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Abstract: Transition-state spectra are mapped out using generalized adiabatic electron-transfer 
theory.  This simple model depicts diverse chemical properties, from aromaticity, through bound 
reactions such as isomerizations and atom-transfer processes with classic transition states, to 
processes often described as being “non-adiabatic”,  to those in the “inverted” region that become 
slower as they are made more exothermic.  Predictably, the Born-Oppenheimer approximation is 
found inadequate for modelling transition-state spectra in the weak-coupling limit.   In this limit, the 
adiabatic Born-Huang approximation is found to perform much better than non-adiabatic surface-
hopping approaches.  Transition-state spectroscopy is shown to involve significant quantum 
entanglement between electronic and nuclear motion.   

Highlights  

- transition-state spectra are calculated over a wide parameter region  

- spectral and temporal responses may be simple or quite complex 

- surface hopping methods fail to describe spectra usually classified as “non-adiabatic” 

- transition-state spectroscopy embodies quantum entanglement 
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1. Introduction 

 While transition states are involved in most chemical reactions, experimental methods for 
their direct observation remained elusive until the pioneering works of Zewail some 30 years ago 
[1-3].  A sense of the history of this search, the contributions of others, and the very wide ranging 
applicability of the results can be gauged from Polanyi and Zewail’s 1995 review [4].  In modern 
times, this field is often called either “transition-state spectroscopy”, as it involves vibrational and 
electronic spectroscopies performed at geometries near the transition state, or else  
“femtochemistry”,  owing to the small time period during which such geometries are sustained and 
the spectra of interest generated [5-13].  Starting with the initial spectral analysis of Volker, Metiu, 
Almeida, Marcus, and Zewail [14], the conceptual basis of femtochemistry has been seeded in the 
time-dependent understanding of spectroscopy pioneered by Heller [15-17].  Typically wavepackets 
corresponding to experimentally generated initial conditions [18] are followed and analysed, with, 
e.g., works by Tannor [19-25] and by Shapiro [26-32] showing how chemical control can be 
achieved, exploiting the non-ergodic nature of femtochemistry [14, 16, 33-35].  In general, the 
existence and possible role of quantum coherence in this non-ergodic motion remains a critical 
question [36-38]; quantum coherence requires much more than just ordered classical motion as the 
phase difference between quantum wavepackets propagating through equilibrium systems in 
thermal environments must also be maintained, generating quantum entanglement [39].  Not just 
transition states are now studied by also photochemical species existing down to ultrashort 
timescales with wide ranging applications in energy harvesting and catalysis, as revealed, e.g., by 
the works of Kobayashi [40-50]. 

 Not all chemical phenomena involve transition states, however.  Non-radiative transitions 
and avoided crossings also give rise to ultrafast processes and can equally be studied using 
transition-state spectroscopic techniques [51-56].  Such transitions can arise either because the 
coupling between diabatic states goes to zero at a conical intersection, or else because the transition-
state becomes converted into a point of inflection on the potential-energy surface of a highly 
exothermic (or endothermic) reaction.  The later scenario is called the “inverted” region of chemical 
kinetics [57].  However, transition states can also disappear when tautomers are replaced by 
“delocalized” resonance hybrids [58, 59], providing another asymptotic limit of transition-state 
spectroscopy.   

 The transition-state spectroscopy of non-dissociative reactions, as well as the spectroscopy 
of non-adiabatic, inverted, and delocalized processes, are all describable using the adiabatic electron 
transfer developed by Hush initially to describe electron-transfer and atom-transfer reactions [58-
66].  This approach has recently been generalized to include all types of isomerization processes 
and reactions between bound species, including treatment of aromatic chemistry [67].  
Achievements include the first explanation as to why NH3 is tetrahedral whilst PH3 – BiH3 are 
octahedral [68], understanding properties of Born-Oppenheimer breakdown as well as the 
calculation methods used to examine it [69], and modelling the entanglement developed during 
chemical reactions [70, 71].  Here, we consider key results predicted for transition-state 
spectroscopy and related non-adiabatic processes, focusing on how it relates to other chemical 
spectroscopies. 
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2. The basic model used in adiabatic electron-transfer theory.  

 In its simplest analytical form as applied here, adiabatic electron-transfer theory assumes 
parabolic surfaces and includes only one type of nuclear motion, motion along the reaction 
coordinate.  These assumptions lead to three limitations in its applicability to transition-state 
spectroscopy: i) often motions other than the reaction coordinate are critical to observed phenomena 
[4, 72-74], including continuous motions like solvent friction [75]; ii) conical intersections 
intrinsically involve at least two nuclear coordinates; and iii) many reactions of interest involve 
bimolecular processes that cannot easily be discussed using harmonic potentials.  However, the 
basic model does provide an underlying basis for critical aspects of these more complicated 
phenomena.  In particular, the connection between chemical bonding and transition-state 
spectroscopy [76] can be discussed, and  its inherent quantum density-matrix based description 
links smoothly to modern more thorough approaches [77]. 

2a. Diabatic descriptions of chemical and spectroscopic processes. 

