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Abstract: The equation of Levich and Dogonadze describing the rate of electron-transfer 
processes in the weak-coupling “non-adiabatic” limit is understood in terms of the properties 
of general adiabatic electron-transfer theory.  The cusp diameter describing the continuous 
changeover of Born-Oppenheimer adiabatic surfaces from donor-like to acceptor-like 
character is shown to be the critical property controlling reaction rates and intervalence 
spectra.  Their work is presented in the context of general Born-Oppenheimer breakdown 
phenomena and linked to the overarching cusp catastrophe. 
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INTRODUCTION 

In 1959, Levich and Dogonadze [1-4] deduced the rate constant for an electron-transfer 
reaction in the weak-coupling limit to be 
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where J is the electronic coupling linking the donor and acceptor, ‡G∆ is the activation 
energy, T the temperature, and kβ Boltzmann’s constant.  This expression has subsequently 
been applied to understand electron-transfer processes in a very wide range of biological and 
nanotechnological applications [5, 6].  Standard transition state theory fails to take into 
account the probability κ , called the “transmission factor”, that the reaction products form 
on the ground-state potential-energy surface and so needs to be corrected to 
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where ω  is the collision frequency.  Levich and Dogonadze deduced the value of the 
transmission factor following from the work of Kubo and Toyozawa [7] on rates of non-
radiative processes treated only using Fermi’s Golden Rule [8].  Their equation surpassed 
earlier crude quantum-tunnelling approaches [9-12] for estimating κ , exposing its 
dependence on experimentally assessable quantities.  It is similar to results obtained in the 
same year by Holstein for related problems in condensed-matter physics [13, 14], following 
the work of Lax and others [15].  Figure 1 shows the key quantities involved in these 
approaches in the limit of small coupling.  A feature of the Levich-Dogonadze derivation of 
the prefactor is that it is based on a single-mode model as illustrated in the figure, allowing 
Landau-Zener theory to be applied in the weak-coupling limit to obtain this analytical 
solution.  Typically nuclear motions not involved in the reaction coordinate do contribute to 
reactivity, leading to deviations from Eqn. (1) [16-18], but nevertheless this equation remains 
the basis for modern conceptual understanding. 

The activation energy ‡G∆ appearing in Eqns. (1) and (2) had previously been 
determined by Kubo and Toyozawa [7] and by Hush [19, 20] in the limit of 0J →  as the 
energy at the crossing point of the diabatic surfaces that occurs for harmonic potentials at 
geometry 
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where 0G∆  is the free-energy difference between products and reactants, λ  is the 
reorganization energy, and mQ Q= ±  specify the equilibrium geometries of non-interacting 
donor and acceptor species.  The reorganization energy is the energy released when an 
optically induced vertically-excited charge-transfer state relaxes to its adiabatic energy 
minimum, given by 22 mQλ ω=   for harmonic potentials.  Later an extended description of 
the basic equations and the motivations behind them was presented by Levich [21], forming a 
good summary of the work done with Dononadze. 

 The electronic coupling J must always be non-zero or there would be no electron 
transfer.  In Eqn. (1), its effect is treated perturbatively to manifest the reaction rate, but 
another effect is to modify the activation energy.  For symmetric reactions with 0 0G∆ = , the 
activation energy is [22] 
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In general, it can be roughly approximated by [22] 
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As indicated clearly later [4], Levich and Dogonadze used quantum methods to treat 
the electronic motions that embody delocalization of the charge between the donor and the 
acceptor that changes continually as the electron-transfer process proceeds along the reaction 
coordinate.  Such general quantum approaches are termed adiabatic electron transfer theory.  
They produced analytical results in two regimes: when the coupling is strong enough so that 
transition-state theory holds, and the limit of very weak coupling in which transition-state 
theory fails.  In the weak-coupling limit, reactants cross transition states on Born-
Oppenheimer adiabatic ground-state surfaces but fail to remain on the ground state, crossing 
instead to an excited state, and as a result this limit is often called the non-adiabatic limit.  
Equation (2) (with 1κ = ) and Eqn. (1) describe the transition-state theory results and the 
weak coupling results, respectively [4].  Both equations appear simple in that the shared 
quantum charge density does not need to be explicitly manifested and hence Levich and 
Dogonadze do not pursue the role of charge delocalization in their works.  However, a 
different approach to adiabatic electron transfer theory had been introduced earlier by Hush 
[19, 20] that instead takes the quantum delocalization of charge as the central qualitative 
variable depicting electron transfer processes.  Its use provides a simple conceptual link 
between the two analytically solvable cases considered by Levich and Doganadze. 

