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Abstract: Many chemical insecticides are becoming less efficacious due to rising resistance in pest
species, which has created much interest in the development of new, eco-friendly bioinsecticides. Since
insects are the primary prey of most spiders, their venoms are a rich source of insect-active peptides
that can be used as leads for new bioinsecticides or as tools to study molecular receptors that are
insecticidal targets. In the present study, we isolated two insecticidal peptides, µ/ω-TRTX-Mb1a and
-Mb1b, from venom of the African tarantula Monocentropus balfouri. Recombinant µ/ω-TRTX-Mb1a
and -Mb1b paralyzed both Lucilia cuprina (Australian sheep blowfly) and Musca domestica (housefly),
but neither peptide affected larvae of Helicoverpa armigera (cotton bollworms). Both peptides inhibited
currents mediated by voltage-gated sodium (NaV) and calcium channels in Periplaneta americana
(American cockroach) dorsal unpaired median neurons, and they also inhibited the cloned
Blattella germanica (German cockroach) NaV channel (BgNaV1). An additional effect seen only with
Mb1a on BgNaV1 was a delay in fast inactivation. Comparison of the NaV channel sequences of the
tested insect species revealed that variations in the S1–S2 loops in the voltage sensor domains might
underlie the differences in activity between different phyla.
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1. Introduction

Spider venoms contain a plethora of bioactive peptides that target a diverse range of vertebrate
and invertebrate voltage-gated ion channels [1,2]. Spider venoms evolved for two main purposes:
defense against predators [3] and as a chemical weapon for prey capture [4,5]. Since insects are the
predominant prey of most spiders, these arachnids have developed a range of toxins that are highly
effective at incapacitating insects [6]. There are over 46,600 extant spider species [7], with the venoms
of some spiders containing >1000 different peptides [8]. Thus, spider venoms are an ideal source of
toxins that can be used to study insect ion channels, or as potential candidates for the development of
insecticides [6,9]. The two major pharmacological targets of spider-venom peptides are voltage-gated
calcium (CaV) channels and voltage-gated sodium (NaV) channels [6,10]. Both channels consist of
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four homologous domains (DI–DIV), each of which contains six transmembrane helices (S1–S6). The
four sets of S5–S6 helices come together to form the pore of the channel, while each S1–S4 region
serves as an independent voltage sensor [11,12]. Many chemical insecticides target insect NaV channels
and bind to the S5–S6 pore region, but these insecticides are becoming less useful due to increasing
resistance in pest species [13–16]. However, spider venoms represent a source of novel toxins that act
on insect NaV channels via a different mode of action to extant chemical insecticides. The majority
of spider toxins are gating modifiers that interact with the voltage-sensing domains and not the pore
region, and therefore pests resistant to current NaV channel insecticides would likely be sensitive to
spider toxins [17]. In addition to NaV channels, insect CaV channels are an emergent insecticidal target,
and they are another major target of spider toxins [9,18]. Indeed, a spider toxin that inhibits insect CaV

channels has been developed into a bioinsecticide called SPEARTM that will become commercially
available early 2017 [19].

This study describes the isolation, recombinant production, and characterization of the
disulfide-rich peptides µ/ω-TRTX-Mb1a and µ/ω-TRTX-Mb1b (hereafter Mb1a and Mb1b) from
venom of the African tarantula Monocentropus balfouri. Both peptides inhibited NaV and CaV channel
currents in cockroach neurons as well as the cloned NaV channel from the German cockroach
Blatella germanica. Mb1a and Mb1b are paralytic to the dipterans L. cuprina and M. domestica, but do not
affect the lepidopteran H. armigera. We propose that variations between taxa in the S1–S2 loops of the
NaV channel voltage-sensor domains underlie the differences in activity between phyla and mode of
action of Mb1a and Mb1b. Ultimately, understanding how spider toxins bind to insect NaV and CaV

channels will facilitate the rational design of bioinsecticides with better toxicity and selectivity profiles
than the current arsenal of chemical insecticides.

2. Results

2.1. Isolation and Sequencing of µ/ω-TRTX-Mb1a and -Mb1b

A screen of insecticidal activity by injection into sheep blowflies of fractions resulting from
reversed-phase (RP) HPLC separation of M. balfouri venom revealed that the fraction eluting at
~35% solvent B concentration (Figure 1) induced paralysis that was reversible within 24 h. Mass
spectrometry revealed that this fraction consists of a single peptide with monoisotopic (M + H+)
mass 4147.00 Da (Figure 1, inset). N-terminal sequencing of this peptide revealed the first 36
residues as GVDKPGCRYMFGGCVQDDDCCPHLGCKRKGLYCAWD(A)(T), with residues 37 and
38 shown in parentheses due to sequencing ambiguities. The two C-terminal residues cannot be
both A and T as this would yield a sequence whose mass does not correspond to that of the
observed peptide. Therefore, two peptide sequences were derived that matched the observed
mass, one with ′GT-NH2

′ as the C-terminus and another with ′AS-NH2
′. In an attempt to

ascertain the two terminal residues, LC-MS/MS was performed on a nine-residue C-terminal
fragment of reduced and alkylated native peptide liberated by tryptic digestion. Analysis of
the b- and y-ion series revealed three matches for ′GT-NH2

′ while only one match corresponded
to ′AS-NH2

′ therefore ′GT-NH2
′ is the most likely C-terminal sequence of the native peptide.

Nevertheless, both peptide sequences were expressed for further characterization as the native
sequence was not conclusively determined. Based on their activity (see below) and the species
of origin, the two peptides were named in accordance with published nomenclature guidelines [20]
as µ/ω-TRTX-Mb1a (sequence GVDKPGCRYMFGGCVQDDDCCPHLGCKRKGLYCAWDGT) and
µ/ω-TRTX-Mb1b (sequence GVDKPGCRYMFGGCVQDDDCCPHLGCKRKGLYCAWDAS).
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Figure 1. (a) Photo of a female M. balfouri; (b) Chromatogram resulting from RP-HPLC fractionation 
of M. balfouri venom. The peak highlighted in red contains the µ/ω-TRTX-Mb1a/b peptide. The 
dotted line indicates the gradient of solvent B (90% acetonitrile/0.1% formic acid). Inset is a 
MALDI-TOF mass spectrum of the isolated µ/ω-TRTX-Mb1a/b peptide. 

