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Abstract

The genus Leishmania includes approximately 53 species, 20 of which cause human leish-

maniais; a significant albeit neglected tropical disease. Leishmaniasis has afflicted humans

for millennia, but how ancient is Leishmania and where did it arise? These questions have

been hotly debated for decades and several theories have been proposed. One theory sug-

gests Leishmania originated in the Palearctic, and dispersed to the New World via the

Bering land bridge. Others propose that Leishmania evolved in the Neotropics. The Multiple

Origins theory suggests that separation of certain Old World and New World species

occurred due to the opening of the Atlantic Ocean. Some suggest that the ancestor of the

dixenous genera Leishmania, Endotrypanum and Porcisia evolved on Gondwana between

90 and 140 million years ago. In the present study a detailed molecular and morphological

characterisation was performed on a novel Australian trypanosomatid following its isolation

in Australia’s tropics from the native black fly, Simulium (Morops) dycei Colbo, 1976. Phylo-

genetic analyses were conducted and confirmed this parasite as a sibling to Zelonia costari-

censis, a close relative of Leishmania previously isolated from a reduviid bug in Costa Rica.

Consequently, this parasite was assigned the name Zelonia australiensis sp. nov. Assuming

Z. costaricensis and Z. australiensis diverged when Australia and South America became

completely separated, their divergence occurred between 36 and 41 million years ago at

least. Using this vicariance event as a calibration point for a phylogenetic time tree, the com-

mon ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia appeared in

Gondwana approximately 91 million years ago. Ultimately, this study contributes to our
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understanding of trypanosomatid diversity, and of Leishmania origins by providing support

for a Gondwanan origin of dixenous parasitism in the Leishmaniinae.

Author Summary

The genus Leishmania includes approximately 53 species, 20 of which cause human leish-

maniais, a significant disease that has afflicted humans for millennia. But how ancient is

Leishmania and where did it arise? Some suggest Leishmania originated in the Palearctic.

Others suggest it appeared in the Neotropics. The Multiple Origins theory proposes that

separation of certain Old World and Neotropical species occurred following the opening

of the Atlantic. Others suggest that an ancestor to the Euleishmania and Paraleishmania

appeared on Gondwana 90 to 140 million years ago (MYA). We performed a detailed

molecular and morphological characterisation of a novel Australian trypanosomatid. This

parasite is a sibling to the Neotropical Zelonia costaricensis, a close relative of Leishmania,

and designated as Zelonia australiensis sp. nov. Assuming Z. costaricensis and Z. austra-
liensis split when Australia and South America separated, their divergence occurred

between 36 and 41 MYA. Using this event as a calibration point for a phylogenetic time

tree, an ancestor of the dixenous Leishmaniinae appeared in Gondwana ~ 91 MYA. This

study contributes to our understanding of trypanosomatid diversity by describing a

unique Australian trypanosomatid and to our understanding of Leishmania evolution by

inferring a Gondwanan origin for dixenous parasitism in the Leishmaniinae.

Introduction

The success of Leishmania species, the complexity of their dixenous life cycle, and the intricacy

of their host-parasite interactions implies a relationship between host, parasite and vector that

has evolved over millions of years, certainly predating the appearance of humankind. Evidence

for this ancient origin was first identified in the form of Paleoleishmania proterus; a trypanoso-

matid discovered in a fossilised Palaeomyia burmitis sand fly that became trapped in Burmese

amber approximately 100 million years ago (MYA) [1]. A second fossilised specimen of the

extinct sand fly Lutzomyia adiketis contained a trypanosomatid parasite assigned the name

Paleoleishmania neotropicum [2]. This specimen was preserved in amber from the Dominican

Republic and was dated at 20 to 30 million years old [2]. While these findings provide insights

into the ancient origins of Leishmania, the evolutionary and biogeographical history of this

genus remains a hotly debated topic, and multiple theories have been proposed [3–6].

The Palaearctic origins theory suggests that Leishmania originated in the Old World and

dispersed to the New World via the Bering land bridge which was open during the Eocene

epoch [6–8]. Amastigotes of the ~100 million year old Paleoleishmania proterus were observed

in Cretaceous reptilian blood [9], supporting that the reptile-infecting Sauroleishmania subge-

nus evolved first in the Palearctic. However, this requires that the Sauroleishmania form a sis-

ter clade to all other Leishmania species [3, 7], and implies that adaptation to mammals,

possibly murid rodents, occurred later when reptiles declined during the global cooling epi-

sode that denotes the Eocene to Oligocene transition [6, 8, 10]. Alternatively, the Neotropical

origins hypothesis suggests Leishmania appeared in the Neotropics between 34 and 46 MYA

and was dispersed to the Nearctic by rodents (i.e. porcupines) via the Panamanian land bridge
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[11]. The parasites were then dispersed further, from the Nearctic to the Palaearctic via the

Bering land bridge [3, 6].

The Multiple Origins hypothesis, also known as the Neotropical/African Origins hypothesis

[6], considers the origins of the Euleishmania, comprising the Leishmania, Viannia, and Saur-
oleishmania subgenera, and the Paraleishmania [7] which presently includes Endotrypanum
and the newly established genus, Porcisia Shaw, Camargo and Teixeira, 2016 [12]. This

hypothesis supposes that the Euleishmania and Paraleishmania existed as separate lineages

prior to the breakup of Gondwana. Upon the opening of the Atlantic Ocean, the Euleishmania

evolved into the Sauroleishmania and Leishmania subgenera in the Old World, and the Vian-
nia subgenus evolved from the Euleishmania that remained in the New World [7]. This theory

also supposes that an ancestor of the few known Neotropical Leishmania (Leishmania) species

was later dispersed from the Old World to the New World via the Bering land bridge [3, 6].

The Supercontinents hypothesis represents a variation of the Multiple Origins theory, and pro-

poses that the Euleishmania and Paraleishmania diverged approximately 90 to 100 MYA, and

that an ancestor to Leishmania, Endotrypanum and Porcisia evolved from a monoxenous try-

panosomatid on Gondwana between 90 and 140 MYA [3]. This hypothesis was discussed sev-

eral years ago by Yurchenko et al. [4], though more recently explored by Harkins et al. [3],

who also provided phylogenetic support. Inclusion of an Australian Leishmania species in phy-

logenies from that study also allowed calibration of time trees at a speciation event (a node)

that likely arose when Australia became completely separated from South America, via Antarc-

tica, approximately 40 MYA [3]. However, the separation of these continents was a highly pro-

tracted event, beginning during the early Cretaceous period and resulting in a large rift valley

between Australia and Antarctica as early as 125 to 105 MYA [13]. Consequently, calibration

of this node at 40 MYA represents a minimum time point for the vicariant event that separated

the Australian Leishmania parasite from its ancestors in the Neotropics.