 In its original formulation, adiabatic electron-transfer theory expresses chemical structure, 
thermodynamics, kinetics, and spectroscopy in terms of two coupled harmonic diabatic potential-
energy surfaces.  Diabatic surfaces were first used to discuss transition states, avoided crossings, 
and non-adiabatic reactions by London [78, 79] and quickly applied by Eyring and Polanyi to 
produce the analytical LEP potential-energy surface [80] for general triatomic molecules [81], as 
well as by Horiuti and Polanyi [82] for proton transfer reactions and Wall and Glockler [83] for 
isomerization reactions.  These early approaches were often based on Morse diabatic functions that 
facilitated bond dissociation, with Hush [84] later introducing the simpler harmonic surfaces for 
bound reactions.  The basic equations can be written in three formally equivalent forms, two of 
which are that are diabatic with the other being adiabatic (see later).  Each representation forms 
simple descriptions of some observed phenomena but complex descriptions of other phenomena, 
and while accurate numerical solutions yield the same answers, the degree of difficulty in obtaining 
accurate solutions varies accordingly [67, 69, 85, 86].  For studying chemical kinetics and transition 
states, the most common diabatic representation used was introduced by Hush [60-62, 84] and is 
known as the localized diabatic description, formally represented by the Hamiltonian   
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where ω  is the harmonic vibration frequency, Q  a dimensionless normal coordinate expressed in 
terms of the zero-point length /ω  [87] that describe the reaction coordinate, the equilibrium 
geometries of the reactants and products diabatic surfaces are located at mQ Q= −  and mQ Q= , 

respectively, 
2
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 is the nuclear kinetic energy operator, 2
m2 Qλ ω=  is the reorganization 

energy, 0E  is the energy difference between products and reactants, and J  is the electronic 
coupling (resonance energy) linking the reactant to the product.  The basis set for this Hamiltonian 
are two localized diabatic electronic functions { }R P,ψ ψ .  Diabatic representations are not unique, 
however, and a second commonly used representation is obtained by a 45° rotation [86] of these 
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functions to the delocalized diabatic basis { }G T,ψ ψ with 1/2
G R P[ ] / 2ψ ψ ψ= − and 

1/2
T R P( ) / 2ψ ψ ψ= + , producing 

 

2 0 0

20 0

2 2 2

2
2 2 2

E ET Q Q

E EQ T Q J

ω α

ωα

 + + − 
=  
 − + + +  

DH





  (2) 

where mQα ω=   is a linear vibronic-coupling constant.  Expressed in this form, adiabatic electron-
transfer theory is often called the pseudo Jahn-Teller effect [88], providing a traditional way for 
considering molecular spectroscopy.  The labels G and T stand for the ground state and its “twin” 
state and describe diabatic spectroscopic states rather than reactants or products, the type of labels 
usually applied in considering aromatic and other spectroscopies.  The twin state of the ground state 
is an excited state that has properties directly related to those of the ground state- knowing one state 
is tantamount to knowing the other.  This concept was first introduced by Shaik [89-93] but he 
thought the twin state to always by a state formed by single excitation from the ground state.  
Indeed, such singly excited states are the twin states for electron transfer problems, forming the 
basis of intervalence charge-transfer (IVCT) spectroscopy [64], but in general the twin state is 
actually the state of highest–possible excitation amongst the frontier orbitals [67].  Recognizing the 
actual nature of the twin state, and how other states like single-excitation states relate to it and to the 
ground state, allows adiabatic electron-transfer theory to be immediately generalized to 
isomerization reactions and aromatic process modelling, completing the vision of quantum 
chemistry pioneers like London, Eyring, and Polanyi.   
 
2b. Adiabatic representation. 
 
 Both diabatic descriptions lead without approximation to the same adiabatic description of the 
chemical and spectroscopic properties of the system. This is obtained by applying the Born-
Oppenheimer transformation to either LH  or DH , diagonalizing these at each individual nuclear 
coordinate Q  to create [69, 94, 95]  
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where ( )Qε−  and ( )Qε+  are the eigenvalues [59] of LH  and DH  
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and the three correction terms to the Born-Oppenheimer approximation to Eqn. (3) [79, 94, 95 , 96, 
97] 
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are [69] the momentum (or first derivative) correction 
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the diagonal correction  

 ( )21( ) ( )
2

DC FDH Q P Q
ω

D = D


 , (7) 

and the kinetic energy (or second derivative) correction 

 ( )2x

c

2( ) ( )SD FDQ QH Q P Q
Qω
−

D = D


 , (8) 

where xQ  is the coordinate of intersection of the localized diabatic surfaces [61, 62] 
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 gives the Born-Oppenheimer cusp diameter cQ  [69].  The electronic basis set { },ψ ψ− +  used 

to express BOH is obtained from the eigenvectors of LH  (or else an equivalent expression obtained 
by diagonalizing DH ) as 
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where [59] 

 

0

2
1/22 2

0

1( ) , and
2

22

m

m

E Q
Qa Q

E Q J
Q

λ

λ λ

−
= +

     − +       

  (12) 

