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The concept of harvesting ambient energy as an alternative power supply for electronic systems like remote sensors to avoid
replacement of depleted batteries has been enthusiastically investigated over the past few years. Wind energy is a potential power
source which is ubiquitous in both indoor and outdoor environments. The increasing research interests have resulted in numerous
techniques on small-scale wind energy harvesting, and a rigorous and quantitative comparison is necessary to provide the academic
community a guideline. This paper reviews the recent advances on various wind power harvesting techniques ranging between cm-
scaled wind turbines and windmills, harvesters based on aeroelasticities, and those based on turbulence and other types of working
principles, mainly from a quantitative perspective. The merits, weaknesses, and applicability of different prototypes are discussed in
detail. Also, efficiency enhancing methods are summarized from two aspects, that is, structural modification aspect and interface
circuit improvement aspect. Studies on integrating wind energy harvesters with wireless sensors for potential practical uses are also
reviewed. The purpose of this paper is to provide useful guidance to researchers from various disciplines interested in small-scale

wind energy harvesting and help them build a quantitative understanding of this technique.

1. Introduction

Studies on harvesting power from ambient energy sources
have flourished in the past few years, with an ultimate
objective to remove the reliance of low-power electronic
devices on electrochemical batteries as well as the associ-
ated requirement of periodic replacement and maintenance.
Various energy sources are available surrounding the elec-
tronic system, like solar, wind, thermal energy, mechanical
vibration, and human activities. Among them, wind energy
is ubiquitous and exists almost everywhere in our daily
life, such as the flow in indoor heating and ventilation air
conditioning systems and natural wind in outdoor spaces. It
can serve as an alternative power supply to implement self-
powered electronic systems like self-powered wireless sensor
networks (WSNs). When a specific structure is subjected to
wind flows, limit cycle oscillations will occur due to the fluid-
structure interaction. The vibration strain energy can be ben-
eficially transferred into electricity using various conversion
mechanisms, such as electrostatic [1, 2], electromagnetic [3],

and piezoelectric conversions. Piezoelectric conversion has
attracted rapidly growing interests due to the high power
density and ease of integration with microsystems [1, 4-13].
Recently, the field of small-scale wind energy harvesting
has experienced dramatic growth [14-21]. Researchers have
reported studies on harnessing wind power using minia-
turized windmills (e.g., [22]) or making use of aeroelastic
instabilities such as vortex-induced vibration (VIV) (e.g.,
[23]), galloping (e.g., [24, 25]), aeroelastic flutter (e.g., [26]),
and wake galloping (e.g., [27]). Turbulence-induced vibration
has also been utilized for wind power extraction (e.g., [28]).
Numerous techniques have emerged due to the growing
research enthusiasm; therefore, a rigorous and quantitative
comparison and review are necessary to provide the academic
community a guideline. This paper focuses on a com-
prehensive comparison of various small-scale wind energy
harvesting techniques, including cm-scaled wind turbines
and windmills and harvesters based on aeroelasticities and
turbulences as well as other types of working principles. In
contrast to prior surveys [20, 21, 29-31], the emphasis of



this paper is laid on the quantitative comparison between
the various fabricated prototypes in the literature regarding
their dimensions, cut-in wind speeds, cut-out wind speeds,
peak power values as well as power densities, and so forth,
based on which merits, weaknesses, and applicability of
different designs are discussed in detail. The main findings
are summarized in Tables 1-2 and 4-8. Moreover, besides
the technique comparison, enhancing methods of power
extraction efficiency are reviewed and discussed from two
aspects, that is, structural modification aspect and interface
circuit improvement aspect. In addition, review is conducted
on studies about integrating wind energy harvesters with
wireless sensors for practical engineering applications. This
paper aims to help researchers from various disciplines
gain quantitative understanding of small-scale wind energy
harvesting techniques and provide useful guidance to those
who want to develop and improve the efficiency of a wind
energy harvester.

2. Designs of Aeroelastic Piezoelectric
Energy Harvesters

Many designs of small-scale wind energy harvesters have
been reported in the literature, including those in the form
of small-scale windmills and turbines and those based on
the aeroelastic instabilities, like VIV, galloping, flutter, wake-
induced oscillation, and TIV. In this section, performances of
the recent small-scale wind energy harvester designs will be
reviewed and compared.

2.1. Small-Scale Windmill and Wind Turbine. Rancourt et
al. [35] investigated the performance of power generation
of a centimeter-scale windmill. Power was generated using
electromagnetic transduction mechanism. Three prototypes
of propellers were tested in the wind tunnel, which were
all 4.2cm in diameter with four blades of different pitch
angels. The experimental results showed that the “Schmitz
theory,” which was developed for large scale wind turbine to
determine the optimal tip speed ratio for maximum turbine
efficiency (i.e., kinetic power extracted from the wind over the
available kinetic flow energy for the area covered by the disk
of the propeller), was also valid for small-scale wind turbines.
However, the power generation efficiency (electrical power
output over the available kinetic flow energy for the area cov-
ered by the disk of the propeller) at low wind speed decreased
sharply due to the friction in the generator and the internal
electric resistance. At a high wind speed of 11.8 m/s a large
power of 130 mW was achieved, corresponding to a power
generation efficiency of 9.5%, while a lower power of 2.4 mW
was obtained at 5.5 m/s with a decreased efficiency of 1.85%.
Bansal et al. [77] and Howey et al. [36] tested a miniature
electromagnetic wind turbine in cm-scale claimed to be the
smallest turbine-based energy harvester reported to date,
with a rotor diameter of 2cm and outer diameter of 3.2 cm.
The turbine [36] consisted of two rotating magnetic rings
mounted on the rim of the rotor and fixed stator coil sand-
wiched between the magnetic rings. Wind tunnel experiment
found that the cut-in wind speed was 3 m/s, below which
the turbine could not operate. The test was run up to 10 m/s,
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and a power of 80 yW to 4.3 mW was achieved. Compared
to the device of Rancourt et al. [35] at a low wind speed
of 5.5 m/s, similar power generation efficiency was obtained,
that is, 1.35% for 5m/s and 1.52% for 6 m/s. It was noted that,
at wind speeds lower than 7 m/s, the generated power was
limited by bearing loss while, at wind speeds higher than
7 m/s, power output was limited by resistive generator loss.
Future designs of miniature turbines aimed to harvest energy
from low speed flows should pay attention to these two issues.

Both studies of Rancourt et al. [35] and Howey et al. [36]
show that the major challenge of miniature electromagnetic
windmill lies in the greatly decreased power generation
efficiency in slow flows. Of course, if a more sophisticated
small-scale wind turbine can be established incorporating
optimized shape of airfoil and proper design of diffuser, the
output power can be significantly increased [78, 79]. It was
reported by Kishore et al. [79] that a properly designed small-
scale wind energy portable turbine (SWEPT) with a diameter
of 39.4 cm can generate a power-up to 830 mW at a wind
speed of 5m/s. Yet this size of the turbine is much larger than
those of the small-scale harvesters mentioned above, which
are mainly smaller than or in the order of 10 cm.

Recently small-scale windmills using piezoelectric trans-
duction have shown great potential in efficiently harvesting
low speed flow energy. The rotation of the windmill shaft
under wind flows is transferred to oscillatory motion of the
piezoelectric transducer. The mechanical transfer is some-
times achieved by direct impact between the piezoelectric
cantilever and the cam or blade, with a working principle
similar to that of a mechanical stopper [80]; some other times
itis achieved through magnetic interfaction where no contact
impact is required.

Priya et al. [22] proposed a piezoelectric windmill to
harvest energy from low speed wind flows. Twelve piezo-
electric bimorphs were arranged in a circular array around
the circumference of the center shaft of the windmill. Twelve
rubber stoppers were connected to the shaft, each of which
was in contact with one of the bimorphs. The shaft connected
via a cam to a rotating fan was rotated via the camshaft
mechanism. When the shaft rotated, the stoppers caused
the back and forth movements of the bimorph transducers,
generating electrical energy via direct piezoelectric effect. The
voltage was measured across a 4.6 kQ) load at an oscillatory
frequency of 4.2 Hz. Experimentally, a standard circuit was
employed and a power of 10.2mW after rectification was
obtained at 6 Hz and 4.6kQ. It was found that power
was increased with the prestress level and the number of
bimorphs, which yet also resulted in increased difficulty in
the fan rotation thus causing an increased cut-in wind speed.

In a subsequent work, Priya [37] presented a theoretical
model based on bending beam theory of bimorphs and
equivalent circuit of capacitor to predict the output power of
the above-mentioned piezoelectric windmill. Ten bimorphs
were used in the experiment. A cut-in wind speed of 4.7 mph
and a cut-out wind speed of 12 mph (above which damage
of structure will occur) were measured. A maximum power
of 75 mW was obtained after rectification at 10 mph across a
load of 6.7kQ). A linear relationship was given between the
saturated frequency (final constant operating frequency at a
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constant wind speed) of the windmill and the wind speed as
f (Hz) =-0.93 + 1.29U, which well captured the experimental
observation that the frequency linearly increased with the
wind speed. Also, it was found that the generated power
almost linearly increased with the frequency. It was suggested
that the piezoelectric windmill could be a feasible power
supply for wireless sensors.

Chen et al. [38] investigated the performance of wind
energy harvester with similar working principle to that of
the above piezoelectric windmills, but with a rectangular
arrangement of piezoelectric transducers. Twelve bimorph
transducers were arranged in six rows and two columns,
with a gap of 6 mm between each other. A cylindrical rod
in between the two columns was connected via a camshaft
mechanism to a rotating fan, which caused the up and down
movement of the rod. Subsequently, the six hooks on the rod
induced back and forth oscillations of the transducers from
which electrical energy could be generated. The variation
of power with wind speed from experiment was similar to
that of Priya [37]. With a load of 1.7kQ, a cut-in wind
speed of 4.7 mph and a cut-out wind speed of 14 mph were
measured, with a maximum power of 1.2 mW obtained at
12 mph. Compared to the windmill, this prototype is easy
to fabricate and is space efficient with a rectangular-array
arrangement of transducers; also, since all the bimorphs are
vibrating in phase, combined circuit can be used eliminating
the trouble of using individual processing circuit required in
the circular windmill, as summarized by Myers et al. [39].
Yet the power was much lower compared to the circular
windmill. To solve this issue, Myers et al. [39] proposed
an optimized rectangular piezoelectric windmill to enhance
power output by employing three fan blades to enlarge the
covered flow surface and to increase the captured wind
energy. The number of piezoelectric transducers was also
increased, with two rows containing nine transducers in each
row. It was measured that, with a small sized prototype of 3 x
4 x 5 inch® (7.62 x 10.16 x 12.70 cm?), an enhanced power of
the order of 5mW was obtained at 10 mph. It should be noted
that, for all the above-mentioned piezoelectric windmills, the
same piezoelectric transducers were used, that is, APC 855
with dimensions of a single piece of 60 x 20 x 0.6 mm”.