There has been an intense effort amongst trypanosomatid taxonomists in recent years to

increase our knowledge of trypanosomatid diversity and better understand the evolutionary

relationships between members of this important group of parasites [12, 14, 15]. These endeav-

ours have required detailed molecular and morphological characterisation of newly isolated

species to avoid misclassification and subsequent confusion for later investigators [15]. This

work has led to several new developments, including establishment of new genera and the

reassignment of "old" parasites to different genera [12, 14–19]. Despite these recent advances,

knowledge of Australia’s indigenous Leishmaniinae remains incredibly scarce. Extended peri-

ods of geographical isolation have resulted in Australia’s unique and often peculiar fauna.

Indeed, this uniqueness is reflected in Australia’s native Leishmania parasite which, curiously,

is thought to be transmitted in the bite of a day feeding midge (Diptera: Ceratopogonidae),

rather than a phlebotamine sand fly [20]. Given Australia’s unique fauna, surveying its insects

for endogenous trypanosomatids could contribute markedly to our understanding of trypano-

somatid diversity and uncover evolutionary relationships that were previously elusive.

As a contribution to these efforts, we describe the detailed molecular and morphological

characterisation of a novel trypanosomatid isolated from the Australian native black fly, Simu-
lium (Morops) dycei Colbo, 1976. Phylogenetic analyses confirmed this parasite as a sibling

species to Leptomonas costaricensis; a trypanosomatid previously isolated from a reduviid bug

in Costa Rica [4]. In a recent appraisal of trypanosomatid taxonomy, Espinosa et al. [12]

argued that L. costaricensis was phylogenetically distant from other Leptomonas spp. and

should be placed in a separate genus. Consequently, the genus Zelonia n. gen Shaw, Camargo

and Teixeira (2016) [12] was established to accommodate this organism (henceforth Zelonia
costaricensis) and its nearest relatives. Accordingly, the Australian parasite isolated in this

study was assigned the name Zelonia australiensis sp. nov. Assuming that the separation of Z.
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costaricensis and Z. australiensis occurred as a result of vicariance, when Australia and South

America separated, we suggest their divergence took place between 36 and 41 MYA, at least

[21]. Using this event as the calibration point for a phylogenetic time tree, the clade containing

the dixenous parasites Leishmania, Endotrypanum and Porcisia i.e. the Euleishmania and Para-

leishmania, was estimated to have diverged from a monoxenous ancestor in Gondwana during

the mid-Cretaceous, approximately 91 MYA. Ultimately, this study contributes to our under-

standing of trypanosomatid diversity, and of Leishmania origins, by providing support for a

Gondwanan origin of dixenous parasitism in the Leishmaniinae.

Materials and Methods

Study location and insect trapping

Insect collection was performed following approval by the University Technology Sydney Ani-

mal Care and Ethics Committee. Insect trapping was performed near the location selected by

Dougall et al. [20] (Table 1, S1 File) as it was considered suitable for the isolation of other trop-

ical trypanosomatids and would provide an opportunity to re-isolate the Australian Leish-
mania parasite [22], thereby confirming its persistence in the region. Note that at the time of

writing, the name Leishmania ‘australiensis’ had been used to describe this Australian Leish-
mania parasite in the scientific literature [6], and in an Australian government document [23],

in the absence of any formal description. Consequently, the name Leishmania ‘australiensis’ is

a nomen nudum and is no longer available as a species name. To prevent continued use of this

nomen nudum, the present study includes a formal description of this Australian Leishmania
species, referred to henceforth as Leishmania macropodum sp. nov., Barratt, Kaufer & Ellis

2017.

Insect identification

Trapped midges and flies were identified with the aid of keys and descriptions [20, 24–27]. Fly

specimens were dissected and mounted using the method described by Craig et al. [28]. In

some cases, DNA was extracted from flies for barcoding purposes prior to identification by

morphology. A DNA extraction method described by Lawrence et al. [29] (S1 File) was

employed that conserved the exoskeleton for downstream morphological identification.

Cultivation of parasites from insects

Insects were pooled and crushed with a spatula in ~200 μL of PBS. The resulting suspension

was used to inoculate a Leishmania culture medium based on the medium previously

described by Dougall et al. [20]. The parasite cultures obtained were initially contaminated

with a Fusarium sp. fungus. As the parasite cells outnumbered the fungi, the cultures were axe-

nised by serial dilution such that the fungi were diluted out resulting in a pure promastigote

culture. To facilitate downstream promastigote counting experiments, a liquid medium was

developed and optimised to establish the ideal haemoglobin content (S1 File).

Light microscopy and transmission electron microscopy

To examine the morphology of cultured promastigotes, a Leishman stain was performed

(Sigma-Aldrich) on cell-dense promastigote cultures, in accordance with the manufacturer’s

instructions. Cell morphology was examined by oil emersion light microscopy (1000X magni-

fication) using a Leica DM1000 microscope (Leica Microsystems). To examine their ultra-

structural features, cultured promastigotes were embedded in low melting point agarose and

prepared for transmission electron microscopy using standard procedures (S1 File). Following
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this, ultrathin sections were cut from the agarose and examined using a Hitachi H-7650 Trans-

mission Electron Microscope (USA).

DNA extraction and Polymerase Chain Reaction (PCR)

For extraction of total DNA from parasites, approximately 1 mL of dense promastigote culture

was placed in a 1.5 mL tube and the cells were pelleted by centrifugation at 300 g for 15 min-

utes. The supernatant was discarded and DNA was extracted from the pellet using an EZ1

DNA tissue extraction kit (QIAGEN) and a BioRobot EZ1 DNA extracting robot (QIAGEN)

according to the manufacturer’s instructions. The DNA was eluted in a volume of 50 μL for

downstream PCR analysis. PCR primers were designed to amplify the 18S rRNA gene and

three protein coding genes; the glycosomal glyceraldehyde 3-phosphate dehydrogenase

(gGAPDH), RNA polymerase II largest subunit (RPOIILS), and heat shock protein 70 (HSP70)

genes (Table 2). To generate PCR products from insects for barcoding purposes, a set of previ-

ously published primers were used to amplify fragments of the cytochrome C oxidase subunit

I (COI) and II (COII) genes, the 18S rRNA gene, and the 28S rRNA gene (Table 2). Each PCR

was prepared using reagents provided in the BIOTAQ PCR Kit (Bioline) (S1 File). The PCR

products were subjected to electrophoresis on 2% agarose gels stained with GelRed, and visual-

ised under UV light.

Sequencing of PCR products

The PCR products were excised from agarose gels using a sterile scalpel blade. Amplicons were

extracted from gel slices using a QIAquick Gel Extraction Kit (QIAGEN) according to the

manufacturer’s instructions. Sequencing was performed by the service provider Macrogen

(South Korea) on an ABI 3730XL capillary sequencer. Ambiguous, low quality bases were

manually trimmed from the ends of sequences which were then assembled using CAP3 [30].

