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Abstract 30 

Background  31 

Asthma is an allergic airway disease (AAD) caused by aberrant immune responses to allergens. 32 

Protein phosphatase-2A (PP2A) is an abundant serine/threonine phosphatase with anti-inflammatory 33 

activity. The ubiquitin proteasome system (UPS) controls many cellular processes, including the 34 

initiation of inflammatory responses by protein degradation. We assessed if enhancing PP2A activity 35 

with Fingolimod (FTY720) or 2-amino-4-(4-(heptyloxy) phenyl)-2-methylbutan-1-ol (AAL(S)), or 36 

inhibiting proteasome activity with Bortezomib (BORT) could suppress experimental AAD.  37 

Methods 38 

Acute AAD was induced in C57BL/6 mice by intraperitoneal sensitisation with ovalbumin (OVA) in 39 

combination with intranasal (i.n) exposure to OVA. Chronic AAD was induced in mice with prolonged 40 

i.n exposure to crude house dust mite (HDM) extract. Mice were treated with vehicle, FTY720, AAL(S), 41 

BORT or AAL(S)+BORT and hallmark features of AAD assessed. 42 

Results 43 

AAL(S) reduced the severity of acute AAD by suppressing tissue eosinophils and inflammation, mucus 44 

secreting cell (MSC) numbers, type-2 associated cytokines (Interleukin (IL)-33, thymic stromal 45 

lymphopoietin, IL-5 and IL-13), serum immunoglobulin (Ig)E, and airway hyper-responsiveness 46 

(AHR). FTY720 only suppressed tissue inflammation and IgE. BORT reduced bronchoalveolar lavage 47 

fluid (BALF) and tissue eosinophils and inflammation, IL-5, IL-13, and AHR. Combined treatment with 48 

AAL(S)+BORT had complementary effects and suppressed BALF and tissue eosinophils and 49 

inflammation, MSC numbers, reduced the production of type-2 cytokines and AHR. AAL(S), BORT and 50 

AAL(S)+BORT also reduced airway remodelling in chronic AAD. 51 

Conclusion 52 

These findings highlight the potential of combination therapies that enhance PP2A and inhibit 53 

proteasome activity as novel therapeutic strategies for asthma. 54 
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Introduction 58 

Asthma is a common chronic inflammatory allergic airway disease (AAD), typically caused by aberrant 59 

inflammatory responses to innocuous allergens. Exposure of the airway epithelium to allergens 60 

induces the release of the type-2 cytokines interleukin (IL)-33 and thymic stromal lymphopoietin 61 

(TSLP) (1). This promotes the development and activation of type-2 T-helper lymphocytes (Th2 cells) 62 

that release their characteristic cytokines IL-4, IL-5 and IL-13, promoting airway eosinophil 63 

accumulation, systemic immunoglobulin (Ig)E production, and airway mucus secreting cell (MSC) 64 

metaplasia and hyperresponsiveness (AHR) (2, 3). Together these events drive the development and 65 

progression of allergic asthma (2). The chronic release of cytokines and remodelling factors, such as 66 

transforming growth factor (TGF)-β by eosinophils and Th2 cells damages the epithelial lining, and 67 

leads to airway remodelling (4). Current mainstay asthma therapies include corticosteroids and long-68 

acting β-agonists. These reduce symptoms but do not treat the underlying causes of the disease, and 69 

their use has numerous issues (2). There is an urgent need for effective alternative treatments. 70 

PP2A is the most abundant serine/threonine phosphatase, is expressed ubiquitously and 71 

exists as a heterotrimeric enzyme consisting of structural (A), regulatory (multiple) (B) and catalytic 72 

(C) subunits (5, 6). Reduced PP2A activity occurs in animal models of AAD and patients with severe 73 

asthma (7-9), and enhancing activity with Fingolimod (FTY720) or 2-amino-4-(4-(heptyloxy) phenyl)-2-74 

methylbutan-1-ol (AAL(S)) abrogated the development of inflammation and AHR in AAD as well as 75 

inhibited IL-6 secretion in corticosteroid insensitive A549 lung epithelial cells (7, 10, 11). While these 76 

studies suggest that these agents may be potential asthma therapies, it is unknown which is more 77 

effective, as a side by side comparison has not been performed.  78 

The ubiquitin proteasome system (UPS) is critical in regulating tissue homeostasis through 79 

the degradation of key proteins involved in cellular functions (12, 13). Ubiquitinated target proteins are 80 

selectively degraded by ubiquitin ligases. In the lungs, the ubiquitin E3 ligase, Itch, promotes immune 81 

tolerance by degrading the Th2-specific transcription factor, phosphorylated JunB (14). In murine 82 

AAD, Itch deficiency resulted in allergic inflammation in response to high-dose antigen (15). Another 83 