2.2. Recombinant Production of Mb1a and Mb1b 

Recombinant Mb1a and Mb1b were produced by overexpression in the periplasm of Escherichia 
coli using the system we previously optimized for expression of disulfide-rich venom peptides [21]. 
The fusion protein was the major soluble protein expressed after induction, and cleavage of the 
fusion protein with tobacco etch virus (TEV) protease liberated free recombinant Mb1a (Figure 2, top 
inset) and Mb1b (not shown). RP-HPLC purification of the cleaved peptides resulted in elution 
profiles consisting of two peaks (Figure 2) with the correct mass (m/z calculated: 4147.8 Da, 
observed: 4147.9 Da) (Figure 2, bottom inset). Re-injection of each peak separately resulted in the 
reappearance of two peaks (data not shown), suggesting possible cis-trans isomerization of the 
proline residue at position 5 or 22. The final yield for both peptides was ~100 µg per litre of bacterial 
culture. The recombinant peptides were used for all in vitro and in vivo assays. 

Figure 1. (a) Photo of a female M. balfouri; (b) Chromatogram resulting from RP-HPLC fractionation of
M. balfouri venom. The peak highlighted in red contains the µ/ω-TRTX-Mb1a/b peptide. The dotted
line indicates the gradient of solvent B (90% acetonitrile/0.1% formic acid). Inset is a MALDI-TOF
mass spectrum of the isolated µ/ω-TRTX-Mb1a/b peptide.

2.2. Recombinant Production of Mb1a and Mb1b

Recombinant Mb1a and Mb1b were produced by overexpression in the periplasm of Escherichia
coli using the system we previously optimized for expression of disulfide-rich venom peptides [21].
The fusion protein was the major soluble protein expressed after induction, and cleavage of the fusion
protein with tobacco etch virus (TEV) protease liberated free recombinant Mb1a (Figure 2, top inset) and
Mb1b (not shown). RP-HPLC purification of the cleaved peptides resulted in elution profiles consisting
of two peaks (Figure 2) with the correct mass (m/z calculated: 4147.8 Da, observed: 4147.9 Da) (Figure 2,
bottom inset). Re-injection of each peak separately resulted in the reappearance of two peaks (data not
shown), suggesting possible cis-trans isomerization of the proline residue at position 5 or 22. The final
yield for both peptides was ~100 µg per litre of bacterial culture. The recombinant peptides were used
for all in vitro and in vivo assays.



Toxins 2017, 9, 155 4 of 18

Toxins 2017, 9, 155 4 of 18 

 

 
Figure 2. Recombinant production of Mb1a. Semi-preparative RP-HPLC chromatogram of 
recombinant Mb1a released by TEV protease cleavage of the MBP-Mb1a fusion protein (see Materials 
and Methods for more details). The dotted line indicates the gradient of solvent B (90% 
acetonitrile/0.043% TFA). Top inset: SDS-PAGE gel showing pre-cleaved MBP-Mb1a fusion protein 
(lane 1) and remaining MBP after cleavage (lane 2). Lane M contains molecular markers (masses in 
kDa). Bottom inset: MALDI-TOF mass spectrum of pure recombinant Mb1a. 

2.3. Insecticidal Activity of µ/ω-TRTX-Mb1a and -Mb1b 

Both Mb1a and Mb1b caused fast, but fully reversible, paralysis of sheep blowflies (L. cuprina) 
with median paralytic dose (PD50) values in the range of 5600–5800 pmoL/g at 30 min post-injection 
(Figure 3). No lethal effects were observed, and paralysis was fully reversed after 24 h. Complete 
paralysis was also seen for both Mb1a and Mb1b at 60 min post-injection into house flies (M. 
domestica), with partial recovery observed after 24 h (Mb1a: 3/5 recovered; Mb1a: 4/5 recovered). In 
contrast, injection of up to 73.4 nmoL/g of Mb1b into cotton bollworms (H. armigera larvae) did not 
induce any paralytic effects. No lethality or significant changes in the weight gain of the larvae 
occurred within the 72-h observation period. 

 
Figure 3. Insecticidal effects of recombinant (a) Mb1a and (b) Mb1b. Toxins were injected 
intra-thoracically into L. cuprina blowflies and paralytic effects measured at 0.5, 1, 2 and 24 h post 
injection. PD50 values for each time-intervals (±S.E.M.) are indicated. Hill slopes for Mb1a were 2.01 
(0.5 h), 2.24 (1.0 h), 2.53 (2.0 h), and for Mb1b: 2.23 (0.5 h), 2.74 (1.0 h), 2.98 (2.0 h). No lethality was 
observed, and the paralytic effects caused by both toxins were fully reversible within 24 h. 

2.4. Activity of Mb1a and Mb1b on Insect NaV Channel Currents 

At a concentration of 1 µM, both Mb1a (Figure 4a) and Mb1b (Figure 4b) reversibly inhibited 
endogenous sodium channel currents (INa) in dorsal unpaired median (DUM) neurons isolated from 
the American cockroach Periplaneta americana. Mb1a rapidly inhibited 91.5 ± 3.0% of the current (n = 

Figure 2. Recombinant production of Mb1a. Semi-preparative RP-HPLC chromatogram of recombinant
Mb1a released by TEV protease cleavage of the MBP-Mb1a fusion protein (see Materials and Methods
for more details). The dotted line indicates the gradient of solvent B (90% acetonitrile/0.043% TFA).
Top inset: SDS-PAGE gel showing pre-cleaved MBP-Mb1a fusion protein (lane 1) and remaining MBP
after cleavage (lane 2). Lane M contains molecular markers (masses in kDa). Bottom inset: MALDI-TOF
mass spectrum of pure recombinant Mb1a.