Sequences generated from PCR amplicons of gGAPDH and RPOIIL displayed several ‘dual-

peaks’, where two bases were superimposed at the same base position along the sequence. Fur-

thermore, the multi-copy ITS1 DNA sequences of trypanosomatids can differ between copies,

making direct sequencing of ITS1 amplicons difficult [31]. Cloning of these amplicons was

performed to overcome this issue, so that individual clones could be sequenced. These ampli-

cons were cloned using a TOPO TA cloning kit for sequencing (Thermo Fisher Scientific).

Cloning reactions were prepared according to the manufacturer’s instructions (S1 File), and

sequencing of cloned PCR fragments was carried out directly from the purified plasmid, twice

in the forward and reverse directions, by the service provider Macrogen. Sequencing was per-

formed using the universal T3 and T7 primers (Table 2), which possess priming sites flanking

the amplicon insertion site.

Table 1. Precise coordinates of insect trap sites and trapping times.

Trap site # Latitude Longitude Elevation Trapping times

1 -12˚42’29.6100” 130˚59’37.8240” 26.18 m 9.45 am– 11.30 am

11.30 am– 2.00 pm

2 -12˚42’26.7186” 130˚59’38.3382” 21.24 m 10.00 am– 11.40 am

11.40 am– 2.15 pm

3 -12˚42’30.9960” 130˚59’46.5534” 21.16 m 10.30 am– 12.00 pm

12.00 pm– 2.30 pm

doi:10.1371/journal.pntd.0005215.t001
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Restriction Fragment Length Polymorphism (RFLP) analysis

A PCR-RFLP assay targeting the Leishmaniinae ITS1 DNA, previously described by Schönian

et al. [32] was employed to further characterise the newly isolated trypanosomatid (S1 File). As

controls for comparison, this assay was carried out on genomic DNA from Leptomonas sey-
mouri, Leishmania turanica, Leishmania major andWallacemonas collosoma (previously Lepto-
monas collosoma). These DNA specimens were kindly provided by Professor Larry Simpson

(University of California, Los Angeles) and date back to the study by Lake et al. [33]. Leish-
mania donovani DNA provided by the Department of Microbiology at St Vincent’s Hospital,

Sydney was also included for comparison. The restriction fragments were subjected to agarose

gel electrophoresis on a 3% gel stained with GelRed and visualised under UV light.

Phylogenetic analysis

Phylogenetic trees were constructed to infer the evolutionary relationship between this newly

isolated trypanosomatid and other related parasites. S1 Table lists all GenBank accession num-

bers for sequences generated in this study and those published by others that were used to con-

struct phylogenetic trees. Multiple sequence alignments were performed using the MEGA

software package, version 7.0.14 [34]. Alignments were manually curated to improve accuracy,

and phylogenetic analysis was performed using MEGA. Trees were inferred using three meth-

ods: the Maximum Likelihood (ML) method based on the Tamura-Nei model [35], the Mini-

mum Evolution (ME) method [36], and the Neighbour-Joining (NJ) method [37]. For ML

trees, initial trees for the heuristic search were obtained automatically by applying the

Table 2. PCR primers used in this study.

Target Primer name Primer sequence (5’ to 3’) Annealing Temp. Amplicon size Reference

Parasite

gGAPDH LeptoC-1 ATCGTGATGGGCGTGAAC 57˚C ~450 This study

LeptoC-2 TGCCCTTCATGTACGTCT

RPOIILS RPOIILS-1 AACAAGCTCAAGATGAACCTG 57˚C ~545 This study

RPOIILS-2 CATTGCGCTGGTTCTTGCT

18S rRNA SSU-1 ATCTGCGCATGGCTCATTAC 57˚C ~1155 This study

SSU-2 CACACTTTGGTTCTTGATTGA

HSP70 Hsp70-1 ACGCTGCTGACGATCGAC 59˚C ~850 This study

Hsp70-2 ACACGTTCAGGATGCCGTT

ITS1 DNA LITSR CTGGATCATTTTCCGATG 58˚C ~300 [32]

L5.8S TGATACCACTTATCGCACTT

Fly

COX I LCO1490 GGTCAACAAATCATAAAGATATTGG 52˚C ~700 [103]

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA

COX II TL2-J-3034 ATTATGGCAGATTAGTGCA 54˚C ~810 [104]

TK-N-3785 GTTTAAGAGACCAGTACTTG

18S rRNA B18S_F TTTTATGCAAGCCAAGCACA 63˚C ~920 [104]

B18S_R TGGGAATTCCAGGTTCATGT

28S rRNA B28S_F GAAAAGGGAAAAGTCCAGCAC 63˚C ~890 [104]

B28S_R CACATTTTATGCGCTCATGG

Plasmid sequencing primers

Cloning vector T3 ATTAACCCTCACTAAAGGGA N/A N/A N/A

T7 TAATACGACTCACTATAGGG

doi:10.1371/journal.pntd.0005215.t002
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Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the

Maximum Composite Likelihood (MCL) approach, and then selecting the structure with supe-

rior log likelihood values. For ME trees, the evolutionary distances were computed using the

MCL method [38], and were searched using the Close-Neighbor-Interchange algorithm at a

search level of 2 [39]. The Neighbor-Joining algorithm was used to generate the initial ME tree

[37]. For NJ trees, the evolutionary distances were also computed using the MCL method [38].

Time trees were generated using the RelTime method [40].

Results

Insect identification, fly molecular analysis and parasite isolation

Seventy-nine Forcipomyia (L.) spp. midges were collected from traps though none were recov-

ered directly from the fur of macropods. Fifty Forcipomyia (L.) spp. were pooled in three

groups (of 10, 20 and 20) for parasite culture, though all were negative for promastigotes after

2 weeks incubation. Other species recovered in traps included Culicoides spp., S. (M.) dycei
(Fig 1), mosquitoes, phlebotomine sand flies and several others. Simulium (M.) dycei were par-

ticularly common, with over 120 specimens recovered from traps and 20 aspirated directly

from the fur of macropods. Simuliidae are known vectors of other important parasites [41],

and are common pests [42]. Consequently, the observation of S. (M.) dycei commonly biting

macropods around the eyes, ears, wrists and feet also encouraged its selection for further

study. PCR products were sequenced from the COI, COII, 18S rRNA, and 28S rRNA genes of

two female S. (M.) dycei specimens (Fly A and Fly B) (GenBank Accessions KY288010 to

KY288017). The identity of these GenBank depositions as belonging to S. (M.) dycei was con-

firmed beyond a doubt by morphological examination of the exoskeletons following DNA

extraction (S1 Fig). Three cultures were prepared from S. (M.) dycei (pools of 20 flies), and one

culture was positive for Leishmania-like promastigotes after 2 weeks incubation. All remaining

specimens of S. (M.) dycei (n = 24) were tested for Leishmaniinae DNA using the PCR assay

described by Schönian et al. [32], though all returned a negative result.