E3 ligase, Midline-1 (MID1), is upregulated in human primary bronchial epithelial cells (pBECs) upon 84 

house dust mite (HDM) and rhinovirus exposure and in HDM-induced AAD (7). The proteasome 85 

inhibitor, bortezomib (BORT) is approved for the treatment of multiple malignancies (16). Its protective 86 

effects are due in part to the suppression of nuclear factor kappa-light-chain-enhancer of activated B 87 
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cells (NF-κB) signalling, which leads to the down regulation of anti-apoptotic target genes (17). Thus, 88 

BORT may suppress airway inflammation driven by NF-κB, which indicates the potential for targeting 89 

the UPS by proteasome inhibition as a therapy for asthma.  90 

Comparing and combining drugs that increase PP2A activity and suppress proteasome 91 

activity and the determination of any synergistic effects have not been assessed in asthma. Here we 92 

demonstrate that increasing PP2A activity with AAL(S) and inhibiting proteasome activity with BORT 93 

suppressed some of the same and also different features of acute AAD. Combined treatment with 94 

AAL(S)+BORT had complementary effects and suppressed all the major hallmark features of acute 95 

AAD, with the inhibition of type-2 responses and AHR. Both drugs alone and combined also 96 

supressed airway remodelling in chronic HDM-induced AAD. Our study indicates that therapeutically 97 

targeting PP2A and proteasome activity, particularly in combination, may be effective asthma 98 

treatments. 99 
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Methods 100 

Ethics statement 101 

This study was performed in strict accordance with the recommendations in the Australian code of 102 

practise for the care and use of animals for scientific purposes issued by the National Health and 103 

Medical Research Council of Australia. All protocols were approved by the Animal Ethics Committee 104 

of The University of Newcastle. 105 

 

AAD 106 

Acute AAD was induced in female, 6-8 week-old, C57BL/6 mice by intraperitoneal (i.p) sensitisation to 107 

ovalbumin (OVA, 100μg, Sigma-Aldrich, St. Louis, Missouri, USA) with Alhydrogel (1mg, InvivoGen, 108 

San Diego, California, USA) in sterile saline (200μl, 0.9%) on day 0 and 7. Mice were then challenged 109 

intranasally (i.n) with OVA (10μg, 50μl in sterile saline) on days 12-15. AAD was assessed on day 16. 110 

Chronic AAD was induced by i.n challenge with crude HDM extract (Dermatophagoides 111 

pteronyssinus, Greer Labs, Lenoir, North Carolina, USA) five times a week for five weeks. AAD was 112 

assessed on day 35. 113 

 

Drug treatments 114 

FTY720 (0.8mg/kg, 200μl PBS, Cayman Chemical, Michigan, USA, determined in optimisation 115 

studies), AAL(S) (0.8mg/kg, 200μl PBS, synthesised in-house as previously described (18)), BORT 116 

(0.2mg/kg, 200μl PBS, LC laboratories, Woburn, USA) or combined treatments (AAL(S)+BORT) were 117 

administered i.p on days 12-15 (30 minutes before each challenge) in acute AAD, and everyday 118 

throughout the chronic model. 119 

 

Airway inflammation, histopathology, mRNA expression, protein isolation, ELISA, serum 120 

antibodies, lung function and airway remodelling 121 

Bronchoalveolar lavage (BAL) was performed and differential leukocyte counts determined. 122 

Histopathology, mRNA expression, protein isolation, ELISA, serum antibodies, lung function and 123 

airway remodelling were assessed as previously described and/or in the online supplementary 124 

material (19-27). 125 
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Results 126 

AAL(S) but not FTY720 suppressed tissue inflammation and MSCs in acute AAD 127 

To induce acute AAD, mice were sensitised (i.p day 0 and 7) and challenged (i.n days 12-15) with 128 

OVA and outcomes assessed (day 16, Fig. 1A). Vehicle, or the PP2A activators FTY720 or AAL(S) 129 

were administered i.p 30 minutes before each challenge. AAD was associated with increases in total 130 

leukocytes, eosinophils, neutrophils, macrophages and lymphocytes in BAL fluid (BALF, 131 

OVA+vehicle) compared to non-AAD (Saline+vehicle) controls (Figs. 1B and C, Figs. S1A-C). 132 

Treatment of mice during AAD with FTY720 (OVA+FTY720) or AAL(S) (OVA+AAL(S)) had no 133 

significant effects on BALF leukocytes compared to vehicle-treated AAD controls. There were 134 

increases in airway eosinophils and total cellular inflammation in lung tissues, MSC numbers around 135 

the airways and mucin 5AC (Muc5AC) mRNA expression in lung homogenates in mice with AAD 136 

compared to non-AAD controls (Figs. 1D-G). FTY720 treatment reduced cellular inflammation but not 137 

tissue eosinophils, MSC numbers or Muc5AC mRNA expression compared to vehicle-treated 138 

controls. AAL(S) treatment reduced tissue eosinophils, cellular inflammation and MSC numbers, which 139 

was associated with reduced Muc5AC mRNA expression. AAL(S) treatment also significantly reduced 140 

airway eosinophils and cellular inflammation in lung tissues as well as Muc5AC mRNA expression 141 

compared to FTY720 treatment (Figs 1D, E and G). 142 

 