 

0

2 2
1/22 2

0

1( ) 1 ( )
2

22

m

m

E Q
Qb Q a Q

E Q J
Q

λ

λ λ

−
= − = −

     − +       

 . (13) 

The coefficients a  and b  are used to specify the density matrix of the system, 2( )b Q  specifies the 

product component of the adiabatic state at each nuclear coordinate, with 2
x( )b Q  approximating 
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the product character of the transition state [61, 62, 79, 97].  The cusp diameter is so named as 
transformation of the diabatic Hamiltonians into the adiabatic basis introduces a pitchfork-
bifurcation cusp catastrophe [98-101] that manifests derivative discontinuities in ( )Qε±  whenever 

0J = .  For finite J , the nature of the lower surface changes from largely reactant-like to largely 
product-like when the coordinates change by cQ  near the crossover point xQ [61, 62, 79, 97].  
During this changeover, the transition-state region is crossed in a process well recognized in the 
Reaction Force model of chemical reactivity [102-105].  The emphasis on the crossover region as 
the critical element of general electron-transfer processes sets adiabatic electron-transfer theory 
apart from its alternative instantaneous-transition alternatives [106], focusing on the properties of 
the transition region and the charged transferred at all points along the reaction coordinate, allowing 
for Zewail’s observation of transition-state spectroscopy.  

2c.  Occurrence of a transition state on the lower Born-Oppenheimer surface. 

 The lower Born-Oppenheimer adiabatic surface ( )Qε−  shows a transition state whenever 
[69] 
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where 2 2 1/2(4 )E J λ∆ = +  is the electronic energy gap.  In the weak-coupling limit of 2 / 1J λ  , 

this reduces to 

 0E λ<   (15) 

and is referred to the normal region of chemical kinetics; when no transition state exists it is 
referred to as being the inverted region, an important scenario championed by Marcus [57, 106].   
When there exists a transition state, the barrier height in the weak-coupling limit be approximated 
by the energy of the localized diabatic states at their crossing point xQ Q=  as [61, 107] 
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a quantity also taken to be indicative of system properties even in the inverted region and treated if 
indeed a transition state did exist.  For general symmetric reactions with 0E∆ = , transition states 
exist whenever [58, 59, 108] 
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This is known as the localized regime, with the alternative being the delocalized regime.  
Resonance stabilized aromatic molecules like benzene are examples of systems in the delocalized 
regime, with its hypothetical Kekulé “reactant” and “product” structures not appearing as local 
minima on ( )Qε−  [67].  In the localized regime the barrier height is given by [69] 
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The parameter space over the whole model in which ( )Qε−  shows a transition state (Eqn. (14)) is 
shown in Fig. 1.  The barrier height is in general close to [69] 
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2d.  The Born-Huang adiabatic approximation. 

 The Born-Oppenheimer approximation Eqn. (5) is not the only way to simplify Eqn. (3) into 
an adiabatic form, an alternative being the Born-Huang approximation  [79, 94, 95 , 96, 97] 
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Here, the diagonal correction ( )DCH QD  to the Born-Oppenheimer approximation from Eqn. (7) is 

retained whilst the non-adiabatic coupling terms ( )FDP QD  and ( )SDH QD  that couple the ground 
and excited adiabatic states remain neglected.  From Eqns. (6)-(7), the effect of the diagonal 
correction is to add within the intersection region at xQ Q= a spike of width cQ  and height 
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in parallel to both Born-Oppenheimer surfaces.  In the delocalized region its contribution is 

negligible as cQ  becomes wider than the length scale of chemical interest and †E∆∆  becomes 
much less than both the electronic and vibrational energy scales of the system.  However, in the 
weak-coupling limit the DC spike becomes much higher than the energy ‡E∆  at the crossover point.  
As a result, the lower Born-Huang adiabatic surface almost always manifests a transition state, 
making Zewail’s concept of transition-state spectroscopy directly relevant to most electron-transfer 
reactions performed in the inverted region. 

2e.  Failure of the Born-Oppenheimer approximation. 

Using the Born-Oppenheimer description, processes in the inverted region are usually 
described as being non-adiabatic as they involve radiationless transitions between the two different 
potential-energy surfaces.  The reactant and product surfaces do not intersect and so there is no 
transition state available to facilitate the reaction.  Typically, however, use of the alternate Born-
Huang adiabatic description typically re-creates a transition state, with the reaction then describable 
as occurring via nuclear tunneling through the high but narrow DC spike [69], facilitating electron 
transfer.   In the weak-coupling limit, failure of transition-state theory based on the Born-
Oppenheimer approximation to describe electron-transfer reactions is usually expressed in terms of 
the Levich-Dogonadze rate equation [109-112] 
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where κ  is called the transmission coefficient,  
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The maximum physically meaningful value for κ is unity, with perceived values greater than this 
indicating that the weak-coupling approximation used by Levich and Dogonzdze no longer holds.  
When κ  = 1, Born-Oppenheimer-based transition state theory is adequate to describe the reaction.  
However, instead of viewing κ as specifying a radiationless transition rate between the two 
localized diabatic surfaces or else 1-κ as specifying a radiationless transition rate between the 
Born-Oppenheimer adiabatic surfaces, similar results can be obtained using the Born-Huang 
approximation [69] for the ground state without the need to include the second surface.    