For the above-mentioned impact-driven windmills, a
challenging issue exists that the frequent impacts not only dis-
sipate some kinetic energy but also cause fatigue problems of
the piezoelectric cantilevers and induce mechanical damages.
In order to overcome this shortcoming, some researchers
have proposed windmills that do not require direct impacts
but induce oscillations of the transducers through magnetic
interactions.

Bressers et al. [40] proposed a design of piezoelectric
wind turbine where the piezoelectric elements were “contact-
less” actuated through magnetic interaction. A vertical axis
wind turbine was connected to a disk, to which a series
of alternating polarity magnets were attached. The magnets
were also attached at the tips of the cantilevered transducers,
which underwent harmonic oscillations through alternating
attractive/repulsive magnetic force when the blades were
rotating in wind flow. Measurement showed that with a two-
blade and four-magnet rotor, the cut-in wind speed was

Shock and Vibration

lowered down to 2mph and a maximum power of around
1.2 mW was obtained at 9 mph.

Karami et al. [41] proposed a nonlinear piezoelectric wind
turbine. A vertical axis turbine was placed on top of four
vertical cantilevered piezoelectric transducers. Two arrange-
ments of tangential configuration (80 x 80 x 175 mm?) and
radial configuration (75 x 75 x 165 mm?) were considered. In
both configurations, four tip magnets were embedded at the
tips of the transducers, while five magnets were attached to
the bottom of the rotating disk that was fixed to the blades.
Different from the device of Bressers et al. [40], nonlinearity
was introduced to the transducers. The rotation of the blades
induced the distance between the disk and tip magnets
to continuously alter, making the transducer alternately
undergo bistable and monostable dynamics. Therefore, the
transducer was both directly and parametrically excited. For
the tangential configuration, with a magnetic gap of 25 mm
and a load of 247 kQ), the cut-in wind speed was measured
to be 2m/s, and a maximum power of 4mW at 10m/s
was obtained, while, for the radial configuration, the output
power was one order of magnitude less than that from the
tangential design. It was explained that the direct excitation
in the radial configuration was not as significant as that in the
tangential configuration. It was concluded that the nonlinear
parametric excitation and ordinary excitation mechanisms
can result in several advantages, including the low cut-in
wind speed, high output power, and large operational range
of wind speed.

Miniaturized windmills or wind turbines can generate
a significant amount of power. Yet the biggest concern is
that the rotary components are not desired for long-term
use of such small sized devices. A summary of the various
windmills and miniaturized turbines reviewed is presented
in Table 1. Their merits or limitations and other information
that the authors feel useful are also given in the table. For
the present table and the following ones (Tables 2 and 4-8),
power density per swept area/volume is calculated by dividing
the maximum output power by the frontal area normal to the
flow/device volume. Because the volume of some accessory
components (e.g., the joints) and elements taking very small
proportions of the whole volume (e.g., a short piezoelectric
sheet attached to a long substrate cantilever) are ignored,
the power density values should be considered the estimated
upper bound for comparison purpose only.

2.2. Energy Harvesters Based on Vortex-Induced Vibrations.
The concept of using VIV to harvest energy was first inves-
tigated in flowing water instead of wind. Allen and Smits
[42] proposed an “energy harvesting eel” to harvest flowing
water energy. The unit consisted of a fixed flat plate as a
bluff body with a piezoelectric membrane placed in the wake.
The membrane was set free in the downstream. Alternating
vortices were shedded on either side of the bluff body,
resulting in pressure differential thus forcing the membrane
to oscillate with a movement similar to that of a natural eel
swimming. Particle image velocimetry (PIV) experiment was
conducted to investigate the vorticity pattern formed behind
the bluft body. Four prototypes were tested in a recirculating
water channel with different types of material and dimensions
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of the membrane and various Reynolds number. It was found
that lock-in phenomenon occurred to the membranes when
they oscillated at the same frequency as the undisturbed
wake behind the bluff body. The frequency responses of the
membrane were found to be independent of the length of the
membrane but significantly sensitive to the bluft body size.
Electrical response (i.e., voltage or power) was not measured
in this study.

Taylor et al. [43] proposed a similar “eel” harvester to
harvest energy from flowing water like in the estuary or even
in the open ocean. A prototype of 9.5" length, 3" width
and 150 ym thickness was fabricated with the commercial
piezoelectric polymer PVDE totally consisting of 8 segments.
The prototype was tested in a flow tank and data on each
segment were acquired separately. A peak voltage around 3V
was measured for the segment near the head bluff body at a
flow speed of 0.5 m/s. Measurements also showed that, from
head to tail, distortion in the voltage output increased while
voltage magnitude decreased. The maximum power was
achieved when the flapping frequency matched the vortex
shedding frequency. It was pointed out that an optimum
central layer and active layer thickness deserve further design
efforts to obtain the optimum bending stiffness and thus the
maximum strain.

Robbins et al. [44] proposed several methods to improve
the power extraction efficiency of an energy harvester with
flexible piezoelectric material. It was shown experimentally
that the efficiency could be enhanced by using windward
bluff body and adding mass to the free end of the flap-
ping piezoelement. Analytically, it was shown that the use
of stronger-coupling flexible piezoelectric materials such
as AFCs (active fiber composites) and MFCs (macrofiber
composite) could improve the efficiency by a factor of 25.
Moreover, both experiment and analysis showed that using
the quasi-resonant rectifier to extract electrical energy from
piezoelement instead of standard full-wave rectifier could
increase the efficiency by a factor of 2.3.

Pobering and Schwesinger [45] implemented a VIV
energy harvester similar to the energy harvesting eel in
both the air and water flow. It was roughly determined that
available energy densities in flowing media are in the range
of 256W/m? in air at a wind speed of 10 m/s and 1600 kW/m?
in water at a flow speed of 2m/s, respectively. Behind the
fixed bluff body, a piezoelectric bimorph cantilever was
attached instead of flexible membrane or polymer, in such
a way that the cantilever would only deform in the first
vibration mode, unlike in the case of the membrane or
polymer where undulating waves were generated along the
length. With a simple analytical model, the optimal ratio of
the cantilever length L over the frontal dimension D of the
windward bluff body was calculated to be L/D = 2.125.
Three identical prototypes were fabricated and tested in a row
with a cantilever length of 14 mm, width of 11.8 mm, thickness
of 0.35 mm, and bluff body frontal dimension of 10.35 mm.
The wind speed giving the peak power varied for the three
prototypes depending on their positions. A highest deflection
of 51 ym was obtained at a wind speed of 40 m/s on the second
cantilever. A peak voltage of 0.8 V with a load resistance of
1MQ and a peak power of 0.108 mW with a matched load

resistance of 1.2 kQ) were measured at 45 m/s. Measurements
in the water were not reported, but it was predicted that lower
water flow speed would lead to comparable high power since
the energy density in water was around 1000 times higher
than that in air. It was concluded that adjacent cantilevers
had strong influences on each other which enhanced the
deflection and output power.

In a subsequent study, Pobering et al. [46] conducted
more tests in both air and water. Comparison of the wind
tunnel experimental results between two series confirmed the
analytical prediction of the optimal geometrical relationship
L/D = 2.125. It was also found that the cantilevers in a
row were able to synchronously oscillate in flowing media
with high density like water. With a peak power of 0.055 mW
obtained from a single piezoelectric layer at 40 m/s, a total
power output of around 1mW can be approximated for a
series of 9 cantilevers. It was concluded that the power of the
proposed harvesting system was sufficient to power sensors
logical circuits and wireless data transmission circuits.

However, among the above studies on VIV based energy
harvesters, no one has investigated the effect of electrome-
chanical coupling on the electrical output or its backward
coupling effect on the aeroelastic response. Akaydin et al. [47]
were among the very first to consider the three-way coupling
effects, that is, the mutual coupling behaviors between the
aerodynamics, structural vibration, and electrical response.
In their study, a new type of energy harvester was pro-
posed to harness flow energy based on the vortex shedding
phenomenon. A piezoelectric cantilever was put behind a
windward cylinder which was fixed as a bluftf body. The
downstream end of the cantilever was fixed. The cantilever
oscillated in the fully turbulent vortex street formed at high
Reynolds number of 14842. Although the harvester was
claimed to be designed for harnessing energy from highly
unsteady fluid flows, if we consider the windward cylinder as
a part of the energy harvester the flow in front of the cylinder
was smooth and steady as they were placed together in a
smooth-flow-generating wind tunnel. Therefore, we review
this design in the section of “energy harvesters based on
vortex-induced vibrations.” In this study, performance of the
piezoelectric cantilever inside a turbulent boundary layer
was also reported, which we will introduce in the section
of “energy harvesters based on turbulent induced vibration.”
Experimentally, with a 30 mm x 16 mm x 0.2 mm cantilever
with a piezoelectric layer of PVDF attached on the top surface
and with a cylinder of 30 mm in diameter and 1.2m in
length fixed in the windward direction, a peak power of
4 yW was measured with a load of 100 k() at a wind speed
of 723 m/s, which produced a vortex shedding frequency
close to the beam’s resonance frequency around 48.5Hz.
Simulations based on CFD were conducted to solve the two-
dimensional N-S (Navier-Stokes) equations to obtain the
aerodynamic pressure, which was substituted into a IDOF
electromechanical model to calculate the voltage output. The
electromechanical coupling was assumed to be weak and the
backward coupling effect of the voltage generation on the
mechanical displacement response was reasonably ignored.
An explanation of the driving mechanism of the beam’s
oscillation was tried to be deduced from the simulation



results. The induced flow ahead of the vortex impinges on
the beam, and the overpressure resulting from the stagnation
region bends the beam; at the same time, on the opposite
side, the core of another vortex applies suction, driving the
beam in the same direction. The mechanism was further
confirmed in a subsequent study with more simulations [48].
It was found experimentally that the face-on configuration
where the beam was parallel to the upstream flow is the best
orientation for the beam.