2.3. Insecticidal Activity of µ/ω-TRTX-Mb1a and -Mb1b

Both Mb1a and Mb1b caused fast, but fully reversible, paralysis of sheep blowflies (L. cuprina)
with median paralytic dose (PD50) values in the range of 5600–5800 pmoL/g at 30 min post-injection
(Figure 3). No lethal effects were observed, and paralysis was fully reversed after 24 h. Complete
paralysis was also seen for both Mb1a and Mb1b at 60 min post-injection into house flies (M. domestica),
with partial recovery observed after 24 h (Mb1a: 3/5 recovered; Mb1a: 4/5 recovered). In contrast,
injection of up to 73.4 nmoL/g of Mb1b into cotton bollworms (H. armigera larvae) did not induce any
paralytic effects. No lethality or significant changes in the weight gain of the larvae occurred within
the 72-h observation period.
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Figure 3. Insecticidal effects of recombinant (a) Mb1a and (b) Mb1b. Toxins were injected
intra-thoracically into L. cuprina blowflies and paralytic effects measured at 0.5, 1, 2 and 24 h post
injection. PD50 values for each time-intervals (±S.E.M.) are indicated. Hill slopes for Mb1a were 2.01
(0.5 h), 2.24 (1.0 h), 2.53 (2.0 h), and for Mb1b: 2.23 (0.5 h), 2.74 (1.0 h), 2.98 (2.0 h). No lethality was
observed, and the paralytic effects caused by both toxins were fully reversible within 24 h.

2.4. Activity of Mb1a and Mb1b on Insect NaV Channel Currents

At a concentration of 1 µM, both Mb1a (Figure 4a) and Mb1b (Figure 4b) reversibly inhibited
endogenous sodium channel currents (INa) in dorsal unpaired median (DUM) neurons isolated from
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the American cockroach Periplaneta americana. Mb1a rapidly inhibited 91.5 ± 3.0% of the current (n = 5;
τon = 16.1 s; Figure 4b,d), while Mb1b was slightly less potent, inhibiting current by 84.3 ± 3.7% (n = 3;
τon = 18.7 s; Figure 4c,e). Tail currents were unaffected by Mb1a and Mb1b (Figure 4b,c).

To investigate if current inhibition was caused by a toxin-induced shift in the voltage- dependence
of NaV channel activation, INa/V curves were generated before (Figure 5b) and after (Figure 5c)
addition of 100 nM Mb1a. No shift in INa/V curves was observed following perfusion with toxin
(Figure 5d). To determine if toxin-induced block was voltage-dependent, the peak current in the
presence of 100 nM Mb1a was plotted as a percentage of the control current (Figure 5e). There was no
significant change in the extent of inhibition for INa depolarizations ranging from −40 mV to 0 mV,
indicating that toxin-induced block is voltage-independent over this range.

Toxins 2017, 9, 155 5 of 18 

 

5; τon = 16.1 s; Figure 4b,d), while Mb1b was slightly less potent, inhibiting current by 84.3 ± 3.7% (n = 
3; τon = 18.7 s; Figure 4c,e). Tail currents were unaffected by Mb1a and Mb1b (Figure 4b,c). 

To investigate if current inhibition was caused by a toxin-induced shift in the voltage- 
dependence of NaV channel activation, INa/V curves were generated before (Figure 5b) and after 
(Figure 5c) addition of 100 nM Mb1a. No shift in INa/V curves was observed following perfusion with 
toxin (Figure 5d). To determine if toxin-induced block was voltage-dependent, the peak current in 
the presence of 100 nM Mb1a was plotted as a percentage of the control current (Figure 5e). There 
was no significant change in the extent of inhibition for INa depolarizations ranging from −40 mV to 0 
mV, indicating that toxin-induced block is voltage-independent over this range. 

 
Figure 4. Effects of 1 µM Mb1a and Mb1b on P. americana DUM neuron INa. (a) The depolarizing 
voltage test protocol (Vtest) used to elicit INa at 0.1 Hz. (b,c) Representative superimposed current 
traces elicited by Vtest prior to (black lines), and 3 min following, exposure to 1 µM Mb1a ((b), red 
line) and Mb1b (c, red line). Solid gray lines represent INa recorded 3 min after perfusion with 
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Mb1a and Mb1b were also tested on the cloned BgNaV1 channel from the German cockroach 
(Blattella germanica), heterologously expressed in Xenopus oocytes. (Note that the orthologous P. 
americana NaV channel has never been functionally expressed in oocytes.) Similar to their activity on 
American cockroach NaV channels, application of Mb1a or Mb1b to BgNaV1 caused a reduction in 
peak BgNaV1 currents with no shift in the GNa-V curve (Figure 6a). However, application of Mb1a 
caused inhibition of fast inactivation, which was not seen with Mb1b (Figure 6b). Therefore, the 
C-terminal residues ′GT′ are responsible for the inhibition of fast inactivation seen with Mb1a, likely 
mediated by an additional interaction with the domain IV voltage-sensor [12]. 

Figure 4. Effects of 1 µM Mb1a and Mb1b on P. americana DUM neuron INa. (a) The depolarizing
voltage test protocol (Vtest) used to elicit INa at 0.1 Hz. (b,c) Representative superimposed current
traces elicited by Vtest prior to (black lines), and 3 min following, exposure to 1 µM Mb1a ((b), red line)
and Mb1b (c, red line). Solid gray lines represent INa recorded 3 min after perfusion with toxin-free
solution, while dashed gray lines represent zero current. (d,e) Timecourse of the block of INa by 1 µM
Mb1a (d) and Mb1b (e). Average normalized peak INa before (open circles), during (red circles), and
after (blue circles) perfusion with 1 µM toxin. Values represent the mean ± S.E.M of 5 (d) or 3 (e)
experiments. The rate constant for association of the toxin to the channel (τon) was calculated using
Equation (1) defined in the Materials and Methods. There was no significant difference in current
inhibition by Mb1a and Mb1b (p = 0.169).

