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Abstract: The Maxwell-Garnett (MG) effective medium model has a pure resonance controlled 

by volume fraction f, but is usually invalid at high density. I present special 2D structures that 

match quasistatic MG over the entire range 0<f<1, in several regular and semi-regular arrays, 

expanding the applicability of MG. Optimal contours depend on both lattice and fill-factor, 

transforming from circular at low f to nearly polygonal at high f. A key insight is the direct 

relationship between optimal surface polarization and surface position.  Electrodynamic 

calculations underline the effect of constituent permittivity on spatial dispersion and required 

sizes for quasistatic response in various materials. 

 

1. Introduction  

Artificially structured materials enable tuning of material properties beyond the limited choices of single 

constituents, and can be optimized for many functionalities(Torquato et al. 2002). For example, smooth variation 

in effective refractive index enables optimal flow of light for anti-reflection(Poxson et al. 2009) and 

cloaking(Pendry et al. 2006). In metal structures, coupling between light and electrons (plasmon waves) offer 

strong concentration of energy for particle(Miller et al. 2014) and material(Rinnerbauer et al. 2014) absorption. 

Detailed structural optimization of these systems is computationally expensive so simple models for them are very 

attractive. The Maxwell-Garnett (MG) effective medium model(Garnett 1904), widely used for over a century, 

can be intuitively tuned via the average density. However, MG has typically been limited to sparse structures, due 

to near-field coupling between neighboring parts. In this article I optimize rod contours to MG across all fill-

factors for a variety of lattices.  The efficiency of optimization is greatly improved by the realization that the 

optimal contour matches the optimal surface polarization.  Later I discuss the limits of validity of the quasistatic 

MG model, including extensive electrodynamic calculations which confirm that the ratio of period to absolute 

effective reduced wavelength is strongly correlated with the magnitude of electrodynamic effects. 

Maxwell-Garnett model and resonant spectra 

The main property considered in this work is the effective permittivity, which in the quasistatic limit may be 

defined as 
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where )(r  and )(rE  are the space-varying permittivity and electric field respectively.  An effective permeability 

eff may be similarly defined, further yielding effective refractive index effeffeffn  and impedance 

effeffeffZ  / .  In non-magnetic bulk materials the permeability is unity in which case Zn /1 , but this is not 

necessarily true in structured materials.   In recent literature the Bloch phase is often included in the 

homogenization (1), but it is omitted here for several reasons:  the phase is explicitly small, the focus is on 

propagation along the invariant rod axis (no phase delay across the unit cell), and in other directions in lossy 

composites the definition of periodic phase is complex (these important points will be elaborated later).  In the 

quasistatic limit, Eq. (1) can typically be recast in terms of discrete resonances(Bergman 1979): 
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S is the depolarization defining a resonance position, and C is the dipole moment of that resonance.  Once mode 

parameters have been calculated, they can be applied to any number of real materials, even non-conducting 

constituents (in which case the resonances are virtual). Calculation of the full response of arbitrary structures can 

be relatively expensive. While several sophisticated models have been developed (e.g.(Sen and Torquato 1989)), 



 

 

many parameters are required to account for multiple resonances in Eq. (2). In contrast, the MG model has a single 

dipole resonance 

 , (3) 

 , (4) 

but is usually assumed to require a dilute volume fraction f<<1 of ellipsoidal inclusions such as cylinders (L=1/2). 

Relating Eqs. (2)-(4), and considering sum rules(Fuchs and Liu 1976), this model is a pure dipole plasmon 

resonance: C is maximum, and S is maximum for dipoles in isotropic systems. 

It is well known that MG is exactly obeyed at inclusion depolarization L=0 and L=1 (i.e. for laminar geometries 

and for longitudinal polarization of rods), corresponding to the effective-medium bounds.  Instead we will discuss 

the more interesting cases that occur at intermediate inclusion depolarization, e.g. when electric field is transverse 

to infinite rods.  This case, exemplified in Figure 1, is particularly relevant for construction methods that produce 

a thin film of vertically aligned rods, with propagation along the rods (normal to the film).   

 

Figure 1 (Color online): Representative simulated geometry: array of infinitely long rods with permittivity ε, with 

propagation vector k longitudinal to the rod and electric field E in the transverse plane.  

 

It is well-known that this type of geometry allows two general situations where MG is inaccurate, neatly 

summarized in a study of the effect of cylinders (Milton et al. 1981). As fill-factor increases, multimodes are 

excited and increase in strength and density towards percolation(Perrins et al. 1979; Mcphedran and Mckenzie 

1980).  At percolation a continuum of modes is formed, and this persists beyond threshold due to cusps formed 

by the overlap of cylinders (Milton, McPhedran et al. 1981). 