 A common method used for understanding radiationless transitions in general chemical 
reactions involves simulating surface hopping between Born-Oppenheimer surfaces [113, 114], 
driven typically by only the non-adiabatic coupling term ( )FDP QD .  In this approach, the diagonal 
correction is usually ignored as transition rates depend on the relative slopes of the two surfaces, a 
quantity which ( )DCH QD  does not modify.  However, application of only the Born-Huang 
approximation usually works much better than this approach [69].  Surface hopping based on 

( )FDP QD  is naively appealing as this correction appears at lower order in c1/ Q  than does 

( )DCH QD  or ( )SDH QD . ( )DCH QD  does not change relative slopes but it does control what 
nuclear configurations can be accessed near conical intersections and so actually does have a 
profound effect.  Further, the chaotic behavior of dynamics near a cusp means that perturbation 
treatments are inappropriate [61, 62, 79, 97] and hence all three Born-Oppenheimer correction 
terms must be applied in accurate calculations [69]. 

3.  Applications based on accurate numerical solutions of spectroscopic properties 

 We investigate the spectra expected for electron-transfer processes happening near the 
transition state.  A total of 16 examples from the model parameter space are considered, marked (a)-
(p) on Fig. 1.  These are ran at values of 2 /J λ  = 0.03 (weak coupling typical of electron transfer), 
0.3 (intermediate coupling with orthodox transition states), 0.8 (borderline delocalized akin to 
ammonia inversion and the Creutz-Taube ion [67]), and 1.5 (delocalized).  Also used are 0 /E E∆  = 
0.25 (endothermic reaction), 0 (symmetric reaction), -0.25 (exothermic reaction) and -1.1 (inverted-
regime highly exothermic reaction). The model contains 4 parameters J , λ , 0E , and ω  but one of 
these can always be thought of as simply an energy scaling.  We use 2 /J λ  and 0 /E E∆ as 
characteristic parameters, and a third can be expressed as / Eω ∆  which, in these trajectories, is 
constrained to be 0.1 throughout.  As / Eω ∆  approaches 1 it is likely that Jahn-Teller effects 
associated with conical intersections will contribute significantly to observed processes, making any 
one-dimensional model inappropriate.  Smaller values than 0.1 represent systems with deep wells 
supporting many bound vibrations, but no qualitative changes in behaviour are expected and so this 
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dimension is not explored herein.  Basic properties of the 16 systems considered are summarized in 
Table 1, including the activation energy (using the crossover energy approximation Eqn. (16) in the 
inverted regime), the Born-Huang spike height (Eqn. (21)) and the cusp diameter (Eqn. (10)). 

3a.  Representation of the dipole operator specifying electronic and vibrational transitions. 

 To determine spectra, the electric dipole operator of the system needs to be specified for 
each electronic basis set.  In the localized diabatic basis, the dipole operator is assumed to be 
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0 12
R − 

=  
 

LM   (24) 

where R  is the distance through which the active electrons shift during the reaction, a form that is 
highly appropriate to electron-transfer problems as this is then just the distance through which the 
electron is transferred [86, 115-117].  In the delocalized diabatic basis, this operator becomes  
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 
DM ,  (25) 

a form that is highly appropriate to understanding the intense electronic transitions observed in 
aromatic molecular spectroscopy.  In the Born-Oppenheimer basis, the dipole operator becomes 
coordinate dependent: 
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When applied using the Born-Oppenheimer or Born-Huang approximations, the diagonal elements 
of this matrix generate traditional infrared vibrational spectra and associated (perhaps microwave) 
vibrational tunneling transitions, whilst the off-diagonal terms facilitate Franck-Condon and 
Herzberg-Teller (etc.) electronic transitions. 

All results shown in Fig. 2 and later are fully converged numerically and hence are 
independent of the actual Hamiltonian and corresponding dipole-moment operator used.  However, 
in addition we also show spectra obtained  using the approximation to Eqn. (26): 

 
0 2 ( ) ( )

2 ( ) ( ) 02
a Q b QR

a Q b Q
 
 
 

 . (27) 

The full Hamiltonians all embody mixing between vibrational and electronic motions and so result 
in spectra that can differ somewhat from basic expectations.  Transition-state spectroscopy can also 
investigate low-energy electronic processes of the same order as vibrational energy spacings, 
further confusing the distinction between processes considered to be either primarily electronic or 
primarily nuclear in origin.  As a result, spectral line intensities can simultaneously gain strength 
from both the diagonal elements and the off-diagonal elements of the dipole matrix, with the two 
effects interfering with each other as they sum to give line transition moments.  The approximation 
in Eqn. (26) includes only the electronic transition component to the total intensity, facilitating the 
identification of electronic spectra, vibrational spectra, and any interferences between them.  In Fig. 
2, the total cross-section is shown in blue whilst its electronic component is shown in red, giving the 
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allusion of magenta colouring whenever the electronic and vibrational contributions do not interfere 
and the total spectrum is dominated by just its electronic component. 