Mb1a and Mb1b were also tested on the cloned BgNaV1 channel from the German cockroach
(Blattella germanica), heterologously expressed in Xenopus oocytes. (Note that the orthologous
P. americana NaV channel has never been functionally expressed in oocytes.) Similar to their activity on
American cockroach NaV channels, application of Mb1a or Mb1b to BgNaV1 caused a reduction in peak
BgNaV1 currents with no shift in the GNa-V curve (Figure 6a). However, application of Mb1a caused
inhibition of fast inactivation, which was not seen with Mb1b (Figure 6b). Therefore, the C-terminal
residues ′GT′ are responsible for the inhibition of fast inactivation seen with Mb1a, likely mediated by
an additional interaction with the domain IV voltage-sensor [12].
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(open circles), and after (red circles and shaded), application of 100 nM Mb1a. Data were fitted using 
Equation (1) (see Materials and Methods). Currents recorded in the presence of toxin were 
normalised against maximum peak INa in controls (red solid curve) and maximum peak INa in the 
presence of toxin (red dashed curve). (e) Linear regression analysis of the data using Equation (2) (see 
Materials and Methods) revealed that inhibition of INa was voltage-independent over the range −40 to 
0 mV in the presence of 100 nM Mb1a. Data points are the mean ± S.E.M of 3 experiments. 
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At a concentration of 1 µM, Mb1a and Mb1b rapidly and irreversibly inhibited both 
mid-/low-voltage-activated (M-LVA) and high-voltage-activated (HVA) CaV channel currents 
endogenously present in P. americana DUM neurons (Figures 7 and 8). Mb1a was slightly more 
potent than Mb1b on both types of CaV channel currents, with 45% of M-LVA CaV channel currents 
and 48% of HVA CaV channel currents inhibited by Mb1a (Figures 7b and 8b, respectively) 
compared with 27% inhibition of M-LVA currents and 34% inhibition of HVA CaV channel currents 
by Mb1b (Figures 7c and 8c, respectively). Mb1a did not shift the IBa/V curve (Figure 9a–d), and its 
inhibition of CaV channel currents was voltage-independent (Figure 9e). 

  

Figure 5. Effect of 100 nM Mb1a on the voltage-dependence of activation of P. americana DUM neuron
NaV channels. (a) Families of NaV channel currents were elicited by depolarizing test pulses to +40 mV
from a holding potential of −90 mV in 10-mV steps. Representative superimposed families of INa are
shown prior to (b), and 5 min after (c), application of 100 nM Mb1a. Currents were generated using the
test pulse protocol shown in panel a. (d) Normalised INa-V relationships before (open circles), and after
(red circles and shaded), application of 100 nM Mb1a. Data were fitted using Equation (1) (see Materials
and Methods). Currents recorded in the presence of toxin were normalised against maximum peak
INa in controls (red solid curve) and maximum peak INa in the presence of toxin (red dashed curve).
(e) Linear regression analysis of the data using Equation (2) (see Materials and Methods) revealed that
inhibition of INa was voltage-independent over the range −40 to 0 mV in the presence of 100 nM Mb1a.
Data points are the mean ± S.E.M of 3 experiments.

2.5. Effect of Mb1a and Mb1b on Insect CaV Channel Currents

At a concentration of 1 µM, Mb1a and Mb1b rapidly and irreversibly inhibited both
mid-/low-voltage-activated (M-LVA) and high-voltage-activated (HVA) CaV channel currents
endogenously present in P. americana DUM neurons (Figures 7 and 8). Mb1a was slightly more
potent than Mb1b on both types of CaV channel currents, with 45% of M-LVA CaV channel currents
and 48% of HVA CaV channel currents inhibited by Mb1a (Figures 7b and 8b, respectively) compared
with 27% inhibition of M-LVA currents and 34% inhibition of HVA CaV channel currents by Mb1b
(Figures 7c and 8c, respectively). Mb1a did not shift the IBa/V curve (Figure 9a–d), and its inhibition
of CaV channel currents was voltage-independent (Figure 9e).
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voltage (G-V) relationships (G/Gmax) are shown by closed circles and steady-state inactivation (SSI) 
relationships (I/Imax) by open circles, before (black) and after (red) toxin addition. Normalization was 
performed relative to the peak current before toxin addition. Solid and dashed lines depict, 
respectively, the G-V and SSI curves fit using the standard Boltzmann equation. Oocytes were 
depolarized in 5-mV steps from a holding potential of –90 mV up to 5 mV for 50 ms, followed by a 
depolarizing pulse to −15 mV for 50 ms. Peak current from the initial step series was converted to 
conductance and normalized to create the G-V relationship while peak current from the following –
15 mV voltage depolarization step was normalized to yield the SSI relationship. Mb1a caused a 
decrease in peak current and increase in persistent current, while Mb1b reduced peak current 
without affecting persistent current (n = 4; error bars represent S.E.M) (b) Representative examples of 
the effects of Mb1a (left) and Mb1b (right) on BgNaV1 current when depolarized to –15 mV, with 
black and red traces corresponding to the current before and after toxin application, respectively. 
Each set of traces is taken from an individual oocyte used to generate the data shown in panel (a). 
Note that the persistent current seen in the traces in panel (b) does not result from inhibition of fast 
inactivation by Mb1a and Mb1b since BgNav1 inherently possesses these characteristics at mildly 
depolarizing voltages [22–24]. 

