
Fig. 10.  Source (circle) and target (asterisk)          

 

 
 Fig. 11.  Source (circle) and target (asterisk)(input-output)          

 

As can be seen from Fig. 10 and Fig. 11, the distributions of 

both the input data and the output data in the two domains are 

different. The DE optimization algorithm is used to optimize 

the parameters, and    .5, and     . . This experiment 

also uses a 5-fold cross validation procedure, and for the 

purpose of analysis, the number of clusters is fixed as 6. The 

results are outlined in Table XIV, and the values of  ,   ,    

and    are listed in Table XV. 

As shown in Table XV, the values of    are all greater than 

130, which indicates that the model for the source domain is 

unable to effectively solve regression tasks in the target 

domain. The results shown in the fourth column of the table 

indicate that the value of    is unstable. This is due to the small 

amount of available target data, so a model built from these 

training data cannot be generalized for the testing data.  

The mean value of    shown in Table XIV is not small 

(171.70), but when analyzing the values of    in Table XV, we 

find that the other values of    are small and almost all are less 

than the values of    and   . The results for the second 

experiment show an exception (572.06), but also lead to a large 

standard deviation. The reason for the large value of    is that 

the number of data in the target domain is small, so the training 

data does not reflect the characteristics of the testing data. Our 

new fuzzy regression transfer learning method therefore 

performs well on this real-world problem. 

 
TABLE XIV 

EXPERIMENTAL RESULTS OF THE REAL-WORLD DATASET “HOUSING” 

 Mean±Standard deviation 

  16.77±9.03 

   144.53±13.35 

   26915.57±46894.50 

   171.70±224.09 

 

TABLE XV 

THE VALUES OF   ,    AND    

            

1 16.22 140.45 94.25 70.18 

2 13.79 167.55 108388.78 572.06 

3 30.68 133.81 170.59 75.25 

4 17.44 143.39 31.22 86.26 

5 5.69 137.48 25892.99 54.75 

 

2) Concrete compressive strength dataset 

In this series of experiments, we include another real-world 

dataset from the Machine Learning Repository, “Concrete 

Compressive Strength” data. The data has 8 attributes: 

“cement”, “blast furnace slag”, “fly ash”, “water,” 

“superplasticizer”, “coarse aggregate”, “fine aggregate”, and 

“age”, and the output feature is “concrete compressive 

strength”. We revise the dataset in two aspects to make it more 

appropriate for transfer learning. First, the dataset is split into a 

source domain and a target domain according to the attribute 

“age”: instances with “age” smaller than 100 fall into the source 

domain, and instances with “age” bigger than 100 fall into the 

target domain. To clearly differentiate between the source data 

and the target data, the attributes “blast furnace slag”, “fly ash” 

and “superplasticizer” are perturbed by random numbers 

following different distributions in two domains. There are 900 

instances in the source domain and 60 instances in the target 

domain. 

For this dataset, DE is used to optimize the parameters, and 

   .5 , and     . . In addition, we apply the method 

incorporating the automatic change of number of clusters 

described in Section III-A, and compare the results to choose 

the best solution. The 5-fold cross validation procedure is 

applied, and the results are reported in the form of 

mean±standard deviation in Table XVI. 
 

TABLE XVI 
EXPERIMENTAL RESULTS 

 5 clusters 6 clusters 7 clusters 8 clusters 

Q 0.02±0.01 0.02±0.00 0.02±0.00 0.02±0.00 

Q  1.97±1.22 2.65±1.27 2.20±0.94 2.13±1.00 

Q  116232.88±2591

81.71 

161546.09±2153

16.00 

1240.89±264

8.12 

249.13±40

9.39 

Q  0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 
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High values of    indicate that the model in the source 

domain does not work well for the target data. High values of 

   indicate that the target data is insufficient for training a good 

model. From the results shown in the last row of Table XVIII, 

we see that the introduced fuzzy regression transfer learning 

method is effective in all cases, no matter how many clusters 

are used. When the number of clusters is set to 5, the mean 

value of    in 5-fold cross validation is the smallest, as is the 

standard deviation. As a result, using 5 clusters for this problem 

is the best option. 

V. CONCLUSION AND FUTURE WORK 

In this study, we proposed a fuzzy regression transfer 

learning method that modifies the input space of data through 

mappings to make the fuzzy rules of the existing model more 

compatible for solving tasks in the target domain. This method 

effectively solves regression problems in the target domain 

when only a small amount of data is available. Experimental 

results show that our method greatly improves the performance 

of the existing model in estimating the values of the target 

domain. 

We have only considered situations in which the input spaces 

of the source domain and the target domain respectively have 

the same dimensionality. In further studies, it will be beneficial 

to focus on the more challenging problem in which the two 

domains have different feature spaces. 
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