The latter case will not be a significant focus in this work, although some results from the literature are of general 

interest:  in particular the alternative Bruggeman model is more appropriate to this situation. This model was fitted 

to the ellipsometric response of flat (i.e. not pillar) Au square arrays at high fill-factor(De Zuani et al. 2016), 

although suppression of percolation is mainly due to the flat particles (for the appropriate polarization L0) and 

the fitted fill-factor differs significantly from the geometric fill-factor.  The optimization problem for this model 

has been approximately solved using cuspoid particles in a square lattice(Torquato and Hyun 2001). 

In this article the main approach to optimal MG is to suppress multimodes arising from interaction of smooth 

inclusions.  General optimization approaches for extremal properties such as conductivity and/or stiffness have 

been reviewed elsewhere (Bendsøe and Sigmund 1999; de Kruijf et al. 2007; Cadman et al. 2013), but I will 

briefly highlight some relevant studies that demonstrate geometries where multimodes are reduced.  Isotropic 

surfaces on cubic lattices (Zhou et al. 2010) nearly span the range between permittivity bounds, and electrical and 

magnetic properties can also be optimized with more complex geometries (Huang et al. 2012). Multimodes can 

be reduced in arrays of squares(Markel and Schotland 2012), and permittivity of rounded square(Feng and Whites 

2001) and cube(Whites and Feng 2002) arrays is close to MG. The conductivity of punctured sheets is bounded 

above by MG and is closer for hexagonal than triangular holes(Hetherington and Thorpe 1992; Hyun and Torquato 

2000). The spectral reflection edge of metal arrays is controlled by f (Perrins, Mckenzie et al. 1979), and truncated 

square plasmonic crystals(Rinnerbauer, Shen et al. 2014) have better spectral response than simple squares.   None 

of these observations rigorously demonstrate agreement with the single-mode of the MG model, and many of the 

optimization studies rely on expensive optimization of voxel-sampled geometries. 

 

However, it has been noted that  extremal properties are reached when the polarization field is uniform in the 

inclusion (Milton 2002).  Further, in two-dimensions suitable contours can be systematically determined via 
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conformal transformations to periodic slits, which is a Dirichlet problem that can be solved numerically. It was 

also noted how given solutions can be transformed to different lattices but no demonstrations were shown.  Milton 

highlights that Vigdergauz advanced a different conformal approach, mostly in the context of optimal stiffness in 

separate lattices, specifically square (Vigdergauz 1994), rhombic(Vigdergauz 1996), and 

hexagonal/triangular(Vigdergauz 1999).  Unfortunately, the methods as presented are non-trivial to implement 

and it appears that only a few more complex geometries have been attempted on a case-by-case basis.  Here we 

will take an optimization approach, which is relatively straight-forward to apply to semi-regular lattices and is 

perhaps less expensive than other optimizations, and investigate the significance of electrodynamic effects.  

Significance of non-static effects 

In this article, initial exploration is facilitated by the assumption that classical quasistatics is sufficient for 

optimizing the fundamental dipole response in these arrays. As will be demonstrated, this is accurate when all 

physical sizes are small compared to the wavelength and skin depth including the effective medium itself.  The 

quasistatic assumption used here is incompatible with perfect conduction assumed in some literature – the 

applicability and implications of these assumptions will be further discussed in this section.  Sizes must also be 

large compared to quantum smearing lengths – the total effect of electrodynamic and quantum damping can be 

minimized(Blaber et al. 2009), but high-quality electron conductors are somewhat susceptible.  Such calculations 

are difficult for arbitrary geometries and only classical effects will be considered here.   

Electrodynamic effects (such as radiation damping, magneto-electric coupling, non-locality, spatial dispersion, 

and diffraction) tend to increase with size.  However, the onset and significance of these effects fundamentally 

depends on whether the inclusions are dielectrics or conductors, and the wavelength range (e.g. microwave or 

visible), as we shall now see.  It has long been known that dielectric permittivity affects deviations from MG, 

which can be predicted through series expansion (McPhedran et al. 1996).   More recently it has been realized that 

more interesting effects become evident at very high permittivity. Dielectric rods exhibit electric and magnetic 

Mie resonances at reduced wavelengths (λ=λ0 / n) that scale with the radius(Vynck et al. 2009), with the magnetic 

resonance occurring at significantly shorter wavelengths.  Consequently, in low density rod arrays, negative 

permeability and negative refraction is observed for in-plane propagation in a narrow band but in this case only 

at a period that is larger than the reduced wavelength.  Similarly, spatial dispersion in seen in large permittivity 

arrays of spheres(Alù 2011): divergence from MG is readily observed at period:wavelength ratio > 0.02 if the 

permittivity is 20, and at higher permittivity of 120 differences are pronounced around resonances at larger 

periods.   