Figure 6. (a) Effect of 200 nM Mb1a (left) or Mb1b (right) on BgNaV1. Normalized conductance-
voltage (G-V) relationships (G/Gmax) are shown by closed circles and steady-state inactivation (SSI)
relationships (I/Imax) by open circles, before (black) and after (red) toxin addition. Normalization
was performed relative to the peak current before toxin addition. Solid and dashed lines depict,
respectively, the G-V and SSI curves fit using the standard Boltzmann equation. Oocytes were
depolarized in 5-mV steps from a holding potential of –90 mV up to 5 mV for 50 ms, followed
by a depolarizing pulse to −15 mV for 50 ms. Peak current from the initial step series was converted
to conductance and normalized to create the G-V relationship while peak current from the following
−15 mV voltage depolarization step was normalized to yield the SSI relationship. Mb1a caused
a decrease in peak current and increase in persistent current, while Mb1b reduced peak current without
affecting persistent current (n = 4; error bars represent S.E.M) (b) Representative examples of the effects
of Mb1a (left) and Mb1b (right) on BgNaV1 current when depolarized to –15 mV, with black and red
traces corresponding to the current before and after toxin application, respectively. Each set of traces is
taken from an individual oocyte used to generate the data shown in panel (a). Note that the persistent
current seen in the traces in panel (b) does not result from inhibition of fast inactivation by Mb1a and
Mb1b since BgNav1 inherently possesses these characteristics at mildly depolarizing voltages [22–24].
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(b,c) Representative superimposed M-LVA IBa showing tonic block of M-LVA CaV channel currents
before (black lines) and following (red lines) a 3 min perfusion, with (b) 1 µM Mb1a and (c) 1 µM Mb1b.
Dashed gray lines represent zero current. (d,e) Timecourse of inhibition of normalized peak M-LVA
CaV channel currents by (d) 1 µM Mb1a and (e) 1 µM Mb1b. Data are mean ± S.E.M, n = 4. Average
normalized peak IBa before (open circles), during (red circles), and after (blue circles) perfusion with 1
µM toxin. Data are mean ± S.E.M of 5 (panel d) or 3 (panel e) experiments. Inhibition of IBa by Mb1a
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Figure 8. Effect of 1 µM Mb1a and Mb1b on P. americana HVA CaV channel currents. (a) M-LVA
IBa were elicited by 100-ms depolarizing test pulses to +20 mV from a holding potential of −90 mV.
(b,c) Representative superimposed HVA IBa showing tonic block of HVA CaV channel currents before
(black lines) and following a 3 min perfusion (red lines) with (b) 1 µM Mb1a and (c) 1 µM Mb1b.
Dashed gray lines represent zero current. (d,e) Timecourse of inhibition of normalized peak HVA
CaV channel currents by (d) 1 µM Mb1a and (e) 1 µM Mb1b. Data are mean ± S.E.M, n = 4. Average
normalized peak IBa before (open circles), during (red circles), and after (blue circles) perfusion with
1 µM toxin. Data are mean ± S.E.M of 5 experiments (panel d) or 3 experiments (panel e). Inhibition of
IBa by Mb1a was significantly greater than for Mb1b (p = 0.007).
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Figure 9. Effect of 1 µM Mb1a on the voltage-dependence of activation of P. americana DUM neuron
CaV channels. (a) Families of CaV channel currents were elicited by depolarizing test pulses to +40 mV
from a holding potential of –90 mV in 10-mV steps. Representative superimposed families of INa are
shown prior to (b), and 5 min after (c), application of 1 µM Mb1a. Currents were generated using
the test pulse protocol shown in panel a. (d) Normalised IBa-V relationships before (open circles) and
after (red circles and shaded) application of 1 µM Mb1a generated using the pulse protocol in panel a.
Data were fitted using Equation (2) (see Materials and Methods). Currents recorded in the presence of
toxin were normalised against maximum peak IBa in controls (red solid curve) and maximum peak IBa

in toxin (red dashed curve). (e) Linear regression analysis of the data using Equation (2) (see Materials
and Methods) revealed that inhibition of IBa by 100 nM Mb1a was voltage-independent over the range
–40 to +10 mV. Data points are mean ± S.E.M, n = 4.

3. Discussion

3.1. Promiscuous Pharmacology of Mb1a/1b

The closest homologues of Mb1a and-Mb1b are the spider toxins ω-TRTX-Hg1a (71%
identity) [25,26], β-TRTX-Cm2a (68% identity) [27] and ω-TRTX-Pm1a (68% identity) [28] (Figure 10),
all of which are active on vertebrate voltage-gated ion channels. None of these toxins have been
tested against insects. It is interesting to note that the CaV channel inhibitors ω-TRTX-Hg1a and
ω-TRTX-Pm1a also modulate NaV channel currents by reducing peak current and delaying fast
inactivation [28,29], akin to the action of Mb1a on BgNaV1 (Figure 6).

The C-terminus ofω-TRTX-Pm1a was found to be critical for its activity: a C-terminally truncated
analogue was almost inactive on both CaV and NaV channels [28]. Similarly, we found that the activity
of Mb1a/1b was influenced by the C-terminal region, with the putative native toxin, Mb1a, being
more potent at inhibiting CaV channels than Mb1b. Furthermore, the two C-terminal residues of Mb1a
are responsible for its inhibition of fast inactivation in BgNaV1, as this was not observed with Mb1b.
It is interesting that the delay in inactivation appears to be simply due to the loss and/or addition
of a methyl group of the side chains of G and T, respectively, compared to those of AS. The ability
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of Mb1a to inhibit peak BgNaV1 currents and delay fast inactivation contrasts with that of the toxin
PnTx4(5-5) from Phoneutria nigriventer, which enhances peak current in addition to causing delayed
inactivation of BgNaV1 [30].

Fast inactivation of NaV channels is mediated by domain IV, and spider toxins interacting with the
S3–S4 extracellular loop in channel domain IV (DIV) have been found to inhibit fast inactivation [31,32].
The loss of inhibition of fast inactivation by Mb1b suggests that the C-terminal ′GT′ residues in Mb1a
facilitate its interaction with the domain IV voltage sensor of BgNaV1. Notably, Mb1a did not delay
fast inactivation of P. americana NaV channel currents, even though the DIV S3–S4 DIV loop is identical
in the P. americana and B. germanica NaV channels. However, numerous recent studies have revealed
that the extracellular S1–S2 loops can be important sites for toxin recognition [24,33–38]. A comparison
of the DIV S1–S2 region of the P. americana and B. germanica channels reveals only a single difference
(K1634Q; Figure 11), which may be at least partly responsible for the ability of Mb1a to inhibit the fast
inactivation of B. germanica NaV channels.
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channels from P. americana (UniProt D0E0C1), B. germanica (UniProt O01307), and H. armigera (deduced
from the published genome). The S1–S2 extracellular loops from the four domains are coloured
purple (DI), red (DII), blue (DIII) and green (DIV). Differences in amino acid sequence between species
are highlighted in grey. The boundaries of S1 and S2 are based on the recently determined structure of
the P. americana NaVPaS channel [39].