AAL(S) but not FTY720 suppressed OVA-induced type-2 associated airway and tissue cytokine 143 

levels and AHR 144 

Next, the effects of FTY720 and AAL(S) treatment on type-2 associated cytokines, IgE and AHR were 145 

assessed. There were increased levels of IL-33 and TSLP in lung homogenates, IL-5 and IL-13 in 146 

BAL supernatants, IgE in serum and AHR, characterised by exaggerated transpulmonary resistance 147 

in response to increasing doses of methacholine in mice with AAD compared to non-AAD controls 148 

(Figs. 2A-F). Treatment of mice during AAD with AAL(S), but not FTY720 reduced the levels of all 149 

cytokines back to vehicle-treated AAD control levels. There were non-significant trends to reduced 150 

cytokine levels with FTY720 treatment. Both FTY720 and AAL(S) reduced IgE levels and AHR. AAL(S) 151 

treatment significantly reduced levels of IL-33 in the lung and AHR compared to FTY720 treatment 152 

(Figs 2A and F). 153 
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Treatment with BORT reduced OVA-induced airway and tissue inflammation and Muc5AC 154 

mRNA expression in the lung 155 

Next, the effects of the proteasome inhibitor, BORT, on acute AAD were assessed (Fig. 3A). 156 

Treatment of mice during AAD with BORT (OVA+BORT) reduced total leukocytes, eosinophils, 157 

neutrophils, macrophages and lymphocytes in BALF compared to vehicle-treated AAD controls (Figs. 158 

3b and c, Figs. S2A-C). There were also reduced eosinophils in lung tissue (Fig. 3D). Treatment did 159 

not affect tissue inflammation or MSC numbers, but reduced Muc5AC mRNA expression in lung 160 

homogenates (Figs. 3E-G). 161 

 

Treatment with BORT reduced OVA-induced airway IL-5 and IL-13 levels and suppressed AHR 162 

Treatment of mice during AAD with BORT did not significantly affect the levels of IL-33 and TSLP 163 

(trend to a decrease) in lung homogenates compared to vehicle-treated AAD controls (Figs. 4A and 164 

B). However, treatment did reduce the levels of IL-5 and IL-13 in BAL supernatants (Figs. 4C and D). 165 

Treatment had no effect on serum IgE but did decrease AHR (Figs. 4E and F). 166 

 

Combined treatment with AAL(S)+BORT had complementary effects and reduced OVA-induced 167 

eosinophilic pulmonary inflammation, MSC numbers and Muc5AC expression 168 

Our data show that AAL(S) treatment had beneficial effects on several features of AAD including tissue 169 

eosinophils and inflammation, MSC numbers, Muc5AC expression, levels of type-2 associated 170 

cytokines, IgE production and AHR. FTY720 had lesser effects. BORT had complementary effects 171 

and suppressed the influx of inflammatory cells into the airways, tissue eosinophils, Muc5AC 172 

expression, IL-5 and IL-13 production and AHR (Table 1). This suggests that combined treatment with 173 

the PP2A activator AAL(S) and proteasome inhibitor BORT have complementary effects. Thus, we 174 

next assessed the effects of combining AAL(S)+BORT into one treatment for acute AAD. Treatment of 175 

mice during AAD (OVA+AAL(S)+BORT) had no effects on total leukocytes, neutrophils, macrophages, 176 

or lymphocytes in BALF compared to vehicle-treated AAD controls (Fig. 5B, Figs. S3A-C). However, 177 

and critically, the combined treatment reduced eosinophils in both BALF and lung tissue, tissue 178 

inflammation, MSC numbers and Muc5AC mRNA expression (Figs. 5C-G). 179 
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Combined treatment with AAL(S)+BORT had complementary effects and inhibited OVA-induced 180 

type-2 associated cytokines and AHR 181 

Consistent with the reduction in allergic inflammation and mucus responses (Figs. 5C-F), treatment of 182 

mice during AAD with AAL(S)+BORT significantly reduced levels of IL-33 and TSLP in lung 183 

homogenates and IL-5 and IL-13 in BAL supernatants compared to vehicle-treated AAD controls 184 

(Figs. 6A-D). Cytokine production was completely inhibited, with levels suppressed to those in 185 

vehicle-treated non-AAD controls. Combined treatment did not significantly reduce serum IgE, but 186 

inhibited AHR back to non-AAD levels (Figs. 6E and F). 187 

 

Treatment with AAL(S), BORT and AAL(S)+BORT reduced airway remodelling in chronic AAD 188 

Acute OVA-induced AAD does not involve chronic features of asthma such as airway remodelling. 189 

Thus, the effects of AAL(S) and BORT alone or combined on airway remodelling were assessed by 190 

chronically exposing mice to HDM (Fig. 7A). Chronic exposure (HDM+vehicle) increased pulmonary 191 

inflammation, MSC numbers and AHR compared to vehicle-treated non-AAD controls 192 