In a subsequent study, Akaydin et al. [23] proposed a
new self-excited VIV energy harvester to improve the output
power. The cylinder was, different from the previous cases,
attached to the free end of an aluminum cantilever with PZT
covering the end area. Periodic oscillations occurred in the
direction normal to the wind flow due to the vortex shedding.
A peak power of around 0.1mW of nonrectified power was
obtained at a much lower wind speed of 1.192m/s with a
matched load of 2.46 MQ. Compared to the previous design,
the aeroelastic efficiency (i.e., efficiency of converting the flow
energy into mechanical energy) was increased from 0.032%
to 2.8% and the electromechanical efficiency (i.e., efficiency
of converting the mechanical energy into electrical energy)
was increased from 11% to 26%. It was concluded that the
modified configuration of the attachment of the cylinder on
the cantilever tip and the employment of PZT instead of
PVDEF greatly enhanced the power generation.

In order to overcome the narrow operating range of VIV-
based harvesters, Weinstein et al. [49] proposed an energy
harvester with resonance tuning capabilities. The piezoelec-
tric cantilever was placed behind a cylinder bluft body and
attached with an aerodynamic fin at the tip. Small weights
were placed along the fin. Manually adjustment of the
weights positions could tune the resonant frequencies of the
harvester, making it able to operate at resonance for wind
velocities from 2 to 5m/s. A peak power of nearly 5mW
was obtained at a wind speed of around 5.5m/s. But the
limitation is that this tuning mechanism is not automatic;
thus the wind velocity needs to be always stable and the exact
wind velocity should be known before the installation of this
harvester.

Different from the aforementioned studies which investi-
gated the performance of the fabricated VIV energy harvester
prototypes based on experiments or numerical simulations,
Barrero-Gil et al. [81] attempted to theoretically evaluate the
effects of the governing parameters on the power extraction
efficiency. The effects of the mass ratio m* (i.e., the ratio
of the mean density of a cylinder bluff body to the den-
sity of the surrounding fluid), the mechanical damping (,
and the Reynolds number were investigated with a IDOF
model where fluid forces were introduced from previously
published experimental data from forced vibration tests.
There was no specific energy harvester design proposed. It
was shown that the efficiency was greatly influenced by the
mass-damping parameter m”{, and there existed an optimal
m”{ for peak efficiency at a specific Reynolds number. The
range of reduced wind speeds with significant efficiency was
found to be mainly governed by m”*. Also, it was found
that high efficiency could be achieved for high Reynolds
numbers.

Shock and Vibration

Abdelkefi and his coworkers [82, 83] theoretically ana-
lyzed the influences of several parameters on the mechan-
ical and electrical responses of a VIV harvester. A flexibly
supported rigid cylinder was considered with a piezoelectric
transducer attached to the transverse degree of freedom. The
vortex shedding lift force was expressed by a van der Pol
equation. Based on the lumped parameter model, Abdelkefi
et al. [82] found that increasing the load resistance shifted the
onset of synchronization to higher wind speeds. A hardening
behavior and hysteresis were observed in the displacement,
voltage, and power responses due to the cubic nonlinearity
in the lift coeflicient. In a subsequent study of Mehmood
et al. [83], the aerodynamic loads due to vortex shedding
were obtained using CFD simulations and were subsequently
coupled with the electromechanical model to predict the
electrical output. It was found that the region of wind
speeds at synchronization was slightly widened when the load
resistance increased. An optimum value of load resistance for
maximum power output was determined to correspond to the
load value with minimum displacement of the cylinder.

Gao et al. [50] proposed another configuration of har-
vester consisting of a piezoelectric cantilever with a cross-
flow cylinder attached to its free end, of which the long axes
were arranged in parallel. Prototypes were constructed and
tested in both laminar flows generated by a wind tunnel and
turbulent flows generated by an electric fan. Experimentally,
it was found that the power output increased with the wind
speed and cylinder diameter. Higher voltage and power were
generated in the turbulent flow than in the laminar flow. It
was concluded that turbulence excitation was the dominant
driving mechanism of the harvester, with additional contri-
bution from vortex shedding excitation in the lock-in region.
With a piezoelectric cantilever of 31 x 10 x 0.202 mm’ and a
cylinder with a length of 36 mm and a diameter of 29.1 mm, a
peak power of 30 yW was measured at a wind speed of 5m/s
in the fan-generated turbulent flow.

Instead of directly using the impinges of shedded vor-
tices on the piezoelectric membrane or cantilever to induce
mechanical oscillations, Wang and his coworkers [51-53, 84]
developed energy harvesters in the form of a flow channel
with a flexible diaphragm. The diaphragm was driven into
vibration by vortex shedding from a bluft body placed in the
channel. Piezoelectric film or magnet and coil are connected
to the diaphragm for energy transduction. Experimental
results showed that an instantaneous output power of 0.2 yW
was generated for the piezoelectric harvester under a pressure
amplitude of 1.196 kPa and a pressure frequency of 26 Hz
[51] and 1.77 yW for the electromagnetic harvester under
0.3kPa and 62Hz [52]. Subsequently, Tam Nguyen et al.
[53] further investigated the effects of different bluff body
configurations. Two bluff bodies were placed in the flow
channel in a tandem arrangement to enhance the pressure
fluctuation behind them. A prototype was assembled, with
an embedded 0.2 mm thick polydimethylsiloxane (PDMS)
diaphragm on top surface of the flow channel, two triangular
bluff bodies with a base length of 4.25 mm, and an altitude
of 2.18 mm inserted inside a PVDF film of 25 mm x 13 mm x
0.205 mm glued to the acrylic bulge on top of the diaphragm.
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An open-circuit voltage of 14 mV and an average power of
0.59 nW were measured with the prototype at a wind speed of
20.7 m/s. The power is relatively low as compared with other
harvesters that have been reviewed. It was suggested that the
power can be enhanced by optimizing the blockage ratio,
adjusting the position of the flexible diaphragm, and using
a piezoelectric material with higher piezoelectric constants.
This harvester design was recommended to be deployed
in the pipelines, tire cavities, or machinery by installing a
diaphragm on the wall.

Current studies on energy harvesting from VIV also
include the investigation of the interaction of a single and
multiple vortices with a cantilever conducted by Goushcha
et al. [85] as an extension of the work by Akaydin et al.
[47, 48]. Particle image velocimetry was used to measure
the flow field induced by each controllable vortex and
quantify the pressure force on the beam to give a better
understanding of the fluid-structure interactions. The two
driving mechanisms of upstream flow impingement on one
side of beam and suction of the vortex core on the opposite
side [47, 48] and the importance of matching the frequency of
appearance of vortices with the beam’s resonance frequency
were demonstrated clearly via the flow visualization.

The necessity of achieving the synchronization region
for energy harvesting from VIV was also demonstrated by
Wang et al. [86] through modeling with computational fluid
dynamics. Recently, VIV has been employed for large-scale
wind energy harvesting with the so-called Vortex Bladeless
Wind Generator [87], which is capable of generating high
output power in the order of kW or even MW. The size of
this type of generator is tremendously increased as compared
to other devices investigated here; for example, it can be
a few tens of meters high. Table 2 compares the reported
fabricated prototypes based on vortex-induced vibrations,
with regard to the transduction mechanism, shape of bluff
body, cut-in and cut-wind speed, peak power and power
density, dimension, and their advantage, disadvantage, and
applicability.

2.3. Energy Harvesters Based on Galloping. It is not until
recently that the aeroelastic instability phenomenon of trans-
verse galloping is employed to obtain structural vibrations for
energy harvesting purpose. Due to the self-excited and self-
limiting characteristics of galloping, it is a prospective energy
source for energy harvesting. Moreover, compared to the VIV,
galloping owns its advantages of large oscillation amplitude
and the ability of oscillating in infinite range of wind speeds,
which are preferable for energy harvesting.

Barrero-Gil et al. [88] theoretically analyzed the potential
use of galloping to harvest energy using a IDOF model.
The harvesting system was modeled as a simple mass-
spring-damper system. No specific energy harvester design
was proposed. The aerodynamic force was formulated using
a cubic polynomial based on the quasi-steady hypothesis.
Theoretically, it was found that, in order to achieve a high
efficiency, the bluff body should have a high aerodynamic
coefficient A, and a low absolute value of A5 (generally, A; >
0, A, = 0,and A; < 0). For the mechanical damping, it was
determined that a low value of the mass-damper parameter

TaBLE 3: Different cross-sections of bluff body in comparative study
of Yang et al. [32].

(«

40 (dia.)

Section shape D%

[ [« <«

40X 60 40x26.7 40 (side)

Dimension
I x d (mm) 40 x 40

m*{ should be used, where m is the distributed mass of the
bluff body. Sorribes-Palmer and Sanz-Andres [89] continue
the study by obtaining the aerodynamic coeflicient curve
C,(a) directly from the experimental data instead of using
a polynomial fitting. It was found that directly obtaining
C,(«) from experiment can avoid problems associated with
polynomial fitting like wrong dynamic responses induced by
inaccurate polynomials.

A galloping energy harvester consisting of two cantilever
beams of 161 x 38 x 0.635 mm’ and a prism with equilateral
triangular cross-section of 40 mm in each side and 251 mm
in length attached to the free ends was proposed by Sirohi
and Mahadik [54]. A coupled electromechanical model was
established based on the Rayleigh-Ritz method, and the aero-
dynamic model was based on the quasi-steady hypothesis.
Due to the large size and high coupling coefficient of the
piezoceramic sheets, a high peak power was achieved as more
than 50 mW at a wind velocity of 11.6 mph (around 5.2 m/s) in
the laminar flow condition. But an abrupt decrease in output
power occurred at 13.6 mph, which was not in consistence
with the galloping mechanism. The authors attributed this
decrease to the large-scale turbulence in the wind tunnel.