Effect of haemoglobin on growth

Promastigote growth was investigated in four liquid media differing in haemoglobin content

(M0 to M3) (S1 File). Growth was observed in all media including M0 which contained no

haemoglobin although the highest cell densities were observed in M3, which contained the

highest haemoglobin concentration (Fig 2). In all media, promastigote growth peaked at day 3

and numbers plateaued by day 4. Promastigote numbers steadily decreased until the experi-

ment was terminated on day 6.

Promastigote morphology

Leishman stained smears and wet preparations of cultured parasites revealed several cell mor-

photypes. Images of these forms are provided in Fig 3. Transmission electron microscopy

performed on cultured promastigotes confirmed the presence of ultrastructural features con-

sistent with the Leishmaniinae and similar to the descriptions of Zelonia costaricensis (Fig 4)

[4].

Molecular characterisation of parasites

BLAST searches carried out on the parasite sequences generated in this study (GenBank

Accessions KY273490 to KY273515) suggested the parasite was of the subfamily Leishmanii-

nae. The PCR-RFLP assay generated a restriction pattern for the isolate that differed when
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compared to that produced for the other species tested (Fig 5). Seventeen unique ITS1 DNA

clones (GenBank Accessions KY273499 to KY273515), four unique gGAPDH clones (GenBank

Accessions KY273493 to KY273496) and three unique RPOIILS clones (GenBank Accessions

KY273490 to KY273492), were generated. The L. seymouri sequences generated in this study

Fig 1. Morphology of a female Simulium (Morops) dycei, Colbo 1976. (A) Habitus of S. (M.) dycei female. (B) Mandible and lacinia of

S. (M.) dycei female. (C) Genital fork of S. (M.) dycei female. (D) Anepisternal (pleural) membrane of S. (M.) dycei female. (E) Antenna of

S. (M.) dycei female. (F) Wing of S. (M.) dycei female. (G) Hind leg tarsomeres of S. (M.) dycei female showing the pedisulcus and

calcipala.

doi:10.1371/journal.pntd.0005215.g001
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for gGAPDH,HSP70 and the 18S rRNA genes (GenBank Accessions KY273516, KY273519 and

KY273517, respectively) were identical to Leptomonas spp. sequences already available in Gen-

Bank (Accessions: AF047495, FJ226475 and KP717895, respectively), supporting the accuracy

of sequences generated using this workflow. However, the RPOIILS sequence generated in this

study (GenBank Accession: KY273518) differed by six bases to a previously published L. sey-
mouri sequence which may indicate the sequence was derived from a different strain (Gen-

Bank Accession: AF338253).

Phylogenetic analysis

Phylogenetic trees were constructed from concatenated alignments of 18S rDNA and gGAPDH
sequences (Fig 6), and 18S rDNA, gGAPDH, RPOIILS andHSP70 sequences (Fig 7) to infer the

phylogenetic relationship between this novel trypanosomatid and other related parasites.

Concatenated sequence alignments were employed as these are generally considered more

robust for inferring phylogenetic relationships [15]. For each alignment, phylogenies inferred

using the ML, NJ and ME methods showed the same structure. Both phylogenies positioned

this parasite in the subfamily Leishmaniinae, basal to the clade occupied by Leishmania, Endo-
trypanum and Porcisia. The phylogeny generated from the 18S rDNA and gGAPDH
concatenated sequence inferred Z. costaricensis as the sibling species to this new parasite, with

a bootstrap percentage of at least 99, across 1000 replicates for each phylogenetic method used

(ML, NJ and ME). Based on this result and the morphological characteristics previously

described, this parasite was assigned to the genus Zelonia and will hereafter be referred to as

Zelonia australiensis sp. nov. Once this classification was established, a phylogenetic time tree

was constructed using concatenated sequences of the 18S rDNA and RPOIILS genes, given that

these phylogenetically informative sequences were available for many Leishmaniinae. The

node representing the divergence of Z. australiensis and Z. costaricensis was selected as a cali-

bration point. This node was set at 36 to 41 MYA which is the estimated time period that

Fig 2. Effect of haemoglobin on promastigote growth. Promastigotes were cultured in triplicate in three media

differing in haemoglobin content; M1 (0.0099 g/L), M2 (0.495 g/L) and M3 (0.99 g/L). These media were accompanied by

a negative control medium containing no haemoglobin (M0). Promastigote growth seems related to haemoglobin

concentration, with the most rigorous growth and highest cell densities observed in M3; the media with the highest

haemoglobin concentration. The slowest growth and lowest cell densities were observed in M0, the negative control.

doi:10.1371/journal.pntd.0005215.g002
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Australia and South America became completely separated [21], representing a minimum

time for the separation of these taxa. Using this calibration point, an ancestor to Leishmania,

Endotrypanum and Porcisia was predicted to have appeared approximately 91 MYA (Fig 8),

inferring a Gondwanan origin for dixenous parasitism in the Leishmanaiinae subfamily [3].

Fig 8 also infers that the divergence of Z. australiensis from Z. costaricensis, and Leishmania
macropodum from otherMundinia parasites occurred around the same time, just prior to the

Eocene to Oligocene transition, which occurred between 33 and 34 MYA.

Discussion

The genus Leishmania includes approximately 20 species of protozoan parasite that are the

etiological agents of human leishmaniais [6], an important albeit neglected tropical disease.

Relative to other protozoan diseases, leishmaniasis is second in importance to malaria as a

Fig 3. Morphology of trypanosomatid cells in axenic cultures. (A) Photomicrographs of Leishman stained Zelonia australiensis

promastigotes cultured in M3, viewed under oil emersion microscopy (1000X magnification). (B) Photomicrograph of a round

promastigote with gross morphological characteristics indicated including the nulcleus (N), kinetoplast (K), flagellar pocket (FP), and

flagellum (Fl). (C) Wet mount photomicrograph of live axenically cultured Zelonia australiensis promastigotes viewed under phase

contrast microscopy (400X magnification) showing several forms. (D) Photomicrographs of the various Z. australiensis forms as seen

in Leishman stained slides, prepared from axenically cultured parasites. The parasite shows a high degree of pleomorphism in

culture. This has been reported for other trypanosomatids, and limits the use of morphology for classification of these organisms [16,

101].

doi:10.1371/journal.pntd.0005215.g003
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cause of mortality [43], and WHO estimates suggest a disease burden of 2.35 million DALYs

(Disability-Adjusted Life Years) lost as a result of leishmaniasis. Leishmania exists on all conti-

nents with the exclusion of Antarctica, though its geographical range is focused in the tropics

and subtropics [6]. Despite Australia’s geographical isolation, representatives of this genus

have also been found on this continent [44]. As a consequence of its wide global dispersion

patterns, the biogeographical history of Leishmania has been hotly debated for decades and

several hypotheses have been proposed.