3b.  Time-dependent representation of molecular spectra and properties. 

 As the time spent in the vicinity of a transition state is usually limited, time-dependent 
methods provide the natural way for considering transition-state spectroscopy.  In these, initial 
wavepackets (0)ψ  are constructed and their time dependence followed, with the spectra 

calculated from this.  In this way, the spectra depend explicitly on the initial wavepacket chosen.  In 
standard equilibrium spectroscopy, the initial wavepacket is often just the stationery state of the 
system identified as the ground vibrational level of the ground electronic state, though this may be 
thermally weighted if necessary [17].  Here we consider simple wavepackets that would describe 
the ground-state of the diabatic surfaces should they be centred on the diabatic potential minima, 
but their initial positions are chosen depicting wavepacket energies in the vicinity of the transition 
state.  It is possible that in experiments such initial wavepackets could be created from either some 
external spectroscopic process or else following reaction from some initial chemical species. Under 
these initial conditions they are not eigenstate of any potential and hence evolve in time according 
to the time-dependent Schrödinger equation specified by Hamiltonian H expressed in the same 

basis (diabatic or adiabatic) as is the wavepacket itself, making  /( ) (0)i tt eψ ψ−= H  .  In general 

[15-17], the absorption and emission of light associated with the wavepacket’s motion is given as 
the  Fourier transform 

 ( ) ( ) di tc t e tωσ ω
∞

−∞
= ∫   (28) 

of the autocorrelation function  

 / /( ) (0) (0)i t i tc t e eψ ψ−= H HM M   . (29) 

Calculated spectral cross-sections ( )σ ω  are shown for example in Fig. 2, with associated 

absorption spectra proportional to ( )ωσ ω  whilst emission spectra are proportional to 3 ( )ω σ ω− . 

 The origins of transition-state spectra like that show in Fig. 2 can be described in terms of 
the properties of the wavepacket dynamics  ( )tψ  itself, with that corresponding to Fig. 2 shown in 

Figs. 3 and 4 for model scenarios (a)-(h) and (i)-(p), respectively.  Whilst the use of different 
electronic basis states, either diabatic or adiabatic, leads for converged calculations to the same 
wavepacket dynamics and spectra, the different basis sets represent this information in different 
ways and facilitate use of different approximations describing the spectra.  So while Fig. 2 shows 
only spectra calculated using = BOH H (Eqn. (3)), labelled in Figs. 3 and 4 as the “full” calculation 
(FC), the later figures also shows formally equivalent results labelled (L) obtained using the 
localized diabatic Hamiltonian = LH H (Eqn. (1)).  The dynamics expressed in terms of the 
localized diabatic reactant and product surfaces is shown using red and blue colouring to indicate 
how much of the wavepacket is on each diabatic surface at any point in time.  In parallel, the 
composition of the wavepacket projected onto the ground-state and excited-state Born-
Oppenheimer surfaces is shown in green and magenta, respectively.  Here, the initial wavepackets 
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are located purely on the Born-Oppenheimer ground-state surface and are mixtures of the reactant 
and product surfaces, but these natures evolve during the trajectories. 

3c.  Numerical solution method. 

A wide variety of methods are available for evaluating Eqn. (29).  In principle, the dynamics 
can be solved using explicit time-dependent methods that integrate the differential equation 
specified by the time-dependent Schrödinger equation, something that can often be approximated 
accurately by classical or semiclassical means.  In this way solutions can be obtained for large 
systems using full Hamiltonians rather than simple model ones like our Hamiltonians.  However, 
dynamics around conical intersections is intrinsically chaotic and hence converging such 
approaches to the desired accuracy is always difficult, especially in the weak-coupling limit in 
which k gets small.  We use a method that maximizes convergence but is of high cost, as can be 
done typically only for simple model Hamiltonians.  The full details are described in detail 
elsewhere [69].  Basically, a harmonic-oscillator vibrational basis is used for each electronic basis 
state centred at 0Q = .  This is truncated at 256 levels per state, sufficient for all examples 
considered herein to achieve full convergence of even the poorly convergent calculations (required 
computer time proportional to 6

cQ− [69]) performed using the Born-Oppenheimer electronic basis.  
All eigenstates of the appropriate Hamiltonian are then obtained by full matrix diagonalization, 
allowing an analytical representation of the time dependence of the initial wavepacket that gives 
stable solutions throughout chaotic domains.  A mixture of analytically determined and numerically 
evaluated matrix elements is used to construct the Hamiltonians, with no convergence issues arising.   

3d.  Results for trajectories starting in the reactant domain. 