(Saline+vehicle) (Figs. S4A-G). Treatment with AAL(S), BORT or AAL(S)+BORT throughout HDM 193 

exposure again variously suppressed these features. Chronic HDM exposure also induced airway 194 

remodelling with increased collagen deposition around the airways (Fig. 7B). Treatment significantly 195 

reduced collagen deposition. This was associated with reductions in TGF-β mRNA expression (Fig. 196 

7C).  197 
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Discussion 198 

We assessed the effects of enhancing PP2A activity and inhibiting proteasome activity, either alone or 199 

in combination, as potential therapies for AAD. Enhancing PP2A activity with AAL(S) suppressed 200 

tissue eosinophils and inflammation, MSC numbers and Muc5AC expression, type-2 cytokines in the 201 

lungs, IgE levels in serum and AHR, in acute OVA-induced AAD. FTY720 only significantly 202 

suppressed tissue inflammation and IgE levels. Inhibiting proteasome activity with BORT reduced 203 

eosinophils in the airways and lung tissue, airway type-2 (IL-5, IL-13) levels and AHR. Importantly, we 204 

show for the first time that combined treatment with AAL(S) and BORT had complementary effects and 205 

was superior to either treatment alone, reducing eosinophil levels in the airways and lung tissue, 206 

tissue inflammation, MSC numbers and Muc5AC expression, type-2 cytokines and AHR. Notably, 207 

increases in cytokine levels and AHR were completely inhibited. Furthermore, AAL(S) and BORT alone 208 

or combined suppressed airway remodelling in chronic HDM-induced AAD. This combination, 209 

therefore, has potential as an effective asthma therapy. 210 

PP2A is the most abundant serine/threonine phosphatase in mammals (6), and numerous 211 

studies show its activity is reduced in asthma (9, 28-30). PP2A activity was impaired in airway smooth 212 

muscle cells of asthmatics compared to non-asthmatics (28), in peripheral blood mononuclear cells 213 

from severe asthma patients (9), and in animal models of steroid-resistant AHR (29). These studies 214 

highlight the therapeutic potential of enhancing PP2A activity in asthma. Whilst some studies have 215 

reported the use of the two common PP2A activators, FTY720 and AAL(S), in murine AAD (7, 10), 216 

which one is more effective was unknown.  217 

Our study, for the first time, compared the effects of AAL(S) and FTY720 on AAD. AAL(S) was 218 

more effective than FTY720. In acute OVA-induced AAD, AAL(S) treatment inhibited eosinophil influx 219 

into the lung, but not the airways, and tissue inflammation and to a greater extent than FTY720. Its 220 

effects were associated with reduced levels of innate (IL-33, TSLP) and adaptive (IL-5, IL-13) type-2 221 

cytokines. Treatment with AAL(S), but not FTY720, reduced MSC numbers, which was associated with 222 

reduced levels of IL-13 and Muc5AC mRNA expression in the lungs. Both treatments reduced serum 223 

IgE levels. AHR was significantly reduced with AAL(S), but not FTY720, which was associated with 224 

reduced IL-13 levels. Others also showed that AAL(S) treatment reduced tissue inflammation, type-2 225 
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cytokines (IL-33, IL-5, IL-13) and AHR in acute HDM-induced AAD (7), and reduced eosinophilic 226 

airway inflammation and AHR in rhinovirus-induced exacerbation of acute AAD (8).  227 

In contrast to our findings, others showed that oral treatment with FTY720 decreased airway 228 

inflammation, MSC numbers and AHR in T-cell transfer- and OVA-induced AAD (31). This was 229 

postulated to be due to the sequestration of T cells in lymphoid tissues. Another study showed that 230 

intratracheal administration of FTY720 during OVA-induced AAD reduced airway inflammation and 231 

type-2 cytokines (IL-5, IL-13) by altering the function of lung dendritic cells (10). The differences in our 232 

compared to other studies could be partly due to the off-target effects of FTY720, different routes of 233 

administration or mouse strains used. Since FTY720 is phosphorylated in vivo by sphingosine kinases 234 

to become FTY720-P and also binds to sphingosine 1-phosphate receptors (SIPR1) to cause 235 

lymphocyte trafficking, it does not specifically activate PP2A (32). In contrast, AAL(S) does not bind to 236 

SIPR1, and more specifically increases PP2A activity. In our study, FTY720 was administered 237 

systemically (i.p) compared to oral or intratracheal administration used by others, which may have 238 

resulted in greater metabolism to FTY720-P. Furthermore, others used BALB/c mice that are more 239 

susceptible to developing Th2-driven AAD, while we used C57BL/6 mice that can be considered to 240 

have more balanced immunity. By using C57BL/6 mice that are less susceptible to developing AAD, 241 

our data adds additional impact and demonstrates that the protective effects of targeting these 242 

pathways is not restricted only to susceptible strains. It also provides a platform for further 243 

mechanistic studies using factor deficient or transgenic mice that are typically generated on a 244 