The Palaearctic origins theory suggests that Leishmania originated in the Old World during

the early Cenozoic period [8], and was later dispersed to the Nearctic and then the Neotropics

via the Bering land bridge, which was open during the Eocene epoch but eventually closed

approximately 33 to 35 MYA [6, 45]. The discovery of P. proterus fossilised in Burmese amber

Fig 4. Transmission electron micrographs of promastigotes showing fine detail. (A) Fine structure

closely associated with the flagellum (fl) including the kinetoplast (K), basal body (bb), flagella pocket (fp),

axonemes (ax), kinetoplast disk (kD) and a multivesicular body (mvb). (B) Fine cell structures including the

golgi body (gb), glycosomes (gl) and mitochondria (mt). Mitochondrial DNA (mD) is visible within the

mitochondria and kinetoplast (K). (C) Longitudinal cross-section of promastigote showing the nucleus (Nu),

elongated mitochondria (mt), karyosome (Ka) and pellicle (Pe). (D) Example of striated pattern cause by

sectioning of promastigote across the subpellicular microtubules (s).

doi:10.1371/journal.pntd.0005215.g004
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supports an Old World origin for Leishmania, though the age of the amber (100 to 110 million

years old) supports an earlier Cretaceous origin [1, 9], consistent with recent phylogenies [3]

(Fig 8). Paleoleismania proterus were visible in the proboscis of Palaeomyia burmitis, and

amastigotes were noted in reptilian red blood cells within the fly [1, 9]. This led to the interpre-

tation that a dixenous life cycle had evolved in the Leishmaniinae roughly 100 MYA in the Old

World, and supported that Cretaceous reptiles were the first vertebrate hosts of the earliest dix-

enous Leishmaniinae [6, 8, 9]. However, this interpretation is not supported by current phy-

logenies that do not place the Sauroleishmania in a basal position or sister clade to all other

Leishmania species [3, 46–49] (Fig 8).

While the fossilised forms identified within P. burmitis are compelling and undoubtedly

represent an early trypanosomatid [1], inferring evolutionary relationships for protozoa based

purely on morphology is precarious. Some of the forms described by Poinar and Poinar could

easily represent epimastigotes of Trypanosoma spp. based on the location of the kinetoplast rel-

ative to the nucleus [1]. Trypanosoma spp. are basal to all Leishmaniinae and so a dixenous life

cycle probably evolved in this genus much earlier [15]. Furthermore, Trypanosoma spp. are

known to infect reptiles and some reptile-infecting trypanosomes are transmitted by sand flies

[50–52]. Mixed trypanosomatid infections are also common in insects [53, 54], which further

complicates interpretation of such evidence. Additionally, it is well established that trypanoso-

matids have undergone substantial molecular evolution despite minimal morphological

change [55]. This phenomenon has led to erroneous taxonomic assignments, even for taxa

that are presently alive today [15]. Consequently, assignment of these organisms to the

Fig 5. PCR-RFLP analysis of the newly isolated parasite and other Leishmaniinae. Comparison of PCR products and Hae III restriction fragments

generated for several Leishmaniinae, including Leptomonas seymouri and Wallacemonas collosoma. Stars indicate the PCR products and restriction

fragments generated for Zelonia australiensis. Samples were run against a 50 bp Hyperladder molecular weight marker (Bioline). An additional gel

image (far right) includes the Hae III digested PCR product from Z. australiensis compared to that of Leishmania donovani.

doi:10.1371/journal.pntd.0005215.g005
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Trypanosomatidae based on the fossil evidence at hand is warranted [1], though classifying

these organisms at any greater resolution is probably tenuous.

The Neotropical origins hypothesis proposes that Leishmania evolved in South America

between 34 and 46 MYA [3, 6]. Indeed, a Neotropical origin is supported by the evidence avail-

able, though the appearance of Leishmania probably occurred much earlier than the Neotropi-

cal hypothesis initially proposed (Fig 8) [3, 56]. The Neotropical origins theory is also

supported by the limited range of the Paraleishmania which are restricted to the New World,

Fig 6. Inferred evolutionary relationship between Zelonia australiensis and other trypanosomatids using concatenated 18S rDNA and

gGAPDH sequences. This tree was constructed using sequences from 23 trypanosomatids, aligned to a total of 1302 positions with all gaps and

missing data eliminated. The structure of this tree was inferred using three statistical methods; the ML method based on the Tamura-Nei model, the

ME method [36] and the NJ method [37]. The same tree structure was predicted using each method. The first value at each node is the percentage of

trees in which the associated taxa clustered together using the ML method (1000 replicates). The second and third number at each node is the

percentage of replicate trees obtained for the ME and NJ methods respectively, in which the associated taxa clustered together in the bootstrap test

(1000 replicates) [102]. A solid diamond indicates a node that obtained a value of 100% for all three methods. An open diamond indicates a node that

obtained a value of at least 99% for each method. The star highlights the phylogenetic position of Z. australiensis. The bar represents the number of

substitutions per site.

doi:10.1371/journal.pntd.0005215.g006
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and are basal to all Euleishmania [3, 6, 16] (Figs 7 and 8). The Multiple Origins hypothesis sug-

gests the Euleishmania and Paraleishmania evolved on Gondwana prior to the opening of the

Atlantic Ocean. When Africa and South America separated, the Euleishmania in the Old

World evolved into the Sauroleishmania and Leishmania subgenera, while Euleishmania in the

New World evolved into Viannia [3, 7]. A very ancient, African origin has been proposed for

most Old World Leishmania species given their intimate relationships with certain rodent spe-

cies and hyraxes; vertebrates that have a highly restricted range [7]. However, the results of this

study and others suggest that the Old World Leishmania (Leishmania) parasites originated

approximately 30 MYA [3] (Fig 8).

