

UTS greyhound safety and welfare research update 12 June 2018

David Eager

University of Technology Sydney

Outline

- 1. Significance of injury data
- 2. Kinematic (motion) study: HFR data analysis
- 3. Kinetic (forces) study: iKMS data analysis
- 4. Surface safety analysis
- 5. Track modelling and race simulation
- 6. Q&A

Data analysis in a glance

(1)

(3)

Retrospective review: 6 vs 8 runners

	2016 Deceased	2016 Starts	2017 Deceased	2017 Starts	Normalised per 1000 starts (2017 & 2016)
6 Start races	3	4032	2	4356	0.6
7 Start races	23	15435	15	14483	1.3
8 Start races	103	70128	92	69952	1.4

Greyhounds stride analysis Straight running

UTS developed data acquisition device (iKMS)

iKMS V1.1 central acquisition unit

A greyhound wearing a jacket with embedded Integrated Kinematic Measurement System (iKMS)

Example of Integrated Kinematic Measurement System (iKMS) raw data

Parameters	Value
Peaks of vertical acceleration (sand-bend)	7.4 g
Peaks of vertical acceleration (sand-straight)	5.0 g
Peaks of vertical acceleration (grass-bend)	7.1 g
Peaks of vertical acceleration (grass-straight)	4.3 g
Stride frequency (sand-bend)	3.60 Hz
Stride frequency (sand-straight)	3.50 Hz
Stride frequency (grass-bend)	3.85 Hz
Stride frequency (grass-straight)	3.45 Hz

Advanced 3D paw imprint reconstruction

Advanced 3D paw imprint reconstruction

- > Paw imprints can be seen as an objective measurement of track surface properties
- It is hypothesised that optimum paw imprint will allow standardisation of current track surface analysis techniques such as penetrometer, moisture and impact testing
- Print shape and depth may be correlated with variables such as compaction and moisture content
- Change of surface preparation philosophy: Instead of changing variables to chase performance the greyhound racing industry chooses the performance and change the variables accordingly
- Analysis may concluded that different surfacing properties are required where the greyhounds are subjected to different forces ie bend and straight may require different sand, moisture and/or preparation to optimise the performance
- Additionally, paw imprint reconstruction allows analysis of previously unobtainable stride, gait and surface information

Modified 2.28 kg Clegg hammer

Hammer with mass of 2.28 kg

Data acquisition unit

Dynamic model of galloping greyhound

Centre of mass trajectory line of greyhounds while galloping on sand and synthetic rubber

Track design investigation

Maximum speeds of greyhounds as limited by the physics

Track design investigation What can be done for cross falls at the tracks

Track design investigation What can be done for cross falls at the tracks

Track design investigation Continuity of a track path and lateral dynamics

Track design investigation

Straight to bend path with proper Euler transition

Hypothetical track design with minimal centrifugal acceleration jerk (plan view)

Greyhound run video for hypothetical track with minimal centrifugal acceleration jerk (greyhound view)

Track design investigation

Rate of rotation (yaw rate) of greyhounds for Richmond 400 m starts immediate bend

Track design investigation The Gardens starting box alignment

Old boxes alignment

Starting boxes realignment options for 400 m start

Track design investigation Mt Gambier starting box alignment

1		~72m	Start of bend		
	Old b	oxes alignment			
	Maximum transitional rate of rotation				
	Boxes alignment for distance start	Rate of rotation (rad/s)	512		
	Existing 512 m	2.63	~6.4 deg offset from existing		
	Improved 512 m	1.73	alignment		

Track design investigation Alternative design options for Tweed Heads

Tweed Heads track design proposed by club

Tweed Heads design developed by UTS

Track design	Jerk magnitude (m/s³)
Alternative design Option C	0.42
Alternative design Option B	0.72
Alternative design Option D	1.1
Alternative design Option A	1.69
Richmond	5.5
Wentworth Park	10.5

Track design investigation Alternative design options for Tweed Heads

Tweeds Head proposed design by UTS

12 June 2018

Tweeds Head proposed design by UTS with extended straight start

Tweed Heads design developed by UTS