C57BL/6 background (e. g. in mice with altered TTP activity) (33). 245 

The effects of AAL(S) on airway remodelling were also determined, and treatment suppressed 246 

chronic HDM-induced collagen deposition around the airways. This was associated with reduced 247 

TGF-β mRNA expression in the lungs. Others also showed that AAL(S) treatment reduced collagen 248 

deposition around the airways of mice chronically exposed to OVA (34). Our study used HDM, which 249 

is a clinically relevant allergen, and involves sensitisation solely via the airways instead of systemic 250 

sensitisation in the presence of an adjuvant used in OVA models (35). This is consistent with allergen 251 

exposure in humans and results in local, instead of systemic immune responses.  252 

The UPS has been studied extensively, however, few have focussed on asthma (7, 36). In the 253 

lungs, the E3 ubiquitin ligase, Itch, is involved in maintaining tolerance by inducing anergy in Th2 cells 254 

(15). Other E3 ubiquitin ligases such as gene related to anergy in lymphocytes (GRAIL) are implicated 255 
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in inducing T cell tolerance by targeting Th2 transcription factors for degradation (36). Recently, MID1 256 

was shown to be upregulated in pBECs from human asthma patients and in HDM-exposed mice (7). 257 

Proteasome inhibition is emerging as a potential therapy in many diseases particularly cancer, 258 

whereas studies in asthma are only commencing. Treatment with the inhibitor PS-519 in OVA-259 

induced pulmonary eosinophilia in rats significantly reduced eosinophil influx into the lungs (37). Only 260 

one other study used BORT, which was tested in a chronic OVA mouse model. Long-term treatment 261 

with high doses reduced OVA-specific IgE, but not airway inflammation or AHR (38). However, the 262 

effects of treatment in acute models, with HDM or on features of airway remodelling have not been 263 

assessed previously.  264 

We assessed the effects of BORT on both acute and chronic models of AAD. Treatment 265 

suppressed some features of acute AAD, including eosinophil infiltration into the airways and lung 266 

tissue, which was associated with reduced levels of IL-5 and IL-13 in BAL supernatants. It also 267 

attenuated AHR, which was consistent with reduced levels of IL-13. However, treatment did not alter 268 

tissue inflammation, MSC numbers, levels of innate type-2 cytokines (IL-33 and TSLP) or IgE. 269 

Importantly, it did prevent airway remodelling in chronic AAD, which was associated with reduced 270 

TGF-β mRNA expression in the lung. Discrepancies between our and previous findings may be 271 

attributed to the doses of BORT used (38). We used a moderate dose (0.2mg/kg) while a higher dose 272 

of BORT (0.75mg/kg) was used previously. Others demonstrated that the attenuation of experimental 273 

colitis in mice by BORT treatment was dose dependent (39). A low dose (0.1mg/kg) reduced 274 

inflammation but did not affect cytokine or chemokine production, intermediate doses (0.2 and 275 

0.35mg/kg) attenuated colitis while a higher dose (0.5mg/kg) caused mortality. Notably, BORT is a 276 

non-selective proteasome inhibitor, hence it is possible that the general reduction of proteasome 277 

activity is not optimal in suppressing all features of AAD, and specific inhibition may have greater 278 

effects. 279 

Several studies highlight associations between PP2A and the UPS. Inhibition of PP2A 280 

augmented the proteolytic function of murine cardiac proteasomes (40). Others identified the 281 

mediation of PP2A/C ubiqutination and degradation by the E3 ligase Cullin-3 (41), and in HDM-282 

induced AAD, MID1 protein decreases PP2A activity (7). Given that both PP2A and the UPS are 283 

implicated in asthma pathogenesis, and that AAL(S) and BORT inhibit different features of AAD, the 284 

complementary effects of enhancing PP2A activity and inhibiting proteasome activity concurrently 285 
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were determined. This has not been assessed previously. Treatment with AAL(S)+BORT had 286 

complementary effects and suppressed the major hallmark features of AAD including eosinophil 287 

infiltration into the airways and lungs, tissue inflammation, MSC numbers, type-2 associated 288 

cytokines, AHR and collagen deposition. Notably type-2 cytokine production and AHR were 289 

completely inhibited. Interestingly, combined treatment reduced the levels of eosinophils in the 290 

airways, which was not observed with AAL(S) treatment alone. This is important since anti-IL-5 291 

treatment in humans is only effective when there is major suppression of eosinophil levels (42, 43). 292 