Another galloping energy harvester using a tip body
with D-shaped cross-section connected in parallel with a
piezoelectric composite cantilever was developed by Sirohi
and Mahadik [55], with a dimension of 30 mm in diameter
and 235mm in length for the tip body and 90 x 38 x
0.635mm’ for the cantilever. The wind flow was generated
by an axial fan, which was associated with a highly turbulent
profile. The measured voltage generated by the piezoelectric
sheets showed that a stable limit cycle oscillation could be
obtained for the steady state response. Also, the frequency
of oscillation was found to be equal to the natural frequency
of the cantilever. The power output was observed to con-
tinuously increase with the wind speed. A maximum power
of 1.14 mW was obtained at a wind speed of 10.5 mph. The
wide operational wind speed range is a great benefit of energy
harvesters based on galloping.

A comparative study of different bluff body cross-sections
for small-scale wind energy harvesting based on galloping
was conducted by Zhao et al. [56] and Yang et al. [32]. Wind
tunnel experiment was carried out with a prototype device
consisting of a piezoelectric cantilever and a bluff body with
various cross-section profiles. Square, rectangle, triangle, and
D-shape were considered, as shown in Table 3. Figure 1 shows
an example of the schematic and fabricated prototype of
the galloping energy harvester with a square bluff body.
Responses of power versus load resistance showed that there
existed an optimal load value for maximum output power.
Moreover, it was experimentally determined for the first time
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TABLE 8: Summary of other types of energy harvester devices.

Cut-in Cut-out Maximum Wind Power
Author Transduction wind wind power speed at Dimensions density per Advantage.s/dlsadva.mtages
speed speed (mW) max power volume and other information
(m/s) (m/s) (m/s) (mW/cm?)
(i) Mimicking the basic
Cantilever: 5.8 x physics of music-playing
. 3 .
Bibo et Piezoelectric ~5.5%! — 0.05 7.5 1.626 % 0.038 cm”. 217 %107 (ii) Using optimal chamber
al. [75] Chamber volume: .

2300 cm® volume and decreasing
aperture’s width reduce the
cut-in wind speed.

(i) Bluff body configuration
outperformed the one fixed
Two identical bluff side and two fixed side
Ovejas bodies: 0.5 cm in configurations.
and . . dia. _s  (ii) Rotational turbulent
Cuadras | iezoelectric B o 0.0002 12.3 Piezoelectric film: 2> *10 flow froma dryer added to
[76] 15.6 cm x 1.9 cm x vortex shedding effects,

40 ym giving higher electrical
output than the laminar

flow did.

*1Obtained from the information of Figure 13(b) of the reference.

FIGURE 1: (a) Schematic and (b) fabricated prototype of galloping energy harvester with a square bluff body [32].

that the square section generates the largest power and has the
lowest cut-in wind speed among all the considered sections.
With a 150 mm x 30 mm x 0.6 mm cantilever and a 40 mm X
40 mm x 150 mm bluff body, a peak output power of 8.4 mW
was measured at a wind speed of 8 m/s with the optimal load
resistance, which is sufficient to power a commercial wireless
sensor node. A IDOF model was used which successfully
predicted the power response. Moreover, the analysis with the
galloping force represented with a seventh order polynomial
predicted a hysteresis region of output power, which was not
captured in the experiment due to the unavoidable turbulent
flow component in the wind tunnel. It was recommended
that the square section should be used for small-scale wind
galloping energy harvesters.

Abdelkefi et al. [90] theoretically investigated the concept
of using a galloping square cylinder to harvest energy. A
normal form solution was provided to validate the numerical
solution of the employed 1DOF model, with both solutions
confirming that the instability of galloping is a supercritical
Hopf bifurcation phenomenon. Theoretically, it was found
that, for low Reynolds, the onset of galloping (cut-in wind

speed) and output power increased while the displacement
decreased with the load resistance, while, for high Reynolds,
there existed an optimal load with which maximum output
power, maximum onset of galloping, and minimum dis-
placement were achieved simultaneously. Abdelkefi et al. [91]
considered more shapes of bluff body, including square, two
isosceles triangles (6 = 30" for one and § = 53" for the other,
with § being the base angle), and D-section. Theoretically,
the isosceles triangle with 6 = 30° was recommended for
small wind speeds while the D-section was recommended for
high wind speeds. It should be noted that the aerodynamic
coeflicients used to calculate the galloping force are much
sensitive to the flow condition (laminar or turbulent), which
has great influences on the galloping behavior of different
cross-sections. For example, turbulence in the flow can sta-
bilize the square section, while it destabilizes the D-section.
That is why the D-section cannot oscillate in the wind tunnel
as shown by Zhao et al. [56], but it can gallop when placed in
front of an axial fan [55].

In order to better understand the electroaeroelastic
behaviors and provide a guideline to optimize the galloping
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piezoelectric energy harvester, Zhao et al. [92] conducted a
comparison of different modeling methods to weigh their
validity, advantages, and disadvantages. The IDOF model,
single mode Euler-Bernoulli distributed parameter model,
and multimode Euler-Bernoulli distributed parameter model
were compared and validated with wind tunnel experiment
on a prototype with a square sectioned bluff body. It was
found that all these models can successfully predict the
variation of the average power with the load resistance and
the wind speed. Higher modes especially were found not
necessary in modeling since minor difference was observed
between the single mode and multimode Euler-Bernoulli
distributed parameter models. It was concluded that the
distributed parameter model has a more rational represen-
tation of the aerodynamic force while the IDOF model
gives a better prediction of the cut-in wind speed and owns
its merit for conveniently obtaining the electromechanical
coupling coeflicient for a fabricated prototype via direct
measurement. The parametric study showed that increasing
the wind exposure area and decreasing the mass of the bluff
body can increase the output power and reduce the cut-
in wind speed. Moreover, in order to obtain the maximum
power density (i.e., power per piezoelectric volume), it was
suggested that a medium-long piezoelectric patch be used
with careful sweep calculation.

A big issue of small-scale wind energy harvesting is
that most piezoelectric aeroelastic energy harvesters operate
effectively only at high wind speeds or within a narrow speed
range. To overcome this issue, that is, to reduce the cut-
in wind speed and enhance output power in the low wind
speed range (e.g., lower than 5m/s) which is typical for
heating, ventilation, and air conditioning (HVAC) systems’
flow condition, Zhao et al. [57] proposed a 2DOF piezo-
electric galloping energy harvester with a cut-out cantilever
and two magnets which induces stiffness nonlinearity of the
whole system, as shown in Figure 2. Wind tunnel experiment
confirmed its effectiveness, obtaining a reduced cut-in speed
of 1m/s and nearly four-time increase in power at 2.5m/s
with a magnet gap of 8 mm, as compared to the conventional
IDOF harvester. The total output power was found to be
enhanced in the low wind speed range up to 4.5m/s. It
was concluded that the proposed 2DOF galloping harvester
is suitable for powering wireless sensing nodes for indoor
monitoring applications and highly urbanized areas with
only low speed wind flows available. Subsequently, Zhao
and her coworkers [24, 25, 33, 58-60] further enhanced
the energy harvesting efficiency from both mechanical and
circuit aspects by amplifying the electromechanical coupling
with a beam stiffener and using nonlinear power extraction
circuit, which will be reviewed with more details in Section 3.

Bibo and Daqaq [93, 94] established a universal rela-
tionship between the dimensionless output power and the
dimensionless wind speed for galloping energy harvesters,
which was shown to be only sensitive to the aerodynamic
properties of the bluft body, but independent of the mechan-
ical or electrical design parameters of the harvester. This
relationship significantly facilitates the optimization analysis
and comparison of performances of different bluff bodies. It
was found that when all harvesters are optimally designed,
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FIGURE 2: Schematic of 2DOF piezoelectric galloping energy har-
vester for power enhancement at low wind speeds.

a squared-section bluff body always outperformed the D-
shaped and triangular sectioned bluff bodies, which agrees
with the findings of Yang et al. [32] and Zhao et al. [56].
A 53° isosceles-triangular section harvester was found to
outperform the D-shaped one at high wind speeds but
underperform the D-shaped one at low wind speeds.

Daqaq [95] subsequently incorporated the actual wind
statistics in the responses of galloping energy harvesters by
fitting wind data using Weibull Probability Density Function
(PDF). It was concluded that the wind speed statistics are
essential for accurate load optimization. An exponentially
correlated PDF was found to generate higher power than a
Rayleigh distribution, which in turn produces higher power
than a known wind speed located at the distribution average.

Ewere and Wang [62] employed the Krylov-Bogoliubov
method to obtain analytical approximate solutions for gal-
loping energy harvesters and found that the harvester with
a square sectioned bluff body can outperform the rectangular
sectioned one for all cases of load resistance and wind speed.
In a subsequent study of Ewere et al. [96], a bump stop
was introduced to relieve the fatigue problem of a galloping
energy harvester. Using an optimal bump stop design with a
gap size of 5 mm at the location of 130 mm along the beam of
length 228 mm and a contact surface area of 12.7 x 40 mm?,
a maximum 20% voltage reduction with substantial 70%
reduction in limit cycle oscillation amplitude was observed
from the wind tunnel experiment. It was concluded that
the service life of a galloping harvester can be significantly
improved by incorporating an impact bump stop.

Continuing the feasibility study of harvesting energy
from transverse galloping conducted by Barrero-Gil et al.
[88], Vicente-Ludlam et al. [97] carried out a theoretical
study of a galloping electromagnetic energy harvester by



FIGURE 3: Schematic of an airfoil undergoing modal convergence
flutter.

introducing the electromagnetic transduction mechanism
into the 1DOF galloping system. It was found that, with
the load resistance tuned to the optimal value for each
wind speed, the power extraction efficiency can remain
high over a larger range of wind speeds as compared to a
fixed value of the load resistance. In a subsequent study,
Vicente-Ludlam et al. [98] proposed a dual mass galloping
electromagnetic energy harvesting system to enhance the
energy extraction. It was shown theoretically that when the
mechanical properties were properly adjusted, putting the
electromagnetic generator between the secondary mass and
a fixed wall or between the main and the secondary masses
can improve the energy extraction efficiency and broaden
the effective range of the wind speeds for energy harvesting.
Table 4 presents a summary and quantitative comparison of
the discussed harvesters based on galloping.