Perfectly conducting particles are effectively magnetic so in this case it can be shown that permittivity-only MG 

is insufficient even for sphere arrays of very short periods(Alù 2011).  Studies assuming perfectly conducting yet 

very dilute rods (Belov et al. 2003) assert that spatial dispersion is inevitable and that the effective permittivity 

along the rods must be modified to account for the wavevector in that direction.  However, accumulated literature 

on wire media was reviewed by several of the same authors (Simovski et al. 2012), where it was noted that for 

structures smaller than the skin-depth the PEC assumption is inapplicable and spatial dispersion is not apparent.  

This point is also directly addressed in a computational study(Wells et al. 2014), where it is demonstrated that 

non-local models based on the PEC assumption fail at optical and near-IR frequencies, and (apart from missing 

longitudinal modes) local MG is reasonably good at predicting effective propagation constants of transverse EM 

modes in the long wavelength limit. 

Other studies quantify where the quasistatic approximation is applicable for conductors. Calculated propagation 

in the plane of lossless Drude nearly-touching nanorod arrays show that multipole modes are magnetic, but the 

fundamental dipole modes closely match electrostatic response for periods as high as  6/p (Shvets and 

Urzhumov 2005). It also was stated that sub-wavelength implies <50 nm for metals but the origin of this estimate 

was not elaborated.  Plasmonic band structures of Drude inclusions (damping ratio 0.01) showed excellent 

agreement up to periods of 0.1 wavelengths: including spheres in fcc lattice with 12% fill-factor (Inglesfield et al. 

2004), and cylinders in square lattice with 8% for transverse polarization and up to percolation for longitudinal 

(Pitarke et al. 2007).  Several studies have considered the accuracy of MG for Ag in anodic Al2O3 with realistic 

losses.  Calculations at 20 nm period of showed good agreement for fractions up to 30% (Fang et al. 2009).  

Oblique reflection measurements  showed good agreement for 60 nm period (and 25% fill factor) at wavelengths 

above 600 nm (Kanungo and Schilling 2010).    Calculated normal-incidence refractive index resonant spectra 

showed reasonable agreement for 60 nm lattices at 10 and 17% (Silva et al. 2013).   

 

Considering the evidence in the literature, it is reasonable to concur with the statement that quasistatic behavior 

should be observed when the period is significantly smaller than the absolute effective wavelength (Elser et al. 

2006) – this allows for dielectric wavelength reduction, conductor skin depth, and resonant effects.  This 

requirement further emphasizes the role of damping in determining the minimum effective wavelength, which 



 

 

may include contributions from both intraband and interband processes.  Considering the transverse MG 

resonance of rod composites with low-loss Drude inclusions in free-space, it can be shown that the worst-case 

effective wavelength, which occurs at moderate fill-factors, is pp  /9.1  ( p bulk plasmon,  damping).  

Since the plasma wavelength of most good conductors is around 100 nm and damping ratios are of order 0.01, a 

minimum effective wavelength in the order of 10 nm might be expected.  However, the contribution of interband 

absorption in real materials relaxes this constraint somewhat.  A survey of actual permittivity tables shows that 

minimum effective wavelengths for the MG resonances of good conductors (e.g. the coinage metals) are around 

40 (± 10) nm, poorer conductors (e.g. the catalyst metals and conducting nitrides) are loosely clustered around 

100 (± 40) nm, and for Restrahlen bands (e.g. in SiC) can be on the order of microns.  In most metals the minimum 

effective wavelengths occur at high fill factors – at moderate fill factors such as those shown later, interbands 

further relax the effective wavelength.  In transparent regions the effective wavelength reverts to a fraction of the 

free-space wavelength. 

Production of the shortest implied periods is challenging, but effective medium response near this range have been 

demonstrated using electrochemical techniques in silicon(Golovan’ et al. 2007), alumina(Shinji et al. 1992) and 

metal(Saito and Miyagi 1989), and oblique deposition for a range of materials and wavelengths(Hodgkinson et 

al. 2005).  Some control over pillar morphology is possible(Hodgkinson, De Silva et al. 2005), suggesting 

potential for MG-like response at short wavelengths.  Current nanofabrication should be feasible for 

transparent/Restrahlen materials in the near-IR onwards, and recent advances in the area hold some promise for 

conducting materials. 

  

2. Method 

Initially a boundary element method (BEM)(Mayergoyz et al. 2005) was used, because it is efficient, can be 

readily matched to Eq. (2), and allows direct optimization of the contours. Briefly (in 2D), 
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where   is a charge density eigenvector, n̂  the outwards facing normal, and cellA  is the area of the unit cell. The 

equations were discretized with N (typically 3x103 per particle) line-segments of length dr, and the singularity in 

Eq. (5) was integrated via closure(Mayergoyz, Fredkin et al. 2005). Eqs. (5) and (6) allow comparison to MG Eqs. 