The present study supports a Gondwanan origin for dixenous parasitism in the Leishmanii-

nae subfamily, inferring the appearance of a common ancestor to the Euleishmania and Para-

leishmania at approximately 91 MYA (Fig 8) [3]. This places the origin of the dixenous

Leishmaniinae during the breakup of Gondwana when the radiation of mammals first began

[57], and is within the lower limit of 90 to 140 MYA proposed recently by Harkins et al. [3]. By

90 MYA, Africa and South America had already separated. Multiple phylogenies suggest that

Viannia emerged millions of years later (Fig 8) [3, 11, 57], implying that their divergence from

other Euleishmania was not triggered by the separation of Africa and South America. The

Fig 7. Inferred evolutionary relationship between Zelonia australiensis and other trypanosomatids using concatenated 18S rDNA, gGAPDH,

RPOIILS and HSP70 sequences. This phylogenetic tree was constructed using sequences from 15 trypanosomatids, aligned to a total of 2344

positions with all gaps and missing data eliminated. The structure of this tree was inferred using three statistical methods; the ML method based on the

Tamura-Nei model, the ME method [36], and the NJ method [37]. The same tree structure was predicted using each method. The first value at each

node is the percentage of trees in which the associated taxa clustered together using the ML method (1000 replicates). The second and third number at

each node is the percentage of replicate trees obtained for the ME and NJ methods respectively, in which the associated taxa clustered together in the

bootstrap test (1000 replicates) [102]. A solid diamond indicates a node that obtained a value of 100% for all three methods. The star highlights the

phylogenetic position of Z. australiensis. The bar represents the number of substitutions per site.

doi:10.1371/journal.pntd.0005215.g007
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Fig 8. Phylogenetic Time Tree inferring the evolutionary relationships between Zelonia australiensis and other trypanosomatids using

concatenated 18S rDNA and RPOIILS sequences. This tree was constructed using sequences from 29 trypanosomatids, aligned to a total of 784

positions with all gaps and missing data eliminated. The structure of this tree was inferred using three statistical methods; the ML method based on the

Tamura-Nei model, the ME method [36], and the NJ method [37]. The same tree structure was predicted using each method. The predicted minimum

divergence times for each node i.e. the values outside the brackets, were predicted using the RelTime method [40]. Estimated divergence times greater

than 1 MYA are rounded to the nearest whole number. The error calculated for the divergence time at each node is shown in S2 Fig. Regarding values

within brackets, the first number is the percentage of trees in which the associated taxa clustered together using the ML method (1000 replicates). The

second and third number is the percentage of replicate trees obtained for the ME and NJ methods respectively, in which the associated taxa clustered

together in the bootstrap test (1000 replicates) [102]. An open diamond indicates a node that obtained a value of 99% or greater for each method. A solid

diamond indicates a node that obtained a value of 100% for all methods. A solid circle represents nodes that obtained a value of 60% or less for each

method. A solid square represents a collapsed node. The star highlights the phylogenetic position of Z. australiensis. Branches are colour coded to

indicate the current dispersion pattern for the different species. Note that Leishmania infantum is also found in European countries flanking the
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presence of the Leishmania subgenus in the New World is often discussed as a migration from

the Old World to the New [58]. However, based on current evidence, an alternate scenario is

proposed. Approximately 50 MYA the climate in the northern hemisphere was tropical and a

series of land bridges, shallow seas and island chains connected Europe, North America and

Asia [11, 59]. These land bridges were probably endemic for Leishmania and allowed move-

ment of host and vector between the Old World and the New until approximately 35 to 33

MYA, when these bridges disappeared [45]. Paleontological evidence supports an exchange of

primate and rodent species between North and South America during the same period, indi-

cating that the Panamanian land bridge was also open [60]. The disappearance of these north-

ern land bridges coincides with the sharp drop in temperature that signifies the Eocene to

Oligocene transition [61]. This also coincides with the inferred emergence of the New World

Leishmania (Leishmania) spp. approximately 30 MYA [3] (Fig 8). By 33 MYA, these once trop-

ical northern land bridges were uninhabitable for sand flies, probably forcing the range of

Leishmania and other tropical species south towards the Neotropics in the New World, and

out of Northern Europe, towards Africa and South East Asia in the Old World. The presence

of L. (L.) amazonensis/mexicana complex organisms in China supports this scenario [3, 62].

The subgenusMundinia Shaw, Camargo and Teixeira 2016 was recently established to

accommodate members of what was previously referred to as the L. enrietti complex [12].

WhileMundinia are widely dispersed, L. (M.) enrietti itself was initially isolated from guinea

pigs in Brazil and is probably native to the Neotropics [63]. A related organism, Leishmania
(Mundinia) martiniquensis, was later identified on the Caribbean Island of Martinique,

detected in immunocompromised patients presenting with cutaneous leishmaniasis (CL) and

visceral leishmaniasis (VL) [64–66]. Parasites of theMundinia subgenus have since been iden-

tified in Thailand i.e. Leishmania sp. ’siamensis’, as a cause of human VL, predominantly in

immunosuppressed patients [67–70]. As discussed by other investigators [46], Leishmania ’sia-

mensis’ represents a nomen nudum, and is shown inverted commas here as a consequence.

Leishmania ’siamensis’ was detected in horses from the USA and central Europe [71, 72], and

in Swiss cows [73]. The geographical range of L. ’siamensis’ and L. (M.)martiniquensis is

known to overlap given the recent detection of L. (M.)martiniquensis in Thailand [46], result-

ing in misidentification in some cases [46, 74]. Additionally, a uniqueMundinia parasite was

only recently identified as a cause of human CL in Ghana [46], though this organism is yet to

be named. Leishmania (M.)macropodum is also a member of theMundinia subgenus, and is

recognised as a cause of CL in Australian native macropods [44, 75].

The global dispersion pattern ofMundinia is difficult to explain, though the current range

of L. (M.)martiniquensis may be related to human activities such as international shipping and

trade, facilitating the movement animals i.e. livestock, companion animals and rodents,

between regions that would have otherwise been non-traversable. Indeed, rats have been piv-

otal to the global dispersion of other parasites via this route [76]. Furthermore,Mundinia para-

sites are not necessarily restricted to sand fly vectors, which could facilitate their adaptation to

new regions [20, 22]. As a consequence of these dispersion patterns, it is difficult to infer

whereMundinia originally appeared.

Current phylogenies suggest that the Ghanian parasite and L. enrietti diverged within the

last 10 million years [3, 46]. These species have been observed in only a few restricted regions

implying that their native range is limited. Perplexingly, this suggests that these two parasites

diverged long after the New World separated from Africa. During the Miocene epoch there

Mediterranean basin. This time tree was calibrated by setting the node depicting the divergence of Z. australiensis and Zelonia costaricensis at 41 to 36

(mean ~39) million years ago; a minimum time estimate for the vicariance event that separated these taxa.

doi:10.1371/journal.pntd.0005215.g008
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was a warm period in central Europe which abruptly ended at ~14 MYA, when temperatures

dropped markedly to a mean annual temperature of ~14.8˚C to15.7˚C [77, 78]. Consequently,

it is unlikely that movement of Leishmania between the Nearctic and Palearctic occurred via

the northern land bridges at this time. Alternatively, dispersion of an ancestralMundinia para-

site between the Old World and the New as recently as 10 MYA may have been facilitated by

far-travelling marine mammals (seals), or bats, which are potential hosts of Leishmania
[79–83]. Alternatively, recent satellite evidence has revealed a scattering of numerous sea-

mounts across the Atlantic Ocean [84]. At 10 MYA, these seamounts may have existed as a

large volcanic island chain that allowed movement of terrestrial organisms across the Atlantic,

but eventually eroded into the sea [85]. However, it should be noted that these possibilities are

purely speculative and not well supported by the evidence at hand.