In this article, we consider the physical insight into the Levich-Dogonadze equation 
that can be gained using Hush’s approach, utilizing modern interpretations of key concepts 
not available to 1950’s researchers.  While all methods for the calculation of rate constants 
using first-principles electronic-structure approaches are, by necessity, based on adiabatic 
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electron-transfer theory, how electron-transfer processes relate to general chemical reactions, 
as well as to general non-adiabatic processes, is here of central concern. 

ADIABATIC ELECTRON-TRANSFER THEORY 

Adiabatic electron-transfer theory was introduced by Hush in 1956 [19, 20].  It flows directly 
from the general chemical kinetics models constructed using diabatic descriptions of 
reactants and products developed in the 1920’s-30’s [23-29].  Today diabatic models are in 
extremely widespread use for the qualitative and quantitative description of all types of 
processes throughout biochemistry, chemistry, and nanotechnology [30].  However, the 
success achieved when applied to electron-transfer problems was outstanding, allowing 
extremely diverse properties such as geometries, vibrational spectra, electronic spectra, 
electron-spin-resonance spectra, Stark spectra, rate constants, redox potentials, etc., all to be 
interpreted using the core model parameters 0, , ,  and J Gλ ω ∆ [30-32].  How to extend such 
simple analysis to general chemical reactions has just been determined [30], demonstrating 
applications including: understanding aromaticity, determining why it is that the chemistry of 
the second row of the periodic table is so different to that of the first row [33], understanding 
general non-adiabatic reactions [22], and determining design principles for chemical quantum 
qubits for use in quantum information processing [34, 35]. 

 The centerpiece of adiabatic electron-transfer theory is that the electronic coupling J 
connects the uncoupled diabatic reactant and product potential-energy surfaces to make 
adiabatic surfaces with gradually changing properties.  Initially, the electron-transfer problem 
is expressed in a donor (reactant) and acceptor (product) diabatic basis { }D A,ψ ψ  as 
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Here, ( )DV Q and ( )AV Q  are the donor and acceptor potential-energy surfaces, respectively, 
expressed as a function of a dimensionless normal coordinate Q defined such that Q = 1 
corresponds to a displacement of one zero-point length /ω  in the direction of nuclear 
motion associated with the electron transfer.   Also, T is the nuclear kinetic-energy operator, 

2 2( / 2) /T Qω= − ∂ ∂
, and mQ± specifies the equilibrium geometries of non-interacting 

donor and acceptor species.  Some example adiabatic surfaces are shown in Figure 2, 
obtained using the Born-Oppenheimer approximation [36-38] to diagonalize H 
parametrically at each value of the nuclear coordinate Q.  While early diabatic models 
focused on bond dissociation [23-28] and often used coupled Morse oscillators, the harmonic 
surfaces depicted here were introduced to simplify the analysis of oxidation-reduction 
processes [29] and soon became widely applied [1, 2, 7, 12-14, 19].  The diabatic description 
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in Eqn. (7) is simple and intuitive, facilitating Levich and Doganodze’s description [1-4] of 
electron transfer as an “ion to ion” process driven by the coupling J. 

Diagonalization of the linearly-coupled harmonic-oscillator model depicted in Eqn. (7) 
produces two adiabatic surfaces ( )Qε± , as shown in Fig. 2., where{Hush, 1980 #319}  
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The corresponding adiabatic wavefunctions { },ψ ψ− +  are expressed in terms of the 

eigenvectors of H as 
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where{Hush, 1980 #319} 
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Electron-transfer reactions involve the transfer of charge from the donor to the acceptor, and 
2( )b Q  tells the fraction of that charge transferred at each intermediate nuclear geometry as 

the reaction proceeds, whilst 2 ( )a Q  tells the fraction retained.  The above steps are common 
to the electron-transfer approaches both of Levich and Dogonadze [1-4] and of Hush [19, 20], 
differing significantly from other approaches [12, 40] suggested at the time.  From this point, 
Levich and Dogonadze applied approximations to deduce Eqns. (1) and (2) (with 1κ = ).    