The effects of combined treatment were stronger in the acute compared to the chronic model. In the 293 

chronic model, there were no additional beneficial effects of combined compared to individual 294 

treatments. Nevertheless, our data consistently show that combination treatment suppresses both 295 

acute and chronic features of asthma across different models. Ours is the first study to show the 296 

complementary effects of enhancing PP2A activity and inhibiting proteasome activity at the same time 297 

on both acute and chronic features of AAD. 298 

The exact mechanisms of how these immunomodulatory drugs suppress AAD remains to be 299 

fully elucidated. A recent study showed that PP2A activators may promote increases in anti-300 

inflammatory tristetraprolin (TTP) activity (30). The TTP protein exists in two forms, the 301 

phosphorylated form, which is inactive, and the unphosphorylated form, which is active and induces 302 

mRNA decay. The major targets of TTP are the mRNA transcripts of cytokines. Thus, when TTP is 303 

phosphorylated cytokine expression occurs but when TTP is unphosphorylated the production of 304 

target cytokines is inhibited. Unphosphorylated TTP is less stable and is degraded by the UPS (44, 305 

45). PP2A is able to mediate the dephosphorylation of TTP protein, leading to an increase in the 306 

active unphosphorylated form and the mRNA decay of cytokines (46). Inhibition of PP2A with okadaic 307 

acid or siRNA leads to increased phosphorylation of TTP, thereby increasing the stability of cytokines, 308 

such as tumour necrosis alpha (TNFα) mRNA in mouse alveolar macrophage cell lines (46). Recently, 309 

it was demonstrated that AAL(S) suppressed the levels of TNFα-induced interleukin IL-8 and IL-6 in 310 

A549 lung epithelial cells (47). This was postulated to be due to the ability of AAL(S) to shift the 311 

equilibrium towards active TTP. As the active form of TTP is unstable and prone to degradation by the 312 

UPS (45), preventing the degradation of unphosphorylated TTP by BORT would favour the 313 

degradation of pro-inflammatory cytokine mRNA. Treatment of RAW 264.7 with MG-132, an inhibitor 314 

of the 20S/26S proteasome increased TTP protein levels also by preventing its degradation (44). 315 
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These findings suggest that enhancing PP2A activity and inhibiting proteasome activity, as we have 316 

done in this study, could potentially increase the active and stable form of TTP, hence leading to 317 

reduced levels of pro-inflammatory cytokines and the suppression of AAD. 318 

Another possible mechanism is through the inhibition of NF-κB activity, which regulates the 319 

expression of many cytokines (48). PP2A is a crucial regulator of NF-κB (49). Its inhibition increases 320 

the activity of inhibitor of κB (IκB) kinaseβ (IKKβ), which subsequently leads to the proteasomal 321 

degradation of IκBα, allowing NF-κB to translocate into the nucleus to activate responsive genes (49). 322 

The UPS also controls NF-κB activity through IκB degradation (50). The inhibition of tumour growth in 323 

human T-cell lymphoma cells by BORT may be due to nuclear translocation of IκB and the 324 

inactivation of NF-κB (51). The mechanisms of action of these drugs clearly need further study. 325 

While we did not directly confirm the activity of the drugs (AAL(S) and BORT) against their 326 

targets (PP2A and UPS) at the doses provided, several studies have confirmed this. PP2A activity 327 

was shown to be increased in mice with AAD after treatment with AAL(S) (7). BORT is a known 328 

proteasome inhibitor that has been approved for use in multiple myeloma, and it inhibits proteasomal 329 

activity by up to 70% in whole blood samples (52). Similarly, proteasome activity was inhibited both in 330 

vitro and in vivo (53, 54). Notably, the doses used in these studies were lower than the dose used in 331 

our study, indicating that we would also observe the desired effects on the target pathways. 332 

Importantly, we did not observe any adverse effects on the mice at the doses used in our study. 333 

In summary, we demonstrate that enhancing PP2A activity and inhibiting proteasome activity, 334 

either alone or in combination has beneficial effects in acute and chronic AAD. Enhancing PP2A 335 

activity with AAL(S) more effectively suppressed hallmark features of AAD than FTY720, while 336 

inhibiting proteasome activity with BORT had some beneficial effects. Combining AAL(S) and BORT 337 

had complementary effects and was more effective compared to any treatment alone. Our findings 338 

highlight the importance of PP2A and the UPS in AAD and suggest that their complementary targeting 339 

may have therapeutic potential in asthma. 340 
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Figure 1 AAL(S) but not FTY720 suppressed tissue inflammation and mucus secreting cell (MSC) 357 

numbers in ovalbumin (OVA)-induced acute allergic airway disease (AAD). (A) AAD was induced by 358 

intraperitoneal (i.p) OVA sensitisation and intranasal OVA challenges. Controls were sham-sensitised 359 

and challenged with OVA. FTY720 or AAL(S) were administered i.p 30 minutes before each OVA 360 

challenge. Controls were vehicle-treated. Features of AAD were assessed 24 hours after the final 361 

OVA challenge. (B) Total leukocytes and (C) eosinophils in bronchoalveolar lavage fluid (BALF). (D) 362 

Numbers of airway tissue eosinophils per 100μm basement membrane (BM) in Lendrum's 363 