Australia was considered free of Leishmania until the discovery of L. (M.)macropodum in

2004 [44]. Prior to the present study L. (M.)macropodum had not been formally described.

Therefore, the name it was informally assigned i.e. Leishmania ‘australiensis’, represents a

nomen nudum. However, the formal description provided herein resolves this issue. Based on

current evidence, the presence of L. (M.)macropodum in Australia is most likely the result of

vicariance; the complete separation of Australia from South America by roughly 40 MYA [3,

21]. This study infers that the divergence of Z. australiensis from Z. costaricensis, and L. (M.)

macropodum from otherMundinia parasites, occurred within approximately 3 million years of

each other, approaching the Eocene to Oligocene transition (Fig 8). Given the margins of error

associated with such predictions (S2 Fig) and the concurrence between the inferred divergence

times of these taxa, the estimates presented here are plausible. This scenario is also consistent

with the biogeography of other taxa, including the distribution of the plant genus Nothofagus
and that of marsupials, which are generally restricted to parts of Central and South America,

Australia and Oceania [3, 86].

Novymonas esmeraldas, Z. costaricensis and Z. australiensis are presumably monoxenous

trypanosomatids basal to all dixenous Leishmaniinae (Fig 6) [4, 16], and probably represent

the nearest ancestors of a parasite that transitioned from a monoxenous to a dixenous life cycle

[87]. The rigorous growth of Z. australiensis in high haemoglobin concentrations and on choc-

olate agar is consistent with a haemoprotozoan (Fig 2, S1 File) [88] and/or adaptation to life as

a parasite of hematophagous insects, which probably represents the first step in the transition

to a dixenous life cycle. While Z. costaricensis was originally isolated from a non-hematopha-

gous reduviid bug, Ricolla simillima, these insects are predatory and may have recently fed on

a hematophagous insect prior to the isolation of Z. costaricensis [89]. This is conceivable as

Novymonas which was first isolated and described from Niesthrea vincentii (Hemiptera: Rho-

palidae) has also been detected in Zelus sp. (an assassin bug) and Culicoides sp. (a hematopha-

gous midge) [16].

As parasites occupying the Novymonas/Zelonia clade (Fig 6) infect varied and disparate

hosts, it is difficult to infer their vicariance based on host distribution. Also, given the origins

of the Australian Simuliidae, their role in the dispersion of Zelonia is probably limited. Dum-

bleton [90] suggested that Simulium entered Australia from the north during what was then

referred to as the Tertiary period, between 65 and 1.6 MYA. Similarly Crosskey [25] was of the

firm opinion that Simulium entered Australia from the north via a land bridge that once con-

nected Australia and New Guinea, but no time was suggested. As Australia drifted north, the

interaction of New Guinea as the leading edge to the Australian Plate with the Pacific Plate

and others, was complex and is discussed in some detail by Craig et al. [91] in relation to for-

mation of the Solomon Islands. Given the distribution of various segregates of Simulium, colo-

nization of this genus into New Guinea could have occurred as early as the mid Eocene to

early Miocene (20 to 40 MYA). Simulium dycei is a member of subgenusMorops that is centred
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and diverse in New Guinea, an indication it is an older segregate of Simulium that colonized

this land mass originally. A good assumption would be that Simulium has been on the Austra-

lian land mass for 40 MYA at most [91].

Despite the concurrence between the inferred arrival dates of Simulium in Australia and the

appearance of Z. australiensis, it is unlikely that Zelonia was dispersed from South America to

Australia via the Nearctic, the Palearctic and then South East Asia to arrive with Simulium. If

dispersion of Leishmaniinae via this route occurred during this period, one might expect to

encounter close relatives of L. (M.)macropodum or other dixenous species in Papua New

Guinea, the Solomon Islands and/or parts of Indonesia, though no such reports exist. Conse-

quently, the available evidence suggests that the separation of Australia from South America

gave rise to Z. australiensis and L. (M.)macropodum. Zelonia probably came to infect Simulium
when this genus arrived from New Guinea around 40 MYA. Prior to this, Zelonia was likely

already in Australia, parasitizing other insect species. Indeed, investigation of other Australian

insects such as native reduviids and Culicoides spp. for infection with Z. australiensis is

warranted.

Leptomonas spp. are considered monoxenous parasites that are generally of no clinical

importance [92–94]. However, L. seymouri, originally isolated from the phytophagous cotton

stainer bug, Dysdercus suturellus [95], is capable of infecting humans opportunistically, induc-

ing co-infections with L. (L.) donovani [96, 97]. Its ability to cause human infections implies

that L. seymouri also possesses an alternate hematophagous host [98]. While they are still con-

sidered monoxenous, and are continually grouped in basal clades to Leishmania [16, 17, 99]

(Figs 6, 7 and 8), it is plausible that certain monoxenous Leishmaniinae are ancestors of transi-

tional forms that did not complete the switch to a dixenous life cycle. Indeed, monoxenous try-

panosomatids occasionally explore the dixenous niche based on multiple reports of infections

involving animals and humans [98]. Genome sequencing and transcriptome profiling identi-

fied several adaptations in L. seymouri that allow it to persist in the vertebrate host environ-

ment [100]. Furthermore, L. seymouri survived for several days in two species of phlebotamine

sand fly [100]. Given their close relationship with Leishmania, Leptomonas spp. represent inter-

esting models for studying the transition from a monoxenous to dixenous life cycle, including

the evolutionary innovations that enable parasitism of vertebrate hosts [98, 100]. Moreover,

the ability of L. seymouri to infect humans under some circumstances raises questions as to

whether Novymonas and Zelonia are truly monoxenous, or if they might also be capable of

infecting vertebrates under some circumstances, occasionally exploring the dixenous niche.

To conclude, we described the first isolation of Zelonia australiensis sp. nov. from the Aus-

tralian native black fly S. (M.) dycei in Australia’s Northern Territory. A detailed molecular

and morphological characterisation was performed to establish this assignment, including

light and electron microscopy, sequencing and phylogenetic analyses. As a result, Z. australien-
sis was identified as a sibling taxon to the monoxenous trypanosomatid, Z. costaricensis. Subse-

quently, the divergence of these species was used as a unique calibration point for a

phylogenetic time tree exploring the relationships between several species of the Leishmanii-

nae subfamily. These analyses inferred the emergence of dixenous parasitism in the Leishma-

niinae at approximately 91 MYA, in Gondwana, during the Cretaceous period. Ultimately, this

study contributes to our understanding of trypanosomatid diversity by describing a unique

Australian species, and to our understanding of Leishmania evolution by providing support

for a Gondwanan origin of dixenous parasitism in the Leishmaniinae.