 Hush, however, focused on the general nature of electron transfer.  From Eqns. (9)-

(11), the fraction of charge transferred at the crossing of the diabatic states is 2 ( )xb Q , which 
will be close to the fraction transferred at any transition state.  As for all chemical reactions, 
the fraction of charge transferred at the transition state is critical for the understanding of 
intermolecular interactions with neighbouring solvent, biological, or internal atomic 
structures [41-45].  Modern recommendations for computational schemes to deduce the 
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critical parameters 0G∆ , ‡G∆ , and J  often involve calculations with implicit or explicit 

solvent performed at the geometries of both the adiabatic minima and the crossover point xQ .  
Calculations performed at xQ explicitly manifest the charge transferred at the crossing point 

and hence provide optimal evaluation of ‡G∆  [46]. 

Four classic example systems described by adiabatic electron-transfer theory are 
shown in the Fig. 2: two with weak coupling ( 2 / 1J λ  ), typical of non-adiabatic electron-

transfer processes in the “inverted” ( 0G λ∆ > ) [1, 5, 7, 47] and “normal” ( 0G λ∆ < ) [19] 

regions; one with intermediate coupling in the normal region, typical of applications of 
transition-state theory; and one with strong coupling [48, 49], typical of delocalized 
“resonance” interactions such as that between the Kekulé structures of benzene [30].  A key 
feature is that the adiabatic surfaces change slowly in nature between reactants and products, 
avoiding the unphysical discontinuous changes in character central to non-adiabatic electron-
transfer approaches.  In 1932, London showed that this slow change in character was critical 
to system properties [24].  The process is illustrated in Fig. 3 and can be quantified through 
the introduction of the cusp diameter cQ  [22] 
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On the left-hand side of the figure, donor character dominates the ground adiabatic surface so 
that 2a , the fraction of donor character, is near 1, falling continuously to near 0 on the right-
hand side.  The main diagrams in Fig. 3 focus on the region near the transition state where the 
ground-state character changes quickly, whilst the zoomed-out insert presents a broader 
perspective.  The derivatives 2d / da Q  and 2 2 2d / da Q  are shown in the figure, with cQ
defined as the distance between the minimum and maximum points in the second-derivative 
plot. 

In the limit of weak coupling, the cusp diameter becomes very small, meaning that 
adiabatic transition-states (in the normal regime) become extremely sharp with associated 
extremely high imaginary barrier frequencies.  However, when the coupling is large the cusp 
diameter can exceed the geometry difference between the “reactants” and “products”, giving 
rise to a single ground-state structure, e.g., as is observed for benzene instead of one of the 
conceptualized Kekulé “reactant” and “product” structures.  Adiabatic electron-transfer 
theory is therefore very broad in its applicability to chemical processes [30]. 

 cQ  is called the “cusp” diameter as, in the limit of 0J → , a discontinuous cusp 
between reactants and products is produced, providing an example of a pitchfork-bifurcation 
cusp catastrophe [50-53].  The mathematics of such systems is in general complex, with  
chaos setting in as dynamics near a cusp is investigated.  This chaos prevents simple 
approaches, using for instance perturbation theory, from describing the dynamics, with 
profound consequences for the understanding of the breakdown of the Born-Oppenheimer 
approximation [22].  As 0J → , the two adiabatic potential-energy surfaces become 



7 
 

degenerate and, when multiple nuclear coordinates are involved, a conical intersection seam 
is encountered.  Equation (1) derived by Levich and Dogonadze therefore represents a 
significant result pertaining to cusp catastrophes.  Hence the cusp diameter must play a 
significant role in providing physical insight for this equation.  This applies to not just 
electron-transfer theory but also to general processes involving conical intersections as 
reactions typically proceed around them instead of through them and hence access finite 
coupling J [54].  Its significance is most clearly seen through the nature of the Pseudo-Jahn-
Teller effect model of chemical reactivity [49, 55, 56]. 