Inhibition of peak INa without a shift in the INa/V curve, as seen with Mb1a and Mb1b, may
indicate a simple pore blocking mechanism of action. However, most NaV channel spider toxins are
gating modifiers [11,40] that interact with the voltage sensor domains [11], and numerous spider toxins
such as µ-TRTX-Hs2a (huwentoxin IV; [41]) and µ-TRTX-Hd1a [42] have been found to inhibit NaV

channels by interacting with the DII voltage sensor without causing a shift in the voltage-dependence
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of channel activation. Therefore, it is likely that Mb1a and Mb1b inhibit insect NaV channels via
gating modification. Compared to NaV channels, much less is known about how spider toxins interact
with CaV channels [43]. Spider toxins that affect CaV channels are generally thought to act as gating
modifiers, although some toxins such as ω-AGTX-Aa3a and ω-SGTX-Sf1a are believed to be pore
blockers [44–46]. Mb1a and Mb1b both inhibit peak CaV channel currents without shifting the IBa/V
curve, consistent with them being pore blockers. However, further experiments will be required to
determine the binding sites of these two peptides on insect CaV and NaV channels.

3.2. Phyletic Selectivity of Mb1a/1b

Several spider toxins have been found to paralyze or kill the dipterans L. cuprina and M. domestica,
with activities ranging from 198 pmoL/g (LD50; U1-AGTX-Ta1a) to 2229 pmoL/g (PD50; µ-SGTX-Sf1a)
on L. cuprina, and 77 pmoL/g (LD50; ω-HXTX-Hv1a) to 1380 pmoL/g (LD50; µ-AGTX-Aa1b) on M.
domestica [47–50]. With PD50 values of 5600–5800 pmoL/g, Mb1a and Mb1b are only moderately potent
against L. cuprina compared to other spider toxins that affect dipterans.

Notably, Mb1a and Mb1b were inactive against H. armigera, suggesting they do not modulate the
activity of H. armigera NaV or CaV channels. Since a BAC library of the H. armigera genome has been
published [51,52], we used this to deduce the sequence of the H. armigera NaV channel and compared
it to that of B. germanica and P. americana channels on which Mb1a and Mb1b are active (Figure 11).
The S3–S4 loops are identical in all four voltage-sensor domains of the of P. americana, B. germanica and
H. armigera NaV channels, indicating that these regions are not responsible for the differences in activity.
However, the S1–S2 loops of all four domains of the H. armigera NaV channel contain variations in
amino acid sequence compared to both cockroach species (Figure 11). Thus, Mb1a and Mb1a possibly
provide additional examples of insecticidal toxins where differences in phyletic selectivity are due to
taxonomic variations in the sequences of the S1–S2 loops [24,37].

4. Conclusions

Mb1a and Mb1b add to the expanding repertoire of spider toxins that are active against insects.
Due to a high level of homology with toxins active on vertebrates, Mb1a and Mb1b may have an activity
on vertebrate NaV or CaV channels that would render them unsuitable candidates for bioinsecticide
development. However, the closest vertebrate-active homolog is only 71% identical with 11 differences
in amino acid sequence (Figure 10), and it is well known that even small differences in venom-peptide
sequences can alter their channel and species selectivity. Even if Mb1a and Mb1b turn out to be
vertebrate active, differences in their mechanism of action make them useful tools for studying insect
NaV channels. Moreover, Mb1a and Mb1b contribute to the growing body of evidence derived from
animal toxins which suggests that phyletic selectivity can be achieved by targeting the voltage-sensor
domains of insect NaV channels.

5. Materials and Methods

5.1. Venom Collection

Venom from a single female Monocentropus balfouri was extracted using mild electrical
stimulation [53], then the venom was lyophilized and kept frozen until reconstituted and used for
the experiments.

5.2. Fractionation of Crude Venom

1 mg of dried M. balfouri venom was fractionated using a Jupiter C18 analytical RP-HPLC column
(25 cm × 4 mm, 5 µm, Phenomenex Australia Pty. Ltd., Sydney, Australia) connected to a Shimadzu
Prominence HPLC system. The flow rate was 1 mL/min. Varying gradients of solvent A (0.1% formic
acid) and solvent B (90% acetonitrile/ 0.1% formic acid) were used. Isocratic elution with 5% solvent B
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was used for the first 5 min, followed by 5–20% solvent B over 5 min, 20–40% solvent B over 40 min,
40–80% solvent B over 5 min, then 80% solvent B for 2 min.

5.3. Sequencing of Active Peptide

N-terminal Edman sequencing, including the prior reduction and alkylation of Mb1a/b with
TCEP/iodoethanol, was performed by the Australian Proteome Analysis Facility (APAF). The sample
(30 µL) was loaded onto a precycled, biobrene-treated discs and subjected to 40 cycles of Edman
N-terminal sequencing. The analysis was run using the pulsed liquid method with a modified begin
cycle to include extra washes. Automated Edman degradation was carried out using an Applied
Biosystems 494 Procise Protein Sequencing System. Performance of the sequencer was assessed
routinely with 10 pmoL β-lactoglobulin standard.