2.4. Energy Harvesters Based on Flutter. Numerous designs
of energy harvesters based on flutter instabilities have been
reported under axial flow conditions [99-105] or cross-flow
conditions [71, 106], with flapping airfoil designs [63, 66, 107]
or tree-inspired [71] and infrastructure-inspired designs [69].
Examples of flutter based harvesters include the wind belt
[108] and flutter mill [109]. The main types of flutter based
energy harvesters include those based on modal convergence
flutter and those based on cross-flow flutter, which are
reviewed in detail in the following sections. Moreover, a new
type of flutter energy harvester named dual cantilever flutter
[73] is also discussed.

2.4.1. Energy Harvesters Based on Modal Convergence Flutter.
Among the explosive studies on small-scale wind energy
harvesting based on aeroelastic flutter, flapping airfoil or
flapping wing based designs have been the most enthusias-
tically pursued. Schematic of an airfoil undergoing modal
convergence flutter with coupled pitch-plunge motions is
shown in Figure 3. Energy harvesting based on airfoil flutter
has been reported a few decades ago by Bade [110] and
McKinney and DeLaurier [111] using electromagnetic trans-
duction mechanism. A patent has been filed by Schmidt [112]
using two oscillating blades with piezoelectric transduction
mechanism. The so-called “oscillating blade generator” was
tested in a later study [113] and it was concluded that a
power density of order 100 watts per cm’ of piezoelectric
material is theoretically possible to be achieved. In the
recent years, along with the explosive research on energy
harvesting with piezoelectric materials, piezoelectric wind
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energy harvesting via airfoil flutter has become a hot research
area with numerous studies reported.

Bryant and Garcia [26, 63] and coauthors [64, 65, 114-
116] are among the very first to investigate the feasibility of
piezoelectric energy harvesting with airfoil flutter. An airfoil
flutter based energy harvester was first reported by Bryant
and Garcia [63] with both wind tunnel experimental results
and theoretical predictions and further studied with a more
detailed theoretical modeling process [26]. A piezoelectric
bimorph was connected to a rigid airfoil (NACAO0012 airfoil
profile) at the tip with a revolute joint, permitting both
transverse and rotary displacement of the airfoil. Theoretical
analyses were carried out to predict behaviors of the harvester
at the flutter boundary with linear models and during limit
cycle oscillations above the flutter boundary with nonlinear
models. The linear mechanical model incorporating elec-
tromechanical coupling was established using the energy
method based on the Hamilton’s principle, while the linear
aerodynamic model was established based on the finite-
state unsteady thin-airfoil theory of Peters et al. [117]. Small
angle and attached flow assumptions were taken in the
linear models. For the nonlinear models, large flap deflection
angles and flow separation effects were taken into account.
Wind tunnel experimental results of a fabricated harvester
prototype agreed well with the analytical predictions. The
prototype consisted of a 254 x 25.4 x 0.381 mm substrate
cantilever attached with two PZT patches of dimension 46.0 x
20.6 x 0.254 mm, and an airfoil with a semichord of 2.97 cm
and a span of 13.5cm. A cut-in wind speed of 1.86 m/s was
obtained. A maximum output power of 2.2 mW was delivered
to an optimal load of 277 kQ) at a wind speed of 7.9 m/s. It
was concluded that collating and superposing the bender and
system resonances can maximize the output power.

In a subsequent work of Bryant et al. [114], a parameter
study was performed both experimentally and analytically to
investigate the influence of several system design parameters
on the cut-in wind speed. It was found that the cut-in
wind speed could be minimized by modifying the hinge
stiffness and the flap mass distribution, yet its variation was
less sensitive to the hinge stiffness when large damping was
introduced. Later, Bryant et al. [115] compared the quasi-
steady aerodynamic model with the semiempirical model
considering dynamic stall effects. It was concluded that the
quasi-steady model was applicable only for low flapping
frequencies, while the dynamic stall model can be used to
predict trustworthy results at high frequencies. Bryant et
al. [64] also investigated the influence of the compliance
of the host structure on the behavior of the airfoil flutter
based energy harvester. Experimentally, it was found that a
compliant host structure reduced the cut-in wind speed, cut-
in frequency, and oscillation frequency during the limit cycle
oscillation and shifted the peak power toward the lower wind
speeds, as compared to a stiff host structure. Bryant et al.
[116] presented an experimental study on energy harvesting
efficiency and found that the peak power density and power
extraction efficiency of the flutter energy harvester occurred
at the lowest wind tested, due to the small swept area of
the device. At that wind speed which was near the flutter
boundary, the limit cycle oscillation frequency matched the
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first natural frequency of the piezoelectric structure. When
the wind speed increased, the output power, the swept area
of the device, and available power in the flow also increased,
but power density and power extraction efficiency decreased.
Preliminary study of implementing synchronized switching
approaches like the synchronized switching and discharging
to a storage capacitor through an inductor (SSDCI) technique
in an aeroelastic flutter energy harvester was conducted, with
a separate microcontroller working as the peak detector.
However, the efficiency increasing capability of the SSDCI
in flutter energy harvesting was not thoroughly studied.
Subsequently, Bryant et al. [65] experimentally demonstrated
the concept of using ambient flow energy harvesting to
power aerodynamic control surfaces. With a prototype that
produced a power of 43 mW at a wind speed of 26 m/s, it
was shown that the system produced more than 55° of tab
deflection over approximately 0.7 seconds after the storage
capacitor was charged for 235 seconds at 32.2m/s. It was
found that the harvester was still able to produce power when
the host control surface was rotated to a large angle of attack
over 50°, confirming the feasibility of the alternative design of
placing the harvester on the control surface itself.

Erturk and coauthors [66, 67, 118-121] are also among
the first to study harnessing flow energy via the aeroelastic
flutter of airfoils. The concept of energy harvesting from
macrofiber composites with curved airfoil section was first
proposed by Erturk et al. [118]. Later, Erturk et al. [66]
presented an experimentally validated lumped-parameter
aeroelastic model for the flutter boundary condition. The
linear lift and moment at flutter boundary were modeled
with the Theodorsens unsteady thin airfoil theory. Using
a flexibly supported airfoil prototype with a semichord of
0.125m and a span length of 0.5m, a power of 10.7 mW
was measured at the linear flutter speed of 9.30 m/s with
an optimal load of 100 kQ. It was found both theoretically
and experimentally that the optimal load gave the maximum
flutter speed due to the associated maximum shunt damping
effect during power extraction. It was recommended that
a nonlinear stiffness component and/or a free play can be
incorporated to induce stable limit cycle oscillations above
and below (in the case of subcritical Hopf bifurcation) the
flutter boundary for useful power generation. In order to
obtain stable limit cycle oscillations above or below the flutter
boundary, nonlinearity has to be introduced into the system,
which can be either structural nonlinearity or aerodynamic
nonlinearity. The structural nonlinearity suggested by Erturk
et al. [66] and the aerodynamic nonlinearity modeled in
Bryant and Garcia [26] can both ensure the acquisition of
stable and large-amplitude limit cycle oscillations beyond the
linear flutter speed and harvest energy in a wide wind speed
range.

In a subsequent study, Sousa et al. [67] theoretically
and experimentally investigated the advantages of exploiting
structural nonlinearities in the piezoaeroelastic energy har-
vesting system. Piezoelectric coupling was introduced to the
plunge DOF while structural nonlinearities were introduced
to the pitch DOF, aiming to solve the problem of a linear
piezoaeroelastic energy harvester, that is, having persistent
oscillations only at the flutter boundary thus leading to a
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very limited condition for energy harvesting. It was shown
both theoretically and experimentally that the free play
nonlinearity reduced the cut-in wind speed by 2m/s and
doubled the output power. Theoretically, it was found that the
hardening stiffness helped to broaden the operational wind
speed range. It was concluded that the combined structural
nonlinearities can be introduced to enhance the performance
of aeroelastic energy harvesters based on piezoelectric and
other transduction mechanisms.

De Marqui and Erturk [119] theoretically analyzed the
performance of two airfoil-based aeroelastic energy har-
vesters with piezoelectric and electromagnetic couplings
inserted to the plunge DOF separately. It was found that opti-
mal values of load resistance giving the largest flutter speed as
well as the maximum output power for the considered range
of dimensionless equivalent capacitance and dimensionless
electromechanical coupling in the piezoelectric configuration
existed. For the electromagnetic configuration, increasing
the load resistance reduced the flutter speed for any dimen-
sionless inductance or electromechanical coupling, and the
optimum load resistance matched the internal coil resistance,
which agreed with the maximum power transfer theorem.

Subsequently, Dias et al. [120] theoretically analyzed the
performance of a hybrid airfoil-based aeroelastic energy har-
vester using simultaneous piezoelectric and electromagnetic
induction. It was shown that, in the electromagnetic induc-
tion, the internal coil resistance affected the flutter speed and
deteriorated the performance of the system. The parameter
study showed that the combination of low dimensionless
radius of gyration, low pitch-to-plunge frequency ratio, and
large dimensionless chord-wise offset of the elastic axis from
the centroid enhanced the performance by increasing the
output power as well as decreasing the cut-in wind speed.

Later, Dias et al. [121] continued the study of the hybrid
aeroelastic energy harvester with combined piezoelectric and
inductive couplings based on a 3DOF airfoil. A control
surface was introduced, bringing in a third displacement, that
is, the control surface displacement. Theoretical parametric
study showed that increasing the dimensionless radius of
gyration, dimensionless chord-wise offset of the elastic axis
from the centroid, and control surface pitch-to-plunge fre-
quency ratio and decreasing the pitch-to-plunge frequency
ratio increased the power output and reduced the cut-
in speed. It was concluded that the 3DOF configuration
enhanced the performance of the harvester by offering a
broader design space and set of parameters for system
optimization.