FAILURE OF THE BORN-OPPENHEIMER APPROXIMATION 

The Born-Oppenheimer approximation used in obtaining Eqn. (8) neglects the effects of the 
nuclear momentum and kinetic energy operators on the electronic wavefunctions, allowing 
description as functions of geometry only.  Its errors scale naively as the quarter root of the 
ratio of the electronic and nuclear masses [36], something akin to 1/2 2 2 1/4( ) / (4 )Jω λ+

.  
Equation (6) can be rewritten exactly [22, 37, 38] in the Born-Oppenheimer basis 

{ },ψ ψ− +  as 
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identifying [22] three correction terms to the Born-Oppenheimer approximation 
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as the momentum (or first derivative) correction 
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the diagonal correction  

 ( )21( ) ( )
2

DC FDH Q P Q
ω

D = D
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 , (16) 

shown graphically in Fig. 3, and the kinetic energy (or second derivative) correction 

 ( )22( ) ( )SD FDx

c

Q QH Q P Q
Qω
−

D = D


 . (17) 

While the diabatic description of Eqn. (7) is a simple and intuitive one focusing on the 
intrinsic properties of the donor and acceptor chemical species and the coupling between 
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them, the adiabatic representation Eqns. (13)-(16) present the same information in a complex 
form, with ( )Qε±  (Eqn. (8)) and cQ  (Eqn. (12)) implicitly describing the effects of the 
coupling J.  As 0J → , Eqn. (7) produces simple physically intuitive solutions whilst ( )Qε±  
develop a discontinuous cusp and, as also 0cQ → , the Born-Oppenheimer corrections 

( )FDP QD , ( )SDH QD , and ( )DCH QD  grow unboundedly large. 

The inter-relationships between the different Born-Oppenheimer corrections evident 
in Eqns. (16)-(17) are examples of those known when more than one nuclear motion is 
included [57-60].  Noting that the Born-Oppenheimer approximation largely works well and 
that the diagonal and second-derivative corrections enter as the square of the first-derivative 
correction, it is tempting to assume that the first-derivative correction is more important and 
therefore that the others can be neglected.  However, the chaotic nature of dynamics near a 
cusp means that this is not so [50-53].  Indeed, for a wide range of spectroscopic and kinetic 
properties we find, using full quantum solution to the associated nuclear dynamics, that there 
is no region of the parameter space of Eqn. (7) for which including only the first-derivative 
correction produces qualitatively realistic results for Born-Oppenheimer breakdown [22].  
Nevertheless, this assumption is widely used in non-adiabatic dynamics calculations.  Much 
effort is currently being spent in developing efficient methods for evaluating the diagonal 
correction [37, 61-90] and the second-derivative correction [58, 91, 92] for use in high-level 
quantum dynamics calculations of kinetics, thermodynamics, and spectroscopy. 

In contrast, there are problems for which use of only the diagonal correction leads to 
realistic descriptions of Born-Oppenheimer breakdown [22].  Such problems often involve 
the region of the ground-state minimum-energy geometry and eventuate because the diagonal 
correction applies independent of the energy gap between the ground-state and excited-state 
Born-Oppenheimer surfaces, whereas the first-derivative and second-derivative corrections 
couple these states together and therefore fall off additionally as the energy gap increases.  
The diagonal correction term when added to the Born-Oppenheimer potential-energy surfaces 
produces what are known as Born-Huang adiabatic potential-energy surfaces [37, 38] 

 ( ) ( ) ( )BH DCQ Q H Qε ε± ±= + D  . (18) 

Figure 2 shows these surfaces in addition to the usual Born-Oppenheimer ones.  The effect of 
the diagonal correction (see Eqns. (15) and (16)) is to introduce a spike (see Fig. 3) at the 
location of the crossing of the original diabatic surfaces of height 

 ( )‡
2max

( )
8

DC

c
G H Q

Q
ω

DD = D =


 . (19) 

To a good approximation, a key effect of the diagonal correction is to increase the activation 
energy ‡G∆  by this amount.  When this term is large, the nuclei move too fast to allow the 
electrons to respond, trapping reactants in their initial diabatic (donor) state. 
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 Failure of traditional Born-Oppenheimer-based transition-state theory (Eqn. (2) with 
κ =1) to describe electron-transfer processes can therefore be interpreted, not so much as a 
failure of transition-state theory itself, but rather a failure caused by the use of the Born-
Oppenheimer ground-state barrier height ‡G∆  rather than the Born-Huang value 

‡ ‡G G∆ + ∆∆ .  The situation is not quite that simple, however, as the spike caused by the 

diagonal correction can be both very high ( 21/ cQ∝  ) and very narrow (width cQ∝ ) and 
hence nuclear tunnelling through the Born-Huang ground-state barrier must also be taken 
into account, adding a significant nuclear quantum effect.   