5.4. Recombinant Production of Mb1a and Mb1b

Recombinant Mb1a and Mb1b were produced by expression in the periplasm of Escherichia
coli using a previously described protocol [21]. Briefly, a synthetic gene encoding Mb1a and Mb1b
was cloned into a variant of the pLic-MBP expression vector by GeneArt (Invitrogen, Regensburg,
Germany). Codons were optimized for expression in E. coli. The modified pLic-MBP vector encodes
a MalE signal sequence for periplasmic export of the fusion protein, a His6 tag for affinity purification,
a maltose-binding protein (MBP) fusion tag to aid solubility, and a tobacco etch virus (TEV) protease
recognition site directly preceding the toxin sequence. The plasmids encoding Mb1a and Mb1b
were transformed via heat shock into E. coli strain BL21(λDE3) for production of recombinant toxin.
Protein expression and purification were performed as previously described with minor modifications.
In summary, a 50 mL overnight starter culture grown in Luria-Bertani broth at 37 ◦C with shaking
(~220 rpm) was used to inoculate a 2 liter culture the following day. After the culture reached an OD600

of ~1.0, toxin gene expression was induced with 500 µM IPTG. Cells were grown at 30 ◦C overnight
before centrifugation for 15 min at 10,500 g to obtain the cell pellet. The pellet was then reconstituted in
a minimal amount of TN buffer (20 mM Tris, 250 mM NaCl, pH 8), then cells were lysed at 27 kpsi using
a constant-pressure cell disruptor (TS Series Cell Disrupter, ConstantSystems Ltd., Daventry, UK).

The cell lysate was passed over a column containing Ni-NTA Superflow resin (Qiagen Pty Ltd.,
Chadstone, VIC, Australia) and weakly bound proteins were eluted with 15 mM imidazole in TN
buffer. The MBP-toxin fusion protein was then eluted with 300 mM imidazole in TN buffer, after which
the eluate was spun in a 30 kDa cut-off centrifugal filter to remove the imidazole and concentrate
the protein to 5 mL. The resulting solution was diluted to 10 mL with TN buffer, then the fusion
protein was cleaved overnight at room temperature using ~100 µg TEV protease in 0.6 mM and
0.4 mM reduced and oxidised glutathione, respectively [21]. 0.1% TFA was then added to precipitate
the cleaved His6-MBP protein; the sample was then centrifuged at 17,000 g to pellet the precipitant.
The supernatant was filtered with a 0.45 µm syringe filter (EMD Millipore, Billerica, MA, USA) before
purification of recombinant Mb1a or Mb1b using semi-preparative RP-HPLC (Phenomenex Jupiter C4

column; 250 × 10 mm, 10 µm; flow rate 5 mL/min). Recombinant toxin was eluted using a gradient
of 10–45% solvent B (0.043% TFA in 90% acetonitrile) in solvent A (0.05% TFA in water) over 30 min.
Further purifications were performed using an Agilent C18 column (ZORBAX 300SB; 250 × 9.4 mm,
5 µm; flow rate 3 mL/min) with appropriate solvent gradients.

5.5. Insecticidal Assays

5.5.1. Sheep Blowflies and House Flies

Mb1a and Mb1b were dissolved in insect saline (see [54] for composition) and injected into the
ventro-lateral thoracic region of adult sheep blowflies (Lucilia cuprina) or house flies (Musca domestica)
according to methods described previously [23]. Briefly, a maximum of 2 µL was injected per fly using
a 1.0 mL Terumo Insulin syringe with a fixed 29-gauge needle fitted to an Arnold hand micro-applicator
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(Burkard Manufacturing Co. Ltd., Rickmansworth, UK). Flies were individually housed in 2 mL tubes
and paralytic effects determined 0.5, 1, 2 and 24 h after injection. For L. cuprina, three replicates were
performed and for each replicate six doses of Mb1a or Mb1b (n = 10 flies per dose) was used, along
with appropriate controls (insect saline; n = 20 flies each). Dose-response data were fitted using the
sigmoidal dose-response (variable slope) function in Prism 6. For M. domestica, a single replicate (n = 5)
of one dose of Mb1a or Mb1b was injected (Mb1a: 15 nmoL/g, Mb1b: 11.7 nmoL/g). PD50 and LD50

values were calculated as previously described [55].
We defined “complete paralyzed” flies as those that could move their appendages (legs and

proboscis), but were unable to fly or drag their body forward when placed onto a flat bench.
At earlier times post-injection, or at lower doses, we observed “incomplete paralyzed” flies that
had uncoordinated movement (e.g., due to some extremities twitching or being paralyzed) but which
were nevertheless able to move their body along a flat bench even though they could not fly.

5.5.2. Cotton Bollworms

Cotton bollworms (i.e., Helicoverpa armigera larvae) were obtained from AgBiTech Pty Ltd.
(Glenvale, QLD, Australia). Toxins were injected into the lateral thoracic region and larvae observed
for paralytic or lethal effects at 0.5, 1, 3, 24, 48, and 72 h after injection. Larvae were kept in standard
6-well plates and fed on artificial diet (AgBiTech, Clifford Gardens, Australia). Larval weight was
measured 24, 48 and 72 h after injection.

5.6. Patch Clamp Electrophysiology Using P. americana Neurons

DUM neurons were isolated from unsexed adult P. americana as described previously [56]. Briefly,
terminal abdominal ganglia were removed and placed in normal insect saline (NIS) containing (in mM):
NaCl 180, KCl 3.1, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) 10, D-glucose 20.
Ganglia were then incubated in 1 mg/mL collagenase (type IA) for 40 min at 29 ◦C, washed twice
in NIS, resuspended in NIS supplemented with 4 mM MgCl2, 5 mM CaCl2, 5% foetal bovine serum
and 1% penicillin/streptomycin (NIS+; Life Technologies, Mulgrave, VIC, Australia), then triturated
through a fire-polished Pasteur pipette. The resultant cell suspension was then distributed onto 12-mm
diameter glass coverslips pre-coated with 2 mg/mL concanavalin A (type IV). DUM neurons were
maintained in NIS+ at 29 ◦C and 100% humidity.