 The example trajectories and spectra previously mentioned shown in Figs. 2-4 were 
obtained from trajectories starting far on the reactant side of the transition state.  Also, the initial 
wavepackets (0)ψ  are constructed on the lower Born-Oppenheimer surface and have the shape of 

the ground-state vibrational wavefunction of each isolated diabatic potential.  In Figs. 3 and 4, the 
wavefunction is sketched on top of the appropriate potential-energy surface(s) at time 0t = , 

/ 3t π ω= ,  /t π ω= , 4 / 3t π ω= , 5 / 3t π ω= , and 2 /t π ω= .  The transition-state region is 
accessed at a time near /π ω , whilst one recurrence of the wavepacket occurs at around time 
2 /π ω .   

 Collected in Table 1 are a variety of properties summarizing key features of the calculated 
dynamics.  The transmission coefficient 2πκ  (Eqn. (22)) indicates the fraction of the wavepacket 
transferred from reactants to products after 1 vibrational period.  When large, this indicates that 
classical transition-state theory is adequate in describing reaction kinetics.  Note, however, that it is 
always short of unity as the quantum wavepackets embodies classical states both slightly above and 
below any classical transition-state barrier, so some degree of non-reaction is always expected.  

Also, πf
+ gives the fraction of the wavepacket transferred to the excited adiabatic state after half of 

a period, crudely indicating the significance of non-adiabatic dynamical processes.  Finally, Table 1 
also includes the quantum entanglements developed between the electronic and nuclear motions 

after one period of vibration, projected onto the localized diabatic states, 2π
LS , as well as onto the 

Born-Oppenheimer electronic states, 2π
BOS .  The projection onto the localized diabatic states is in-
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principle experimentally measurable using spatially resolved detectors and could be utilized in some 
quantum information-processing device [71, 118-120], whilst that revealed in the Born-
Oppenheimer basis provides a unique and sensitive way of understanding the failure of the Born-
Oppenheimer approximation [70]. 

 The calculated spectral densities (a)-(d) in the weak-coupling limit with 2 /J λ  = 0.03 
depict vibrational tunnelling transitions from the reactant well to the product well.  While these 
transitions are nominally considered to be vibrational, because of the electron-vibration coupling, 
these pull the electron with them to facilitate electron transfer if unconsidered factors induce 
decoherence [121].  All states contained in the wavepacket contribute to this tunnelling.  The 
transmission factors are all very low for (a)-(c) (0.03 – 0.04) but the initial wavepacket for (d) 
already has a significant overlap with the product state and so the tabulated measure 2πκ  is poorly 
indicative of reactivity.  Similarly, the other tabulated properties become difficult to interpret and 
henceforth we discuss only (a)-(c).  The quality of the Born-Oppenheimer adiabatic description of 

the reaction can be gauged by the tabulated values of 2π
BOS  which are all very high, indicating that 

the reaction intrinsically involves both adiabatic states not just a single one.  The entanglement 2π
LS  

between the reactant and product states that could be used in a quantum information processor with 
spatial detectors remains very low, however [122], indicating the unsuitability of processes in this 
regime for quantum computing applications. 

 Trajectories (m)-(p) are for scenarios in the delocalized limit (Fig. 1) with 2 /J λ = 1.5.    
All four cases lead to intense electronic spectra (Fig. 2).  A component coming from vibrational 
transitions is also found that grows in relative strength as the reaction becomes more endothermic, 
perhaps reaching a maximum at around 0 /E λ  = 0.25 (case (m)) owing to increasing initial 
wavepacket displacement covering an energy range in which the ground-state surface is highly 
anharmonic.  The symmetric system (n) shows a single line in the electronic spectrum representing 
the origin of the electronic transition, with a weak additional infrared transition coming from the 
mismatch of the wavepacket with the significantly anharmonic ground-state potential.  This 
situation mimics the standard spectroscopy of aromatic molecules.  Of course Franck-Condon 
effects associated with motions other than the reaction coordinate broaden this line into a band 
when multiple nuclear motions are included in calculations. 

 Trajectories (e)-(h) are for typical reactions over transition states and have 2 /J λ = 0.3, 
whilst (i)-(l) are for more unusual reactions over transition states close to the changeover region to 
the delocalized regime (Fig. 1).  Both sets show smoothly varying properties intermediate between 
those of the weak-coupling ((a)-(d)) and delocalized ((m)-(p)) scenarios.  For (e), tunneling spectra 
continue to dominate as in (a), but the anharmonicity introduced by the stronger electronic coupling 
facilitates vibrational transitions also, giving rise to a distorted band.  Electronic transitions become 
important only for the related stronger coupling scenario, (h).  As these reaction become more 
exothermic, the electronic absorption component grows to become dominant, while the tunneling 
transitions disappear to leave only simple vibrational transitions.  The most irregular spectra are 
produced by (h), this being the only case in which interference between vibrational and electronic 
transitions is pronounced.     

  The calculated spectra therefore show a wide range of features that could be observed in 
transition-state spectroscopy, linking smoothly to commonly observed tunneling transitions, 
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infrared transitions, and electronic spectroscopic transitions in appropriate limits.  Figure 5 shows 
the time-domain functions ( )c t  (Eqns. (28)-(29) associated with the total spectra from Fig. 2.  
These also show a very wide range of responses, both regular periodic-looking motion and rather 
irregular chaotic-looking motion.  In these simple calculations in which only one nuclear motion is 
included, quantum coherence of the dynamics is assured.  The consequences of this coherence 
become apparent through looking at the irregular features of the transition-state spectra. 