Earliest studies of airfoil-based aeroelastic energy har-
vesters also include the work of Abdelkefi et al. [107, 122].
Abdelkefi et al. [122] theoretically investigated the perfor-
mance of an airfoil-based piezoaeroelastic energy harvester
with the method of normal form, which was validated by
the numerical integrations. It was found that the system’s
instability to the subcritical type depended significantly on
the cubic nonlinearity of the torsional spring. In a subsequent
study, Abdelkefi et al. [107] implemented two linear velocity
feedback controllers to reduce the flutter speed to any
desired value and hence generate energy from limit cycle
oscillations at any desired low wind speed. This was realized
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by introducing two vibration velocity dependent terms into
the system governing equations. It was found theoretically
that the aerodynamic nonlinearity produced a supercritical
bifurcation while the cubic stiffness nonlinearity produced
supercritical or subcritical bifurcation depending on whether
the stiffness nonlinearity was hard or soft.

Instead of harvesting energy only from flowing wind,
Bibo and Daqaq [123] theoretically investigated the perfor-
mance of an airfoil-based piezoaeroelastic energy harvester
which concurrently harvested energy from ambient vibra-
tions and wind, by introducing harmonic base excitation in
the plunge direction. The nonlinear aerodynamic lift and
moment were modeled with the quasi-steady approximation.
Cubic nonlinearities were introduced for the plunge and
pitch. Complex motions were predicted under the combined
excitations by analytical solutions based on the normal form
method, which were validated by numerical integrations. In
a subsequent study, Bibo and Daqaq [68] performed exper-
iment to demonstrate these complex motions by attaching
the harvester prototype to a seismic shaker which provided
the harmonic base excitation and putting the whole system
in a wind tunnel which provided the aerodynamic loads.
Below the flutter speed, it was found that the flow serves to
amplify the output power from base excitations. Beyond the
flutter speed, the power was enhanced when the excitation
frequency was right above resonance, while it dropped when
the excitation frequency was slightly below resonance. It was
concluded that the harvester under combined excitations
was superior to that under one type of excitation. The
output power was improved by over three times compared to
that from an aeroelastic harvester and a vibration harvester
together.

Bae and Inman [124] analyzed the performance of an
airfoil-based piezoaeroelastic energy harvester with the root-
locus method and time-integration method. It was found
that energy can be harvested from stable LCOs when the
frequency ratio was larger than 1.0 in a wide range of wind
speeds below the flutter speed for free play nonlinearity and
over the flutter speed for cubic hardening nonlinearity.

Wu and his coworkers [125] (Xiang et al., 2015) the-
oretically investigated the performance of an airfoil-based
piezoaeroelastic energy harvester with free play nonlinearity
and showed that the amplitudes of pitch and plunge motions
as well as output power increased with the free play gap,
with the power and the gap having an approximate linear
relationship in particular. Moreover, it was found that discrete
gusts in the incoming flows influenced the phase of the
dynamic and electrical responses, yet they had no influence
on the electrical output amplitude. For other studies of wind
energy harvesting from flapping foils, readers are referred to
the excellent review work of Young et al. [30] and Xiao and
Zhu [20], in which the authors inspected flapping foil power
extraction from a mathematical aeroelastic perspective with a
different literature coverage from that of this paper. They are
recommended to readers as complementary materials with
the reviews in this section.

Different from the utilization of airfoils attached to
cantilever tips, Kwon [69] experimentally investigated the
performance of a T-shaped piezoelectric cantilevered energy
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harvester. The T-shape resembled a half H-sectional shape
of the Tacoma Narrow Bridge which collapsed in 1940 due
to large amplitude aeroelastic flutter. The T-shape cantilever
underwent coupled bending and torsional motions in wind
flows. Using a prototype with L x Bx H = 100 x 60 x 30 mm,
a 0.2mm thick aluminum substrate, and six attached PZT
patches of 28 x 14 mm for each, a flutter speed of 4 m/s and a
maximum power of 4.0 mW at a wind speed of 15 m/s were
measured with a load of 4 MQ. Annual output energy of
43 Wh was calculated at an assumed mean wind speed of
5m/s. It was concluded that it had the potential to power a
mobile electronic apparatus cost-effectively with a series of
the proposed harvesters.

Subsequently, Park et al. [70] continued the study of T-
shaped cantilever where electromagnetic transduction was
employed. It was found experimentally that the onset of the
harvester occurred only when the load resistance surpassed
a certain value, that is, the flutter onset resistance. CFD
simulations were performed to estimate the aerodynamic
damping and thus predict the flutter onset resistance, which
agreed well with experiment. Using a prototype of 42 x
30 x 20 mm with a 0.1016 mm thick cantilever substrate, a
maximum power of around 1.1 mW was delivered to a 1kQ
load at a wind speed of 8 m/s.

Modal convergence flutter based energy harvester designs
also include the work of Boragno et al. [126]. In their design,
a wing was attached to a support by two elastomers with
one for each side, which provided bending and torsional
stiffness at the same time. Influences of parameters including
the elastomer elastic constant, wing mass, position of mass
center, and elastic attachment point on oscillation responses
were investigated. The self-sustained oscillations with prop-
erly adjusted parameters were concluded to be suitable for
energy harvesting purpose though no specific transduction
mechanism was proposed. A similar device called flutter mill
has been demonstrated by Sharp [109] with electromagnetic
transduction.

2.4.2. Energy Harvesters Based on Cross-Flow Flutter. Inspi-
red by the natural flapping leaves in the tree subject to ambi-
ent flows, Li and Lipson [127] proposed a device consisting of
a PVDF stalk, a plastic hinge, and a triangular polymer/plastic
“leaf.” Two configurations were investigated with different
direction arrangements of the stalk, that is, the horizontal-
stalk leaf and the vertical-stalk leaf. The horizontal-stalk
underwent bending motion while the leaf underwent cou-
pled bending and torsional motions around the hinge, that
is, modal convergence flutter, similar to the airfoil-based
piezoaeroelastic energy harvester. The vertical-stalk, where
the long axes of the stalk were perpendicular to the incoming
flow, underwent cross-flow flutter, which was demonstrated
more clearly in a subsequent study of Li et al. [71] with more
experiments performed. It was found that, compared to the
parallel configuration, the cross-flow configuration increased
the power by one order of magnitude. Performances of
different leaf’s shapes, different leaf’s area, different stalk
scales (short, long, and narrow-short), and different PVDF
layer configurations (single-layer, adhered double-layer, and
air-spaced double-layer) were measured and compared. It
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was found that the circle, square, and equilateral triangle
shapes of leaf had similar and the best performance, and the
cut-in wind speed and peak power increased with leaf’s area.
Stalk scale and PVDF layer configuration affected the power
with a nonmonotonous, complex behavior. A peak power of
615 uW was obtained with an adhered double-layer stalk of
72 x 16 x 0.4l mm at 8 m/s on a 5 MQ load and the maximum
power density of 2036 yW/m® was obtained with a unimorph
narrow-short stalk of 41 x 8 x 0.205 mm at 7 m/s on a 30 MQ
load. It was concluded that although the proposed device had
low-power density compared to commercial wind turbines,
it owned advantages of being robust, simple, miniature sized,
and able to blend in urban and natural environments.

Analyses of flapping-leaf energy harvesters were also per-
formed by McCarthy et al. [128, 129] with smoke-flow visu-
alization and tandem harvester arrangements and coauthors
Deivasigamani et al. [72] with a parallel-flow asymmetric
configuration, where the offset of the leaf axes from the
stalk axes induced torsional motions of stalk around axis x.
It is actually a modal convergence flutter based harvester,
yet due to the similar constructions to those by Li and
Lipson [127], we put its reviews in this section of cross-flow
flutter. The PVDF partly operated in the d;, mode which
had a low piezoelectric conversion coefficient; therefore, it
was concluded that power from torsion (dj,) in parallel
flow configuration acted only as a low-value peripheral
supplement to that from bending. The output was similar to
that of a parallel flow flapping-leaf harvester, much lower than
that of a cross-flow counterpart harvester.

Studies on energy harvesting from cross-flow flutter were
also conducted by De Marqui Jr. et al. [106, 130], aiming at
harvesting energy with the wings of unmanned air vehicles
(UAVs). Using an electromechanically coupled finite element
(FE) model, a preliminary study was performed by De Marqui
Jr. et al. [131] on a plate with embedded piezoceramics under
base excitations with no air flows. Subsequently, aerodynamic
loads were introduced to the plate to simulate the condition
during flight by De Marqui Jr. et al. [130] using coupled
FE model and unsteady vortex-lattice model to predict the
electric outputs. In a later study of De Marqui Jr. et al.
[106], segmented electrodes were used to avoid cancelation
of electrical output during typical coupled bending-torsion
aeroelastic modes. It was found that the peak power from the
segmented electrode was larger than that from the continuous
electrode for all considered load resistance at a flutter speed
of 40 m/s. Torsional motions of the coupled modes were
found to become relatively significant for segmented elec-
trodes, associated with improved broadband performance
and increased flutter speed.

Cross-flow flutter based energy harvesters also include
the patented windbelt that was produced by Humdinger
Wind Energy, LLC [108], which extracts wind energy using
electromagnetic transduction with a properly tensioned flex-
ible belt undergoing flutter motions when subjected to flows.

2.4.3. Energy Harvesters Based on Dual Cantilever Flutter.
Finally, a novel type of flutter termed “dual cantilever flutter”
different from the above-mentioned cases was reported and
analyzed for energy harvesting purpose by Hobeck et al. [73].
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Two identical cantilevers were found to undergo large
amplitude and persistent vibrations when subject to wind
flows, which can be utilized for energy harvesting purpose.
Two identical cantilevers of 14.6 x 2.54 x 0.0254 cm’ were
employed in the wind tunnel experiment setup. The gap
distance was found to affect the power output significantly.
For small gap distances between 0.25 cm and 1.0 cm, the can-
tilevers produced a significant amount of power over a very
large range of wind speeds from 3 m/s to 15m/s. A maximum
power of 0.796 mw was achieved at 13 m/s. It was concluded
that dual cantilever flutter phenomenon is an attractive and
robust energy harvesting method for highly unsteady flows.
A comparison of the reported flutter harvesters is presented
in Table 5 with regard to their quantitative performance as
well as the merits, demerits, and applicability.