Carbolchromotrope stained lung sections. (E) Histopathology score in haematoxylin and eosin stained 364 

lung sections. Scale bars= 200μm. (F) MSC numbers per 100μm BM in periodic acid-Schiff stained 365 

lung sections. Scale bars= 50μm. (G) Mucin 5AC (Muc5AC) mRNA expression in lung homogenates. 366 

Data (n=6-8) are presented as means ± s.e.m. * represents P≤0.05 compared to non-AAD vehicle-367 

treated (Saline+vehicle) controls, # represents P≤0.05 compared to AAD vehicle-treated 368 

(OVA+vehicle) controls, + represents P≤0.05 compared to AAD FTY720-treated (OVA+FTY720) mice. 369 

 

Figure 2 AAL(S) but not FTY720 suppressed type-2 associated airway and tissue cytokines levels and 370 

airway hyper-responsiveness (AHR) in OVA-induced acute allergic airway disease (AAD). AAD was 371 

induced by intraperitoneal (i.p) OVA sensitisation and intranasal OVA challenges. Controls were 372 

sham-sensitised and challenged with OVA. FTY720 or AAL(S) were administered i.p 30 minutes before 373 

each OVA challenge. Controls were vehicle-treated. Features of AAD were assessed 24 hours after 374 

the final OVA challenge. (A) Interleukin (IL)-33 and (B) thymic stromal lymphopoietin (TSLP) in lung 375 

homogenates. (C) IL-5 and (D) IL-13 in bronchoalveolar lavage supernatants. (E) Total 376 

immunoglobulin (Ig)E in serum. (F) AHR in terms of transpulmonary resistance in response to 377 

increasing doses of methacholine (left) and at the maximal dose of methacholine (50mg/ml; right). 378 

Data (n=6-8) are presented as means ± s.e.m. * represents P≤0.05 compared to non-AAD vehicle-379 

treated (Saline+vehicle) controls, # represents P≤0.05 compared to AAD vehicle-treated 380 

(OVA+vehicle) controls, + represents P≤0.05 compared to AAD FTY720-treated (OVA+FTY720) mice. 381 

 

Figure 3 Treatment with BORT suppressed eosinophil influx into the airways and lung tissues as well 382 

as mucin 5AC (Muc5AC) expression in ovalbumin (OVA)-induced acute allergic airway disease 383 

(AAD). (A) AAD was induced by intraperitoneal (i.p) OVA sensitisation and intranasal OVA 384 
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challenges. Controls were sham-sensitised and challenged with OVA. BORT was administered i.p 30 385 

minutes before each OVA challenge. Controls were vehicle-treated. Features of AAD were assessed 386 

24 hours after the final OVA challenge. (B) Total leukocytes and (C) eosinophils in bronchoalveolar 387 

lavage fluid (BALF). (D) Numbers of airway tissue eosinophils per 100μm basement membrane (BM) 388 

in Lendrum's Carbolchromotrope stained lung sections. (E) Histopathology score in haematoxylin and 389 

eosin stained lung sections. Scale bars= 200μm. (F) Mucus secreting cell numbers per 100μm BM in 390 

periodic acid-Schiff stained lung sections. Scale bars= 50μm. (G) Muc5AC mRNA expression in lung 391 

homogenates. Data (n=6-8) are presented as means ± s.e.m. * represents P≤0.05 compared to non-392 

AAD vehicle-treated (Saline+vehicle) controls, # represents P≤0.05 compared to AAD vehicle-treated 393 

(OVA+vehicle) controls. 394 

 

Figure 4 Treatment with BORT reduced airway interleukin (IL)-5 and IL-13 levels in the lungs and 395 

airway hyper-responsiveness (AHR) in ovalbumin (OVA)-induced acute allergic airway disease (AAD). 396 

AAD was induced by intraperitoneal (i.p) OVA sensitisation and intranasal OVA challenges. Controls 397 

were sham-sensitised and challenged with OVA. Vehicle or BORT were administered i.p 30 minutes 398 

before each OVA challenge. Features of AAD were assessed 24 hours after the final OVA challenge. 399 

(A) IL-33 and (B) thymic stromal lymphopoietin (TSLP) in lung homogenates. (C) IL-5 and (D) IL-13 in 400 

bronchoalveolar lavage supernatants. (E) Total immunoglobulin (Ig)E in serum. (F) AHR in terms of 401 

transpulmonary resistance in response to increasing doses of methacholine (left) and at the maximal 402 

dose of methacholine (50mg/ml; right). Data (n=6-8) are presented as means ± s.e.m. * represents 403 

P≤0.05 compared to non-allergic vehicle-treated (Saline+vehicle) controls, # represents P≤0.05 404 

compared to allergic vehicle-treated (OVA+vehicle) controls. 405 

 

Figure 5 Combined treatment with AAL(S)+BORT had complementary effects and reduced 406 

eosinophilic pulmonary inflammation, mucus secreting cell (MSC) numbers and mucin 5AC (Muc5AC) 407 

expression in ovalbumin (OVA)-induced acute allergic airway disease (AAD). (A) AAD was induced by 408 

intraperitoneal (i.p) OVA sensitisation and intranasal OVA challenges. Controls were sham-sensitised 409 

and challenged with OVA. AAL(S)+BORT were administered i.p 30 minutes before each OVA 410 

challenge. Controls were vehicle-treated. Features of AAD were assessed 24 hours after the final 411 