Ionic currents were recorded from DUM neurons in voltage-clamp mode using the whole-cell
patch-clamp technique employing version 10.2 of the pCLAMP data acquisition system (Molecular
Devices, Sunnyvale, CA, USA). Data were filtered at 10 kHz with a low-pass Bessel filter with leakage
and capacitive currents subtracted using P–P/4 procedures. Digital sampling rates were set between
15 kHz and 25 kHz depending on the length of the protocol. Single-use 0.8–1.5 MΩ electrodes were
pulled from borosilicate glass and fire-polished prior to current recordings. Liquid junction potentials
were calculated using JPCALC, and all data were compensated for these values. Cells were bathed
in external solution through a continuous pressurized perfusion system at 1 mL/min, while toxin
solutions were introduced via a wide-bore gravity-fed perfusion needle at ~80 µL/min (Automate
Scientific, San Francisco, CA, USA). All experiments were performed at ambient temperature (20–23 ◦C).
To record sodium currents (INa), the external bath solution contained (in mM): NaCl 80, CsCl 5, CaCl2
1.8, tetraethylammonium chloride 50, 4-aminopyridine 5, HEPES 10, NiCl2 0.1, CdCl2 1, adjusted to
pH 7.4 with 1 M NaOH. The pipette solution contained (in mM): NaCl 34, CsF 135, MgCl2 1, HEPES 10,
ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) 5, and ATP-Na2 3, adjusted
to pH 7.4 with 1 M CsOH. Note that in these and other electrophysiology experiments, peptides were
tested at concentrations that yielded 50–75% inhibition of currents.

Two subtypes of CaV channel currents have been observed in P. americana DUM neurons:
high-voltage-activated (HVA) and mid/low-voltage-activated (M-LVA) CaV channel currents [23,57].
Notwithstanding differences in the kinetic and pharmacological properties of M-LVA and HVA CaV

channels, there is no mechanism for recording one current in isolation from the other, as no peptide or
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small molecule inhibitors have been developed that block one type of current and not the other [58].
Therefore, depolarizing voltage command pulses to different levels were used to investigate the actions
of Mb1a and Mb1b on M-LVA and HVA CaV channels [23,57]. CaV channel currents were evoked by
100-ms depolarising pulses from a membrane holding potential (Vh) of –90 mV to potentials at 7-s
intervals to −20 mV for generation of predominantly M-LVA CaV channel currents and to +20 mV to
evoke mainly HVA CaV channel currents [57].

Previous studies revealed significant rundown of CaV currents when calcium was used as a charge
carrier, but much less when barium was used instead [58]; thus, we replaced CaCl2 with BaCl2 in all
CaV channel experiments. The external bath solution for barium current (IBa) recordings contained
(in mM): sodium acetate 140, TEA-bromide 30, BaCl2 3, HEPES 10, adjusted to pH 7.4 with 1 M
TEA-OH. The external solution also contained 300 nM tetrodotoxin to block NaV channels. Pipette
solutions contained (in mM): sodium acetate 10, CsCl 110, TEA-bromide 50, ATP-Na2 2, CaCl2 0.5,
EGTA 10, HEPES 10, adjusted to pH 7.4 with 1 M CsOH.

To eliminate any influence of differences in osmotic pressure, all internal and external solutions
were adjusted to 400 ± 5 mOsmol/L with sucrose. Experiments were rejected if leak currents exceeded
1 nA or if currents showed signs of poor space clamping. Peak current amplitude was analyzed
offline using AxoGraph X v1.5.3 (Molecular Devices, Sunnyvale, CA, USA). All curve-fitting was
performed using Prism 6 (GraphPad Software Inc., San Diefo, CA, USA). All data are mean ± SEM of
n independent experiments. On-rates (τon) were calculated using the following Equation (1):

Y = Y0 + (A−Y0)× (1− exp(−K× t)) (1)

where Y0 is the maximal peak INa, A is the minimum peak INa, K is the rate constant and t is time.
The on-rate (τon) was subsequently determined from the inverse of the rate constant (K).

The data for voltage-dependence of channel activation, for all channel types, were fitted using the
following current-voltage (I/V) curve formula Equation (2):

I = gmax

(
1−

(
1

1 + exp[(V −V1/2)/s]

))
(V −Vrev) (2)

where I is the amplitude of the current at a given test potential V, gmax is the maximal conductance, V1/2
is the voltage at half-maximal activation, s is the slope factor and Vrev is the apparent reversal potential.

Differences in current inhibition between toxins was analysed using one-way ANOVA, with a
probability of p < 0.05 being considered statistically significant.

5.7. Two–Electrode Voltage-Clamp Electrophysiology

BgNaV1 [59] cRNA was synthesized using T7 polymerase (mMessage mMachine kit, Life
Technologies, Carlsbad, CA, USA) after linearizing the fully-sequenced DNA with NotI. BgNaV1
was expressed in Xenopus oocytes together with the TipE subunit [60] (1:5 molar ratio), and studied
following a 1-day incubation after cRNA injection. Cells were incubated at 17 ◦C in ND96 consisting
of (in mM) NaCl 96, KCl 2, HEPES 5, MgCl2 1, CaCl2 1.8, pH 7.6 with NaOH supplemented 50 µg/mL
gentamycin, then studied using two-electrode voltage-clamp recording techniques (OC-725C, Warner
Instruments, Hamden, CT, USA) with a 150-µL recording chamber. Data were filtered at 4 kHz and
digitized at 20 kHz using pClamp software (Molecular Devices, Sunnyvale, CA, USA). Microelectrode
resistances were 0.5–1 MΩ when filled with 3 M KCl. The external recording solution consisted
of ND96. All experiments were performed at room temperature (~22 ◦C). Leak and background
conductances, identified by blocking the channel with tetrodotoxin, were subtracted for all currents
shown. Voltage-activation relationships were obtained by measuring steady-state currents and
calculating conductance. Protocols for other measurements are described in the figure legends. After
addition of toxin to the recording chamber, the equilibration between the toxin and the channel was
monitored using weak depolarizations elicited at 5-s intervals. For all channels, voltage-activation
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relationships were recorded in the absence and presence of toxin. Off-line data analysis was performed
using Clampfit 10 (Molecular Devices, Sunnyvale, CA, USA) and Origin 8.0 (Originlab, Northampton,
MA, USA).
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