When nuclear tunnelling through the ground-state potential-energy barrier is included 
into transition-state theory, a simple description of the significance of the diagonal correction 
can be made.  Reactions in the inverted region are often classified as “non-adiabatic” as a 
radiationless transition is required to convert reactants to products, with the reactants and 
products described by different Born-Oppenheimer potential-energy surfaces.  One is then 
concerned with the rate constants of surface-hopping reactions induced by ( )FDP QD and 

( )SDH QD .  In the Born-Huang description of this scenario, mostly the point of inflection 
manifested in Fig. 2 for the inverted reaction disappears and is replaced by an adiabatic 
transition state linking reactants to products.  The diagonal correction blocks electron-transfer 
by creating a high barrier, but the rate does not decrease exponentially with the barrier height 
as classical transition-state theory predicts because the nuclear tunnelling through the 
increasingly narrow barrier leads to only power-law scaling.  In this way the critical features 
of the Levich-Dogonadze equation are produced, without the need to involve the second 
adiabatic surface.  Many reactions deemed “non-adiabatic” with regard to Born-Oppenheimer 
surfaces are therefore “adiabatic” with regard to Born-Huang surfaces.  Quantitative 
understanding, including the full derivation of the Levich-Dogonadze equation, requires the 
inclusion of the surface hopping between the Born-Huang description, however [22]. 

UNDERSTANDING THE LEVICH-DONONATZE EQUATION 

All of these factors are incorporated into Eqn. (1) for the rate of electron-transfer reactions in 
the weak-coupling limit.  It can simply be rewritten as 
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3/2 2 exp
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Gk Q
k T k Tβ β
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  −∆
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identifying the transmission factor κ  as 
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3/2 2
cQ

k Tβ

λkπ
 

=   
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 . (21) 

Hence the electron-transfer rate scales simply with the square of the cusp diameter- the 
sharper the cusp, the slower the rate.  Using Eqn. (19), this could be written in terms of the 
key properties of the ground-state Born-Huang adiabatic potential-energy surface as 
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For chemical processes ranging from aromaticity through traditional reactions to fast 
electron-transfer processes pertinent to chemical and technological applications (0.01 <
2 /J λ  < 10 and 0.003 < 2 2 1/2/ (4 )Jω λ+

 < 1), cQ  ranges over 6 orders of magnitude 

[22], increasing to 10 orders if weak electron-transfer processes in biology and 
photochemical charge recombination [93] are considered.  Hence ‡G∆∆  can vary by over 20 
orders of magnitude, providing an important descriptor.  

 In practical applications of the Levich-Dogonadze equation, care must always be 
taken to assure that the parameters used generate 1κ < , but this and various other key criteria 
are often neglected based on an empirical ansatz that many order-of-magnitude errors in its 
use typically cancel each other out [94, 95].  As κ increases towards 1, the weak-coupling 
limit no longer applies but instead the Born-Oppenheimer approximation holds and 
traditional transition-state theory works.  From Eqn. (22), using typical values of λ  of  0.25 
to 1 eV at room temperature, 1κ <  requires 

 0.15 to 0.3cQ <  . (23) 

However, we have previously observed empirically [22] that the Born-Oppenheimer 
approximation holds well whenever the diagonal correction maximum ‡G∆∆  is less than one 
vibrational quantum in height, requiring 

 1/28 0.35cQ −> ≈  . (24) 

Hence the Levich-Dogonadze equation provides another example of general aspects of the 
breakdown of the Born-Oppenheimer approximation. 

 Electron transfer in the weak coupling limit, as depicted by the Levich-Dogonadze 
equation, is usually termed a “non-adiabatic” process as it cannot be described using a single 
potential-energy surface within the Born-Oppenheimer adiabatic approximation.  In practical 
calculations, both surfaces are usually included and coupled using the first-derivative non-
adiabatic coupling operator.  However, in numerical simulations [22], we find this 
approximation to be qualitatively useful in no region of the parameter space of the model.  
Instead, tunnelling dynamics on the single Born-Huang adiabatic ground-state potential-
energy surface is found to mostly give results in general agreement with the Levich-
Dononatze equation [22].  While accurate solution of the electron-transfer problem requires 
full inclusion of all three corrections to the Born-Oppenheimer equation [22], Eqn. (22) 
implies an importance for the diagonal correction as it shows that the Levich-Dogonadze 
equation can be written explicitly in terms of the primary quantities of the Born-Huang 
surfaces.  Taking a very simplistic view and treating the diagonal correction as adding a 
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rectangular barrier of height ‡G∆∆  and width cQ to the ground-state surface, the standard 
expression for nuclear barrier tunnelling at energy E below the barrier becomes 

 

1
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2
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2 ( )
1 sinh
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cm G E QG
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−
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  (25) 

and leads to ‡1/ Gκ ∝ ∆∆  at very low energies, consistent with Eqn. (22). 