 In calculations on complex molecules, the Born-Oppenheimer description is often used to 
calculate spectral and chemical properties.  Fig. 3 shows results obtained using this (BO) (Eqn. (5)), 
the Born-Huang approximation (BH) (Eqn. (20)), and the first-derivative approximation (FD) 
typically used as part of surface hopping approaches  

 
( ) ( )

( ) ( )

FD

FD

T Q P Q
Q

P Q T Q
Q

ε

ε

−

+

∂ + D ∂ ≈
∂ D + ∂ 

H  , (30) 

where they are compared to results from the full calculation (FC) obtained using all three Born-
Oppenheimer correction terms.  Significant deviations are found only for systems in the weak-
coupling limit with 2 /J λ  = 0.03, with the Born-Oppenheimer approximation performing very well 
for 2 /J λ = 0.3 and above.   This is because only in the weak-coupling limit does the Born-Huang 
spike height †E∆∆ become appreciable (see Table 1, and Fig 3).  Results performed using the 
adiabatic Born-Huang approximation always outperform those obtained using standard non-
adiabatic surface-hopping approaches. This result is typical of those obtained for many properties 
comparing the BH and FD approaches [69], an exception being that only the FD method can 
manifest entanglement between the Born-Oppenheimer states and so would become advantageous 
for some observed property that is directly dependent on entanglement [70].  Mostly the results 
shown in Fig. 4 indicate that the BH approximation does qualitatively describe transition state 
spectra, and that many processes considered to be “non-adiabatic” using the Born-Oppenheimer 
description are indeed “adiabatic” when using the Born-Huang one.  Nevertheless, accurate 
calculations performed to investigate transition-state spectroscopy in the weak-coupling limit 
should always be performed in a diabatic basis or else must include all three Born-Oppenheimer 
corrections. 

3e.  Results for trajectories starting at the transition state. 

 We also consider the alternate set of trajectories commencing near the transition state, as 
would be produced following fluorescence from the excited-state potential minimum down to the 
ground state.  Spectra analogous to Fig. 2 are shown in Fig. 6, with the trajectories obtained using 
the full calculation in the Born-Oppenheimer basis shown in Fig. 7.  Again a wide mix of 
vibrational and electronic transitions can be produced, with the trends in Fig. (6) having many 
parallels to those in Fig. (2).  For all cases except those with 2 /J λ  = 0.03 in the weak-coupling 
limit, the electronic spectrum contains only a single peak corresponding to the opposite process to 
the emission that created the initial wavepacket.  In the weak coupling case, the electronic 
absorption becomes spread out and too weak to discern amongst the vibrational transitions on the 
ground state.  These transitions grow rapidly in intensity, becoming more strongly allowed than the 
reverse electronic absorption.  The vibrational transitions associated with the transition-state 
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spectroscopy are ordered in the inverted region but chaotic otherwise.  It is clear that all spectra 
contain much detailed information relating to the system properties. 

4. Conclusions 

 Within the scope of the basic one-dimensional generalized adiabatic electron-transfer theory 
model, a wide variety of transition-state spectra and dynamics can be produced.  The model reveals 
how transition-state spectroscopy reduces to standard molecular spectroscopy in the strong-coupling 
delocalized regime, and how it can lead to very complex results for both typical transition states as 
well as for processes in the non-adiabatic and inverted regimes.  Vibrational absorption and 
emission spectra may be very weak, but, throughout the parameter space of the model, they contain 
important information usable to interpret system properties.  Approximate treatments based on 
surface hopping are found always to give poor descriptions of dynamics and spectra evaluated using 
full quantum dynamics, with inclusion in approximate methods of only the typically neglected 
diagonal term without any non-adiabatic coupling typically performing much better than surface 
hoping approaches that ignore it. 
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Table 1.  Properties of the 16 wavepacket trajectories starting in the reactant region, see Figs. 1-
5.a 

Traj. 
2 J
λ

 cQ   
‡E

ω
∆∆


 0E
E∆

 
‡E
ω

∆


b 
elf  2πκ  πf

+   CA
2πS   BO

2πS  

a 0.03 0.07 28 0.25 3.76 0.0001 0.03 0.43 0.07 0.75 
b    0 2.35 0.0002 0.03 0.42 0.08 0.94 
c    -0.25 3.76 0.0004 0.04 0.40 0.10 0.97 
d    -1.1 [0.03] 0.10 0.52 0.47 1.00 0.99 
e 0.3 0.66 0.29 0.25 2.62 0.016 0.52 0.05 0.81 0.28 
f    0 1.17 0.030 0.56 0.03 0.83 0.18 
g    -0.25 2.62 0.079 0.68 0.02 0.87 0.11 
h    -1.1 [0.05] 0.61 0.84 0.05 0.28 0.30 
i 0.8 1.58 0.05 0.25 [3.40] 0.13 0.42 0.002 0.92 0.014 
j    0 0.08 0.36 0.75 0.001 0.89 0.013 
k    -0.25 [0.90] 0.76 0.84 0.001 0.62 0.006 
l    -1.1 [0.33] 0.85 0.69 0.001 0.07 0.011 