2.5. Energy Harvesters Based on Wake Galloping. Wind
energy extraction exploiting wake galloping phenomenon
was studied by Jung and Lee [27]. They developed a device
consisting of two paralleled cylinders to extract power from
the leeward cylinder, which oscillated due to the wakes from
the windward cylinder. Electromagnetic transduction was
employed. It was found that with proper distance (4-5 times
the cylinder diameter) between the parallel cylinders, the
leeward cylinder could oscillate with considerable magni-
tude. With two cylinders of 5cm in diameter and 0.85m in
length with a space of 25 cm in between, an average output
power of 50-370 mW was measured under a wind speed
of 2.5-4.5m/s with different coil and spring configurations.
Piezoelectric energy harvesting could also utilize the wake
galloping with proper arrangement of parallel cylinders based
on these results.

Abdelkefi et al. [74] enhanced the performance of a
galloping energy harvester with the wake galloping phe-
nomenon by placing a circular cylinder in the windward
direction of a square galloping cylinder. It was found exper-
imentally that the range of wind speeds for effective energy
harvesting can be widened by the wake effects of the upstream
cylinder. With an upstream cylinder 27.15 cm in length and
1.25cm in diameter, the power from the square cylinder
was greatly enhanced when the spacing was larger than
16 cm, especially from 2.58 m/s to 3.51m/s where the single
square cylinder generated no power without the introduced
wake galloping effects. With a spacing distance of 24 cm, a
peak power of 40~50 yW was measure at 3.05m/s. It was
concluded that enhanced galloping energy harvesters can be
designed by utilizing wake galloping effects, with properly
designed dimension, spacing distance, and load resistance.
Table 6 summarizes the reported harvesters based on wake
galloping.

2.6. Energy Harvesters Based on Turbulence-Induced Vibra-
tion. A big problem of the above-mentioned harvesters is
that most of them oscillate and generate energy only in
laminar flow conditions, which are usually not the case in
natural environment where turbulence exists thus stabilizing
the harvesters. Also, they require a cut-in speed as the
minimum limit of wind speed, below which no power can
be generated. Yet turbulence-induced vibrations (TIVs) never
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vanish even with very small average wind speed, which could
be utilized by energy harvesters based on TIVs [28, 132].

Akaydin et al. [47] experimentally investigated the per-
formance of a cantilevered harvester placed in turbulent
boundary layer flow near the bottom wall of a wind tunnel.
It was found that electrical output monotonically increased
with the wind speed. With a boundary layer thickness of § =
115 mm, the global and local maxima of power were observed
independent of wind speed at h = 40 mm and 75 mm, respec-
tively, which were far away from the maximum turbulent
kinetic energy location of around 8 mm. Time domain signals
of voltage showed that the dominant frequency of 46 Hz
was close to the resonance frequency of the beam, while the
secondary dominant frequency was around 317 Hz near the
turbulence frequency of 275 Hz, leading to the conclusion
that higher frequency excitations due to turbulence existed
in TIVs.

Hobeck and Inman [28] proposed the concept of harvest-
ing energy from highly turbulent flows with “piezoelectric
grass” consisting of an array of generating elements in
the highly turbulent wake of a bluff body or in entirely
turbulent fluid flows. A combination technique of electrome-
chanical modeling for the structure and statistical modeling
for the turbulent induced forces was proposed, which was
the first documented experimentally validated TIV energy
harvesting model. Experimentally, a peak power output of
1.0 mW per cantilever was measured for the four-element har-
vester array fabricated with PZT (101.60 mm x 25.40 mm X
101.60 pm steel substrate attached with 45.97 mm x 20.57 mm
x 152.40 ym PZT) at a mean wind speed of 11.5m/s and a
load of 49.2kQ. A peak power of 1.2 yW per cantilever was
measured at 7m/s on a 4.70 MQ load for the six-element
array with PVDF (72.60 mm x 16.20 mm x 178.00 ym Mylar
substrate attached with 62.00 mm x 12.00 mm X 30.00 ym
Piezo film). The main advantage was concluded to be in its
robustness and survivability due to its inherent redundancy
since only minor reduction in total power happened if one
element was damaged. Table 7 presents a comparison of the
discussed harvesters based on turbulence-induced vibration.

2.7. Other Small-Scale Wind Energy Harvester Designs. With
designs different from the above-mentioned cases, recent
progress on energy harvesting from wind flows also includes
a damped cantilever pipe carrying flowing fluid [133], a
harmonica-type aeroelastic micropower generator [75], a
tensioned piezoelectric film facing laminar and/or turbulent
incoming flows [76], a hinged-hinged piezoelectric beam
facing turbulent airflows [134], and a micromachined piezo-
electric airflow energy harvester inside a Helmholtz resonator
[135].

Bibo et al. [75] proposed a harmonica-type micropower
generator consisting of a cantilever embedded within a cavity.
Pressure from the incoming flow caused deflection of the
cantilever, generating a small gap which in turn reduced
the flow pressure. The periodic fluctuations in the pressure
induced the beam to undergo self-sustained oscillations. It
was found that using optimal chamber volume and decreased
aperture’s width reduced the cut-in wind speed. The optimal
load for maximum power did not vary considerably with
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the inflow rate. With a 58 x 16.26 x 0.38 mm piezoelectric
cantilever, an average power of 55 yW was obtained at an
average wind speed of 7.5 m/s.

Ovejas and Cuadras [76] investigated the energy har-
vesting performances of a PVDF film generator with three
different setup configurations. In the bluff body configuration
of setup (a), two cylindrical bluff bodies of 0.5 cm diameter
are attached to the PVDF film in the windward direction,
with the wind flowing parallel with the surface film, while in
the other two configurations with one or two ends fixed, that
is, setup (b) and (c), the wind flows perpendicularly to the
surface film. Experiment showed that the turbulent flow from
a hairdryer gave a higher voltage than the laminar flow from a
wind tunnel did. It was explained that the rotational turbulent
flow was added to the vortex shedding from the two bluft
bodies, thus enhancing power generation. With performance
comparison, setup (a) outperformed the other two and was
recommended for energy harvesting. A maximum power of
0.2 yW was measured with a setup (a) film that was 15.6 cm
in length, 1.9 cm in width, 40 ym in thickness, and 9.9 nF
in capacitance. The power is relatively low compared to
other studies. To improve the performance, future studies
were recommended to optimize the oscillation and resonant
frequency coupling. Table 8 presents a comparison of the
discussed other types of small-scale wind energy harvesters.

3. Enhancement Techniques Involved
in Small-Scale Wind Energy Harvesting
Systems

3.1. Enhancement with Modified Structural Configurations.
In the literature, various methods have been proposed to
improve the efliciency of power output for the vibration-
based piezoelectric energy harvesters. The beam configura-
tion can greatly influence the strain distribution throughout
the harvester, resulting in significant difference in power
generation. For example, a trapezoidal cantilever harvester
can generate more than twice power than the rectangular one
[136]. The multimodal techniques can enlarge the bandwidth
of operating frequencies of the vibration-based energy har-
vesters, for example, the piezoelectric energy harvester with
a dynamic magnifier [137] and the 2DOF energy harvester
with closed first and second mode frequencies [138, 139].
With frequency upconversion techniques, the low-frequency
ambient vibration can be transferred to high frequency
vibrations, providing a frequency-robust energy harvesting
solution for the low frequency oscillations [140].

In the area of wind energy harvesting, some techniques
have also been proposed to enhance the power extraction
performance from the mechanical aspects with modified
structural designs. For example, utilizing the frequency
upconversion mechanism, Zhao et al. [57] used a 2DOF cut-
out structure with magnetic interaction to enhance the output
power of a galloping harvester in the low wind speed range.

Recently, researchers have been employing the base vibra-
tory excitation as a supplementary energy source to enhance
energy harvesting from aerodynamic forces. The efforts have
been devoted to energy harvesting from airfoil aeroelastic
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flutter [68, 123], VIV [141, 142], and galloping [143]. The
work of Bibo and Daqaq [68, 123] has been reviewed
in Section2.4.1. Dai et al. [142] numerically investigated
the responses of a cantilevered VIV harvester under com-
bined VIV and base vibrations. Using a single piezoelectric
energy harvester under combined excitations was reported to
improve the power compared to using two separate harvesters
when the wind speed was in the synchronization region.
Responses of a fluid-conveying riser under concurrent exci-
tations were also studied [141]. Numerically, it was found that
the response changed from aperiodic to periodic motions
when the wind speed approached the synchronization region.
It was stated that increased base acceleration induces a wider
synchronization region. Energy harvesting from concurrent
galloping and base excitations was numerically investigated
by Yan et al. [143]. Widened synchronization region was also
found to occur with increased base acceleration.

Stiffness nonlinearity (monostable, bistable, or tristable)
has been frequently introduced to vibration-based energy
harvesters in order to broaden the operating bandwidth thus
to adapt to environments with broadband or frequency-
variant vibrations [144-147] (Tang and Yang, 2012). In
wind energy harvesting, stiffness nonlinearity has also been
employed, instead of broadening bandwidth, to reduce the
cut-in wind speed and enhance power output. Free play or
cubic stiffness nonlinearities have been employed by Sousa et
al. [67], Bae and Inman [124], and Wu et al. [125] to enhance
energy harvesting from airfoil flutter. Moreover, the influence
of monostable and bistable nonlinearity on galloping energy
harvesting has been investigated by Bibo et al. [148]. It was
shown that the bistable harvester outperforms the monos-
table harvester when interwell oscillations are excited.