OVA challenge. (B) Total leukocytes and (C) eosinophils in bronchoalveolar lavage fluid (BALF). (D) 412 
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Numbers of airway tissue eosinophils per 100μm basement membrane (BM) in Lendrum's 413 

Carbolchromotrope stained lung sections. (E) Histopathology score in haematoxylin and eosin stained 414 

lung sections. Scale bars= 200μm. (F) MSC numbers per 100μm BM in periodic acid-Schiff stained 415 

lung sections. Scale bars= 50μm. (G) Muc5AC mRNA expression in lung homogenates. Data (n=6-8) 416 

are presented as means ± s.e.m. Data from controls (Saline+vehicle and OVA+vehicle) are 417 

recapitulated from Figure 3 To facilitate comparisons of data to single treatments, data from 418 

OVA+AAL(S) groups are recapitulated from figure 1, and data from OVA+BORT groups are 419 

recapitulated from figure 3. * represents P≤0.05 compared to non-AAD vehicle-treated 420 

(Saline+vehicle) controls, # represents P≤0.05 compared to AAD vehicle-treated (OVA+vehicle) 421 

controls. 422 

 

Figure 6 Combined treatment with AAL(S)+BORT had complementary effects and inhibited type-2 423 

associated cytokines and airway hyper-responsiveness (AHR) in ovalbumin (OVA)-induced acute 424 

allergic airway disease (AAD).  AAD was induced by intraperitoneal (i.p) OVA sensitisation and 425 

intranasal OVA challenges. Controls were sham-sensitised and challenged with OVA. AAL(S)+BORT 426 

were administered i.p 30 minutes before each OVA challenge. Controls were vehicle-treated. 427 

Features of AAD were assessed 24 hours after the final OVA challenge. (A) Interleukin (IL)-33 and (B) 428 

thymic stromal lymphopoietin (TSLP) in lung homogenates. (C) IL-5 and (D) IL-13 in bronchoalveolar 429 

lavage supernatants. (E) Total immunoglobulin (Ig)E in serum. (F) AHR in terms of transpulmonary 430 

resistance in response to increasing doses of methacholine (left) and at the maximal dose of 431 

methacholine (50mg/ml; right). Data (n=6-8) are presented as means ± s.e.m.  Control mice 432 

(Saline+vehicle and OVA+vehicle) is recapitulated from Figure 4. To facilitate comparisons of data to 433 

single treatments, data from OVA+AAL(S) groups are recapitulated from figure 2, and data from 434 

OVA+BORT groups is recapitulated from figure 4. *represents P≤0.05 compared to non-AAD vehicle-435 

treated (Saline+vehicle) controls, # represents P≤0.05 compared to AAD vehicle-treated 436 

(OVA+vehicle) controls. 437 

 

Figure 7 Treatment with AAL(S), BORT and AAL(S)+BORT reduced airway remodelling in house dust 438 

mite (HDM)-induced chronic allergic airway disease (AAD). (A) Chronic AAD was induced by 439 

administration of HDM intranasally five times a week for five weeks. AAL(S), BORT or AAL(S)+BORT 440 
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were administered intraperitoneally daily. Controls were vehicle-treated. Airway remodelling in terms 441 

of collagen deposition around the airways were assessed after 5 weeks. (B) Area of collagen 442 

deposition (μm2) per basement membrane perimeter in Masson’s Trichrome stained lung sections. 443 

Scale bars= 50μm. (C) Transforming growth factor (TGF)-β mRNA expression in lung homogenates. 444 

Data (n=6-8) are presented as means ± s.e.m. * represents P≤0.05 compared to non-AAD vehicle-445 

treated (Saline+vehicle) controls, # represents P≤0.05 compared to AAD vehicle-treated 446 

(HDM+vehicle) controls. 447 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

Table 1 Summary of the effects of different treatments on features of acute AAD 448 

 FTY720 AAL(S) BORT AAL(S)+BORT 

 Fig. 1  Fig. 3 Fig. 5 

All BALF cells - -   (eosinophils) 

Tissue eosinophils -    

Tissue inflammation   -  

MSCs -  -  

Muc5AC mRNA -    

 Fig. 2  Fig. 4 Fig. 6 

IL-33, TSLP -  -  

IL-5, IL-13 -    

IgE   - - 

AHR -    

- represents no effect,  represents reduced,  represents reduced to baseline, bronchoalveolar lavage fluid (BALF), mucus 449 

secreting cells (MSCs), mucin 5AC (Muc5AC), interleukin (IL), thymic stromal lymphopoietin (TSLP), immunoglobulin (Ig), 450 

airway hyper-responsiveness (AHR) 451 
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