 Another significant connection is that adiabatic electron-transfer theory allows for 
photoinduced electron-transfer processes to be described as their occurrence stems directly 
from the adiabatic nature of the thermally activated electron-transfer processes.  This led to 
the development by Hush of the theory of intervalence spectroscopy [96].  The band peak, 
intensity, and width information from weak intervalence transitions associated with non-
adiabatic thermal processes can be interpreted to determine key properties such as the 
electronic coupling and reorganization energy that can then be used to interpret the observed 
ground-state rate constants [6, 96, 97].  Key early results [96] for the non-adiabatic regime in 
which the intervalence transitions are weak include 

 

h
MJ

eR
eR

λ ν

λ

µ

≈
−

≈

∆ ≈

  (26) 

where ν  is the average absorption frequency (typically close to that of the absorption 
maximum) of the intervalence band, M its transition moment, µ∆  the dipole moment change 
induced by the transition, and R  the effective distance through which the electron is 
transferred, 

 2 2 2 2( ) 4e R Mµ= ∆ +  . (27) 

However, in general [98] for arbitrary values of the parameters it is true that 

 MJ h
eR

ν−
=  , (28) 

whilst  

 hλ ν=   (29) 

for all symmetric reactions ( 0 0G∆ = ) in double wells ( 2 / 1J λ < )  (alternatively, 2h Jν =  

in all symmetric delocalized situations whilst M eR= ) [30].  Other general results are also 
known [30, 98-100].  Of particular significance is the modern re-invention of Stark 
spectroscopy by Steven Boxer [45, 101-104], developing experimental methods for directly 
measuring µ∆  in a wide range of chemical and biochemical electron-transfer systems.  These 
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advances form the basis of the Generalized Mulliken-Hush method introduced by Cave and 
Newton for surface diabatization [105].  Nevertheless, in the weak-coupling limit, inserting 
Eqn. (26) into Eqn. (12) gives a simple expression for the cusp diameter in terms of easily 
determinable geometric and spectroscopic properties: 

 2c m
MQ Q
m

=
∆

 . (30) 

Levich and Dogonadze’s transmission coefficient can then be rewritten in terms of direct 
experimental observables as 

 
1/2 2 2

3/2
24 mM Qh

k Tβ

νkπ
m

 
=    ∆ 

 . (31) 

Also, the exponential factor in the Levich-Dogonadze equation can be simply 
understood in terms of the amount of charge transferred from donor to acceptor adiabatically 
at the transition state [19].  In general [12, 19], the activation energy (Eqn. (3)) can be 
expressed without approximation in the form  

 ‡ 2G α λ∆ =   (32) 

where α  is the Tafel coefficient, deduced by Hush [19, 20] to be 

 01 1
2

G
α

λ
∆ = + 

 
 . (33) 

In the weak coupling limit for systems with 0G λ∆ 0
 appropriate for electrochemical 

processes with small overpotentials, the Tafel coefficient becomes ‡ 2( )xq b Qα ≈ = .  Hence 

in this regime α  is usually interpreted as the charge ‡q transferred at the geometry of the 
transition state [19, 20, 106].  Naively, in electrochemical situations 1/ 2α =  had been 
expected, and understanding its deviation with increasing overpotential through Eqn. (33) 
was a significant advance.  These features were first highlighted by Hush in 1956 at the 
Moscow Conference of the Russian Electrochemical Society chaired by A. N. Frumkin [20].  
Expressed in the wider context of chemical reaction dynamics (as initially envisaged by 
London [23]), Eqn. (33) is an expression of the Hammond–Leffler postulate [107, 108], with 
the cusp diameter cQ  quantifying key variables in the revealing Reaction Force model of 
chemical reactivity [109-112]. 