m 1.5 2.50 0.02 0.25 [2.92] 0.35 0.28 0.0004 0.88 0.005 
n    0 [1.38] 0.82 0.50 0.0000 0.27 0.001 
o    -0.25 [0.42] 0.88 0.71 0.0002 0.55 0.002 
p    -1.1 [1.34] 0.93 0.60 0.0003 0.12 0.004 

a:  all at / Eω ∆  = 0.1. 
b:  the activation energy if a Born-Oppenheimer transition-state exists, else [] the relative energy  
of the crossover point from Eqn. (16). 
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Fig. 1.  The shaded region indicates when the ground-state Born-Oppenheimer potential-energy 
surface from generalized adiabatic electron-transfer theory displays a double-well potential with a 
transition state.  Marked (a)-(p) are the parameter values used in the 16 quantum wavepacket 
trajectories and spectral simulations used in Figs. 2-7 and Table 1. 

 

Fig. 2.   Spectral profiles for 16 wavepackets (a)-(p) starting on the reactant side at the energy of the 
transition state (if this exists, at the energy of the lower adiabatic surface at the crossover geometry 

xQ  otherwise) from generalized adiabatic electron-transfer theory.  These needs to be scaled by the 
transition frequency to obtain adsorption intensities (positive transition energies) or by the 
frequency cubed to obtain emission intensities (negative transition energies.  Shown in blue are total 
spectral profiles and overlayed in red are their components associated with only the electronic 
transitions between Born-Oppenheimer surfaces. 
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Fig. 3.  Wavepacket dynamics and spectra for scenarios (a)-(h), see Fig. 1 and Table 1, starting in the reaction region.   
The reactant (red) and product (blue) diabatic surfaces are shown, as well as the lower (green) and, if appropriate, upper 
(magenta) Born-Oppenheimer or Born-Huang adiabatic surfaces.  Arrows indicate wavepacket propagation from 

2 4 5 20 3 3 3 3t t t t t t tππππππ    
ω ω ω ω ω ω= → = → = → = → = → = → =  , with wavepacket components coloured 

for each surface used in its description.  The calculation methods used are: L- localized diabatic (crude adiabatic) basis 
states; FC- full calculation using Born-Oppenheimer basis states; BO- Born-Oppenheimer approximation, BH- Born-
Huang approximation; FD- surface-hopping approximation.  Resulting spectra are shown to the left of the trajectories, 
with those for CA and FC being equivalent and are shown over a wider frequency range in Fig. 2.  



23 
 

 

Fig. 4.  Wavepacket dynamics and spectra for scenarios (i)-(p), see Fig. 1 and Table 1, starting in the reaction region.  
The reactant (red) and product (blue) diabatic surfaces are shown, as well as the lower (green) and, if appropriate, upper 
(magenta) Born-Oppenheimer or Born-Huang adiabatic surfaces.  Arrows indicate wavepacket propagation from 

2 4 5 20 3 3 3 3t t t t t t tππππππ    
ω ω ω ω ω ω= → = → = → = → = → = → =  , with wavepacket components coloured 

for each surface used in its description.  L- localized diabatic (crude adiabatic) basis states; FC- full calculation using 
Born-Oppenheimer basis states.  Resulting spectra are shown to the left of the trajectories, with those for CA and FC 
being equivalent and are shown over a wider frequency range in Fig. 2.  
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Fig. 5.  Autocorrelation functions ( )c t  associated with the total spectra shown in Fig. 2, Eqn. (28), 
for wavepackets (a)-(p) starting on the reactant side. 
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Fig. 6.   Spectral profiles for 16 wavepackets (a)-(p) starting at the transition state (if this exists, at 
the energy of the lower adiabatic surface at the crossover geometry xQ  otherwise) from generalized 
adiabatic electron-transfer theory.  These needs to be scaled by the transition frequency to obtain 
adsorption intensities (positive transition energies) or by the frequency cubed to obtain emission 
intensities (negative transition energies).  Shown in blue are total spectral profiles and overlayed in 
red are their components associated with only the electronic transitions between Born-Oppenheimer 
surfaces. 
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Fig. 7.  Wavepacket dynamics and spectra for scenarios (i)-(p), see Fig. 1, starting in the transition-state region.  The 
lower (green) and upper (magenta) Born-Oppenheimer adiabatic surfaces are shown.  Arrows indicate wavepacket 
propagation from 2 4 5 20 3 3 3 3t t t t t t tππππππ    

ω ω ω ω ω ω= → = → = → = → = → = → =   using the full 

calculation in the Born-Oppenheimer basis states.  Resulting spectra are shown to the left of the trajectories and also 
over a wider frequency range in Fig. 6.  
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