Taxonomic summary for Zelonia australiensis

Class: Kinetoplastea Honigberg, 1963 emend. Vickerman, 1976
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Subclass: Metakinetoplastina Vickerman, 2004

Order: Trypanosomatida Kent, 1880

Family: Trypanosomatidae Doflein, 1901

Subfamily: Leishmaniinae Maslov and Lukes 2012 emend. Shaw, Camargo and Teixeira 2016

[12]

Genus: Zelonia Shaw, Camargo and Teixeira 2016 [12]

Species: Zelonia australiensis Barratt, Kaufer and Ellis 2017

Species diagnosis: A trypanosomatid of the genus Zelonia morphologically and ultrastructur-

ally similar to Zelonia costaricensis (previously Leptomonas costaricensis [4]) (Figs 3 and 4,

S2 File), which is its sibling taxon. When cultured axenically, individuals of Zelonia austra-
liensis exist in a variety of morphotypes as detailed in Fig 3. The species is also defined by a

set of unique sequences of the 18S rDNA, gGAPDH, RPOIILS,HSP70 and ITS1 (GenBank

Accessions: KY273490 to KY273515).

Etymology: The species name is derived from the country Australia, where the organism was

first isolated.

Type host: Originally isolated from pooled specimens of female Simulium (Morops) dycei,
Colbo 1976 (Diptera: Simuliidae) (Fig 1, S1 Fig).

Type locality: Vicinity of Darwin, Northern Territory, Australia. The precise coordinates of

isolation are provided in Table 1.

Type material: Axenic cultures are currently maintained at the University of Technology Syd-

ney, Ultimo, NSW, Australia. Cryogenically frozen material is also stored at this location.

Taxonomic summary for Leishmania (Mundinia) macropodum

Class: Kinetoplastea Honigberg, 1963 emend. Vickerman, 1976

Subclass: Metakinetoplastina Vickerman, 2004

Order: Trypanosomatida Kent, 1880

Family: Trypanosomatidae Doflein, 1901

Subfamily: Leishmaniinae Maslov and Lukes 2012 emend. Shaw, Camargo and Teixeira 2016

[12]

Genus: Leishmania Ross, 1903

Subgenus:Mundinia Shaw, Camargo and Teixeira 2016 [12]

Species: Leishmania (Mundinia) macropodum Barratt, Kaufer and Ellis 2017

Species diagnosis: The species is defined by the detailed descriptions and images provided by

Rose et al. [44] and Dougall et al. [20, 75], and by a set of DNA sequences accessible in Gen-

Bank: HM775497.1, AY495831.1, AY495830.1, AY495829.1 and FR693774.2.

Type strain: Leishmania sp. AM-2004/Leishmania sp. Roo1

Etymology: The species name is derived from the only known vertebrate hosts of this parasite

which includes several species of marsupial from the family Macropodidae.
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Type host: The parasite was first isolated from a red kangaroo, Osphranter rufus [44], though

natural vertebrate hosts of L. (M.)macropodum include several other species of Australian

macropod [75].

Type vector: Forcipomyia (Lasiohelia) spp. midges are the likely vector [20], although experi-

mental infections have been achieved in Culicoides midges [22].

Type locality: Vicinity of Darwin, Northern Territory, Australia.

Type Material: For information on type material contact the investigators who first identified

and later isolated L. (M.)macropodum [20, 44, 75].

Remarks: Barratt et al. take no credit for the discovery or isolation of L. (M.)macropodum.

This parasite has been referred to as Leishmania ‘australiensis’ in previous works in the

absence of any formal description [6, 23], making it a nomen nudum and consequently

unavailable for future use. This parasite was formally described as L. (M.)macropodum
herein, simply to avoid the continued use of a nomen nudum.

Supporting Information

S1 Fig. Morphology of female Simulium (Morops) dycei, Colbo 1976 exoskeletons (flies A

and B) following DNA extraction. This figure shows exoskeletons from two black flies (desig-

nated as Fly A and Fly B) following DNA extraction for downstream PCR. (A) Habitus of S.

(M.) dycei female (Fly B) in Euparal mounting media. (B) Mandible of S. (M.) dycei female, ser-

rated on both edges (Fly A). (C) Genital fork of S. (M.) dycei female with strongly sclerotized

shaft and basal arm (Fly A). (D) Haired anepisternal (pleural) membrane of S. (M.) dycei
female (Fly A). Few hairs are present on this specimen due to damage caused during specimen

preparation and DNA isolation, indicated by numerous pores at the site of setal insertion. (E)

Antenna of S. (M.) dycei female consisting of 11 segments with 3 basal segments paler in colour

compared to the apical segments (Fly A). (F) Wing of S. (M.) dycei female with small dark spi-

nules along costa and distally on radius, both veins are haired (Fly A). (G) Hind leg tarsomeres

of S. (M.) dycei female showing the well-developed pedisulcus and calcipala. The claw lacks a

basal tooth (Fly A). This figure confirms that the fly-derived PCR products generated in this

study are indeed from two individuals of S. (M.) dycei. Sequences obtained for the COI, COII,
18S rRNA and 28S rRNA genes from flies A and B are available in GenBank (Accession num-

bers KY288010 to KY288017).

(TIF)

S2 Fig. Phylogenetic time tree with error bars, inferring the evolutionary relationships

between Zelonia australiensis and other trypanosomatids using concatenated 18S rDNA
and RPOIILS sequences. This Supplementary Figure shows the same phylogenetic tree dis-

played in Fig 8, though with error bars provided at each node, and estimated divergence times

indicated. Estimated divergence times greater than 1 MYA are rounded to the nearest whole

number. The star highlights the phylogenetic position of Z. australiensis.
(TIF)

S1 File. Supplementary materials and methods. This file provides greater detail on several of

the methods employed in this study.

(DOCX)

S2 File. Footage of a motile promastigote of Zelonia australiensis under phase contrast

microscopy. This footage shows a single typical promastigote cultured in NNN medium
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immediately after its isolation from S. (M.) dycei i.e. before passaging. This specimen repre-

sents one of the more common promastigote forms of the parasite. The typical, rapid, whip-

like movement of the flagellum is apparent.

(AVI)

S1 Table. Sequences used in phylogenetic analyses. This table lists the GenBank accession

numbers for all nucleotide sequences used to construct phylogenetic trees in this study.

(DOCX)
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