More complex is the physical interpretation of the Tafel coefficient α for non-
electrochemical situations like the “inverted” region in which 0 / 1G λ∆ > , making α  either 

< 0 or else >1 (Eqn. (33)), both unphysical results for the charge density at the crossover 
point.  The Stark effect is induced by applying an external electric field F to an electron 



13 
 

transfer process is which the total system dipole change is given in full form as a vector Δμ .  
The change in free energy of the reaction in the presence of the electric field is simply 

 0 0( )G G∆ = ∆ −F Δμ.F   (34) 

so that the energy at the crossing point of the diabatic surfaces from Eqn. (32) is 

 ‡ 2( ) .G α λ α∆ = −F Δμ F   (35) 

For small free-energy differences ( 0 / 1G λ∆ 0
), αΔμ  can be approximated by ‡q Δμ and is 

just the change in dipole moment between the transition-state structure and the reactants, with 
Eqn. (35) then indicating a linear Stark-effect response.  In general, however, the Stark effect 
generates non-linear responses of system properties to the electric field strength.  As a result, 
large polarizabilities and hyperpolarizabilities, as well as widely varying responses to electric 
fields, can be displayed by electron-transfer systems [98, 113-116].  Hence the physical 
interpretation of the Tafel coefficient is as the charge transferred at the crossover geometry 
in a simplistic model assuming that observed properties respond only linearly to an applied 
electric field [12, 19].  When considering the interaction of systems at the crossover geometry 

with their environment, the actual charge ‡ 2( )xq b Q=  should always be used. 

Combining all of these results together, we see that electron-transfer reactions slow 
down exponentially as the amount of charge transferred at the transition state increases (Eqn. 
(32)), and they slow down with the inverse square of the rate at which the charge actually 
transfers as the crossover region is passed (Eqn. (21)). 

 CONCLUSIONS 

The seminal equation of Levich and Dogonadze has had a profound impact on electron 
transfer theory and hence a large amount of modern biochemistry, chemistry, and 
nanotechnology.  Its origins come from the Landau-Zener perturbation theories [117, 118] as 
summarized in Fermi’s Golden Rule [8] that assume species are isolated and disconnected.  
In reality, the connection is important and we show how their simple and informative 
equations relate to general models of adiabatic and non-adiabatic chemical and spectroscopic 
processes [24, 119].  From the perspective of general adiabatic electron-transfer theory, 
electron-transfer rates are slowed below traditional expectations based on transition-state 
theory as the diagonal correction to the Born-Oppenheimer approximation leads to Born-
Huang adiabatic potential-energy surfaces that contain an unexpected high but narrow spike 
at or near the transition state. Tunnelling through this spike controls the rate of electron-
transfer reactions.  Electron-transfer theory is therefore unified with general expectations 
associated with a pitchfork bifurcation cusp catastrophe and with general properties of Born-
Oppenheimer breakdown.   
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Figure 1.  Properties of the diabatic description (Eqn. (7)) of electron-transfer reactions in the 
limit of very weak coupling. 
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Figure 2.  The top frames show the Born-Oppenheimer adiabatic potential-energy surfaces 
( )Qε±  (ground state solid lines, excited state dashed lines), while the bottom frames show the 

corresponding Born-Huang adiabatic potential-energy surfaces BH ( ) ( ) ( )DCQ Q H Qε ε± ±= + D , 
for situations in the weak-coupling limit (both the “inverted” and “normal” regions), 
adiabatic regime, and delocalized regimes.  In all examples mQ =2 and 8λ ω=  .   
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Figure 3.  The lower curves (and insert) show the potential-energy surfaces for electron 
transfer with 2 /J λ = 1/8, 0 0G∆ = , 8λ ω=   so that cQ =  1/4 and ‡ 2G ω∆∆ =  : dashed 
lines- diabatic donor ( )DV Q  and acceptor ( )AV Q  surfaces (Eqn. (7)), thin solid lines- Born-
Oppenheimer adiabatic surfaces ( )Qε±  (Eqn.(8)), thick solid lines- the diagonal correction to 

the Born-Oppenheimer surfaces ( )DCH QD  (Eqn. (16)).  The upper curves show properties 
coming from the gradual change in the nature of the ground state surface as the transition-
state region is crossed: 2a  (Eqn. (10)) gives the probability that the ground-state is donor-like 
(it changes from ~1 to ~0 as Q increases), with its first and second derivatives also shown. 