Zhao and Yang [24] reported an easy but quite effective
way to increase the power extraction efficiency of aeroelastic
energy harvesters, by adding a beam stiffener to amplify
the electromechanical coupling as shown in Figure 4. It was
theoretically explained that the beam stiffener increases the
slope of the beam’s fundamental mode shape and thus works
as an electromechanical coupling magnifier and enhances
the output power. Theoretical analysis showed that this
method is effective for all three types of harvesters based on
galloping, vortex-induced vibration, and flutter. Compared
to the conventional designs without the beam stiffener, the
enhanced designs gave dozens of times increase in power,
almost 100% increase in the power extraction efficiency,
and comparable or even smaller transverse displacement.
Experimentally, a maximum output power of around 12 mW
was measured at 8 m/s from a galloping harvester prototype
with the beam stiffener, much larger than that of around
2mW from the conventional counterpart. The shortcoming
is that the cut-in wind speed was undesirably increased with
the beam stiffener.

Other efforts on structural modifications include attach-
ing the cylindrical bluff body to the beam instead of sep-
arating them to enhance the effects of vortex shedding
[23] and adding a movable mass to adjust the resonance
frequency thus broadening the functional wind speed range
of a harvester based on vortex-induced vibrations [49], which
have been mentioned in Section 2.2.
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FIGURE 4: Configurations of enhanced energy harvesters with the
beam stiffer, based on, from (a) to (c), galloping, VIV, and airfoil
flutter [24].

3.2. Enhancement with Sophisticated Interface Circuits. In the
field of VPEH, many power conditioning circuit techniques
have been developed to regulate and enhance power transfer
from the piezoelectric materials to the terminal load or stor-
age components, including the impedance adaptation [149,
150], synchronized switch harvesting on inductor (SSHI)
[151-157], synchronous charge extraction (SCE) [155, 158-
160], and energy storage circuits [161, 162]. However, very
limited researches have been reported on the integration
of advanced interfaces with aeroelastic energy harvesters to
enhance their power output.

Enhancing power generation performance of wind
energy harvesters with modified interface circuits has been
considered by Taylor et al. [43]. They implemented a switched
resonant-power converter, which was similar to a series SSHI
yet without the full wave rectifier in an oscillating piezoelec-
tric eel. Robbins et al. [44] implemented a quasi-resonant rec-
tifier in a flapping PVDF (similar to eel), and Bryant et al. [116]
employed an SSDCI circuit with a separate microcontroller
based peak detection system in an airfoil-based piezoelectric
flutter energy harvester. De Marqui Jr. et al. [106] used a
resistive-inductive circuit to extract energy from a fluttering
bimorph plate under cross-flow condition and showed that
the power output was enhanced to about 20 times larger than
the case with a pure resister in the circuit at the short circuit
flutter speed and short circuit flutter frequency.

Zhao et al. [33, 58] investigated the feasibility of employ-
ing a self-powered SCE interface to enhance the performance
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FIGURE 5: Schematic of self-powered SCE circuit integrated with a galloping piezoelectric energy harvester [33].

of a galloping-based piezoelectric energy harvester, as shown
in Figure 5 depicting the equivalent circuit model (ECM) of
harvester and the SCE diagram. Experimental and theoretical
comparison of the performance of SCE with a standard
circuit revealed three main advantages of SCE in galloping-
based harvesters. Firstly, SCE eliminates the requirement of
impedance matching and ensures the flexibility of adjusting
the harvester for practical applications, since the output
power from SCE is independent of electrical load. Secondly,
75% of piezoelectric materials can be saved by the SCE
compared to the standard circuit. Thirdly, the SCE helps
to alleviate the fatigue problem with a smaller transverse
displacement during harvester operation.

Zhao and Yang [25] further proposed the analytical
solutions of responses of a galloping-based piezoelectric
energy harvester. Explicit expressions of power, voltage, dis-
placement amplitude, optimal load, and electromechanical
coupling as well as cut-in wind speed for the simple AC, stan-
dard, and SCE circuits were derived, which were validated
with wind tunnel experiments and circuit simulation. It was
found that the three circuits generated the same maximum
power but the SCE achieved it with the smallest coupling
value. Moreover, the SCE was found to give the smallest
displacement and highest cut-in wind speed, while the
standard circuit was found to have the largest displacement
and lowest cut-in speed. It was concluded that the SCE is
suitable for the cases with small coupling and relative high
wind speeds, while the AC and standard circuit are suitable
for large coupling cases. With the AC and standard circuits,
small loads are better for cases requiring high current, such as
charging batteries, and large loads suit the conditions having
high threshold voltages. Subsequently, Zhao et al. [59, 60]
investigated the capability of enhancing power output of a
galloping-based piezoelectric energy harvester with the SSHI
interfaces. Experimentally, it was found that the SSHI circuit
achieves tremendous power enhancement in a weak-coupling
system, and the enhancement is more significant at higher
wind speeds. A power increase of 143% was obtained with

the SSHI at 7 m/s for a weak-coupling harvester. However, the
SSHI circuits lost the advantage strong-coupling conditions.

4. Application of Small-Scale Wind Energy
Harvesting in Self-Powered Wireless Sensors

Many studies in vibration energy harvesting have investigated
the feasibility of extracting energy from ambient vibrations
to implement self-powered wireless sensors. Similarly, a main
purpose of small-scale wind energy harvesting is to power the
wireless sensors placed in an airflow-existing environment
with the extracted flow power.

Flammini et al. [163] demonstrated the viability of
harvesting small-scale wind energy to power autonomous
sensors in air ducts used for heating, ventilating and air-
conditioning (HVAC). To demonstrate the concept, a small-
scale wind turbine with a commercial electromagnetic gen-
erator and six fan blades of 4 cm were employed as the wind
energy harvester. The wind turbine was attached with the
electronic circuit consisting of the autonomous sensor and
the readout unit. Signals were transmitted through electro-
magnetic coupling at 125kHz between the antenna of the
transponder (U3280M) in the airflow-powered autonomous
sensor and the transceiver (U2270B) in the readout unit. It
was shown that the system was able to work at wind speeds
higher than 4 m/s, with comparable wind speed predictions
to the readings from a reference flowmeter, confirming the
feasibility of powering autonomous sensors for airspeed
monitoring with airflow energy.

In a subsequent study, Sardini and Serpelloni [164]
extended the application of the integrated harvester and
sensor to monitor the air temperature. A small-scale wind
turbine consisting of a DC servomotor (1624T1, 4G9 Faul-
haber) of 32 x 32 x 22 mm and two blades of 65 mm diameter
was attached with an autonomous sensing system consisting
of a microcontroller, an integrated temperature sensor, and a
radio-frequency transmitter. The system was able to transmit
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FIGURE 6: Schematic of Trinity indoor sensing system [34].

signal at wind speeds higher than 3m/s with a 433-MHz
point-to-point communication to a receiver placed within 4~
5 m distance from the sensor with a time interval of 2 s. It was
concluded that the self-powered wireless sensor harvesting
ambient airflow energy can be applied in environmental
health monitoring applications.

Along with the recently increasing desire on indoor
microclimate control, Li et al. [34] developed the first doc-
umented Trinity system, that is, wind energy harvesting,
synchronous duty-cycling, and sensing, as a self-sustaining
sensing system to monitor and control the wind speed at
individual outlets of a HVAC system according to real-
time population density. The schematic of the Trinity is
shown in Figure 6. The energy generated from a galloping-
based energy harvester that consisted of a bimorph and
a square sectioned bluft body was delivered to the power
management module to power the sensor and charge the
two thin-film batteries (if surplus energy was available). Low-
power self-calibration strategy and per-link synchronization
were implemented for synchronous duty-cycling to ensure
the receivers to wake up in time to receive data packets from
the respective senders. The low duty-cycles (<0.42%) were
due to the fact that the energy harvested was not sufficient
to continuously activate the sensing nodes. The wind speed
was inferred by sampling the voltage of the harvester based on
the measured relationship between voltage and wind speed,
accomplished with an amplifier circuit consuming a low
power more than 500 gW. The Trinity prototype successfully
predicted agreed wind speeds with an anemometer within 3~
6 m/s at 16 HVAC outlets. It was concluded that the Trinity is
a successful demonstration of a self-powered indoor sensing
system given a carefully designed network operation mode.

5. Conclusions

This paper reviews the state-of-the-art techniques of
small-scale energy harvesting from a quantitative aspect.

Miniaturized windmills or wind turbines can generate a
significant amount of power. Yet the biggest concern is that
the rotary components are not desired for long-term use of
such small sized devices. Besides the windmills and turbines,
summaries of various devices based on VIV, galloping, flutter,
wake galloping, TIV, and other types reviewed are presented
in Tables 2-8. Their merits, limitations, applicabilities, and
other information that the authors feel useful are also given in
the tables. It should be noted that each technique investigated
is suitable for a specific condition and has weakness in other
conditions. One should choose a suitable technique or
design according to the specific wind flow conditions, like
whether the flow is smooth or turbulent, whether the flow
speed is stable or frequently varies, and what the dominant
wind speed range is, and so forth. As for the financial
consideration, the cost of an energy harvester depends on
various factors, such as the size, the transduction mechanism,
and the type of piezoelectric material used. Typically, a single
piece of commercial ready-to-mount piezoelectric sheet
costs around $50~80, such as the MFC sheet [165] and the
DuraAct sheet [166]. Prices should go down for purchases in
large volume. Also, raw piezoelectric sheets cost much less;
for example, the PZT sheet without soldered wires costs less
than $1/cm? (Piezo Systems, Inc.), and the raw PVDF costs
less than ¢1/cm” [167]. For designs incorporating magnets, a
10 mm x 5 mm neodymium magnet costs as low as $2 [168],
yet building a sophisticated rotor for a small turbine should
inevitably cost much more. Increase in size of the harvester
will usually cost more. Considering the ever-reduced power
requirement of the wireless sensor, a harvester in cm scale
is reasonably sufficient to power a sensor unit. Moreover,
there are some commercial power management devices
for convenient integration of energy harvesting module
and sensor module, such as the LTC3330 chip [169] which
costs $5. With the fast technology development, it can be
anticipated that a totally self-powered WSN can be built at a
reasonable cost.
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The authors hope to provide some useful guidance for
researchers who are interested in small-scale wind energy
harvesting and help them build a quantitative understanding.
With future efforts in developing integrated self-powered
electronics, like autonomous sensors incorporating wind
energy harvesting and sensing techniques, the concept of
wind energy harvesting will be finally led to real engineering
applications.
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