(3) & (4).  Subscripts xy denote spatial components: where two are present the first is the detector and the second 

is the source.  In this work most of the lattices are isotropic so x & y are degenerate.  

As detailed in the next section, a suitably parameterized contour was first optimized via a standard simplex 

algorithm to minimize the deviation of S from the expected MG result.  However, the deviation was generally not 

zero, leaving open the question of whether a perfect match could be achieved. To resolve this question, free 

optimization on all contours points should be performed, but a naïve optimization is very expensive due to 

repeated eigenmode calculations for variations in every point on the contour.  The efficiency of this final 

optimization can be greatly increased via an important insight that arises directly from the BEM: the surface 

charge of a perfect dipole is proportional to the projection of the surface normal to the applied electric field.   

Alternatively, the target 1

i  for (5) & (6) is the contour position relative to the center of each closed contour, so 

the contour gradient can be readily established from the left residual L  in the eigenequation (5): 
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Optimization can then be performed via gradient descent on Eq. (7). Matrix storage can be avoided, since the first 

order approximation for small isotropic deviations from MG are: 

 )/(.~2~ 22

cellAfRLSC  . (8) 

Deviation can be confirmed later by more complete diagonalization. Typically I optimized to less than 10-6 error. 

These insights should also be applicable to three dimensions. 

In this work I restrict the search to 2D: in this case the lattice sum  (5) is related to the conjugate of the Weierstrass 

zeta function(Abramowitz and Stegun 1964)  



 

 

 


 
W

zWWWzz 211)()( , (9) 

where x & y directions are transformed respectively to real and imaginary parts in z, summed over the infinite set 

of complex lattice vectors  . Although Eq. (9) is unconditionally convergent, its first term corresponding to the 

sum in Eq. (5), depends on the boundary shape. Other terms can be removed: 01  W  for large ellipsoidal 

terminations; 02  W  for isotropic sums and is otherwise easy to calculate. The infinite sum of (5) can then 

be estimated either by adding cell

i Aze /2   (an elliptical termination aligned with the source direction  ), or by 

cellxy Adrrn /ˆ   (inflation accounting for a finite circular boundary). The 2D sum converges within a few terms of 

elliptic theta series(Abramowitz and Stegun 1964). 

 

Full-wave electrodynamic methods 

To confirm the validity of the BEM implementation, and investigate the onset of electrodynamic effects, a number 

of independent simulations on periodic arrays were conducted within the commercial finite-element package 

COMSOL.  One strategy was eigenmode calculations where the effective index was determined from the mode 

propagation, and the dominant mode identified by electric-field overlap with plane-wave excitation assumed.  

Another was the plane-wave response of finite slabs (about 10 periods thick and terminated by background-

matched layers), including S-parameter retrieval of the effective index(Chen et al. 2004).  Although impedance is 

also available from S-parameter retrieval, in this case it is particularly sensitive to surface termination (especially 

for conducting and resonant composites), and hence it is not necessarily representative of effective bulk 

behavior(Simovski 2011).  Field homogenization could also be performed and hence the bulk effective index 

deduced.  Calculations were implemented separately for on-axis and in-plane propagation to take advantage of 

reduced dimensionality. 

For propagation along the rods, calculations included TEM mode index of infinite arrays in 2D, as well as 

calculations on a 3D slab with field homogenization at the mid-plane.   Phase was ignored because is common to 

all fields travelling along the rods.  In this direction, for computational efficiency, symmetry was enforced by 

perfect electric(magnetic) conductor boundaries normal to the electric(magnetic) fields – this does not capture all 

modes but does allow the important TEM modes, justified due to the symmetry of plane-wave excitation. 

For propagation in the plane, periodic boundaries imply that the Bloch phase across the structure should be 

considered, however its definition in lossy structures requires some discussion.  In the photonic crystal literature 

where lossless materials predominate, it is common to specify the (real) wavevector and determine the (possibly 

complex) temporal frequency from the eigenmodes.  Indeed, this was the approach used in early studies of 

plasmonic rod media where Drude response was assumed(Smith and Pendry 2006).  However, tabulated material 

properties and optical-frequency plane-wave experiments dictate real temporal frequency so that instead the 

complex Bloch frequency for a specified direction is calculated giving the effective index directly: special methods 

are required to implement this within COMSOL(Davanço et al. 2007; Schmidt and Kappeler 2010; Fietz et al. 

2011).  In this case, field homogenization (particularly for finite slabs) is no longer simple because the phase delay 

should be included but it is neither fixed nor real.  In this direction all calculations can be reduced to 2D. 

Modal and finite-thickness COMSOL results agreed and all results converged to the static result as period reduced 

but, as a further check, selected results were also calculated using well-known codes that employ completely 

different algorithms.  The modes of dielectric inclusions (ε=12) for all three unique orientations were compared 

against the plane-wave Bloch-mode code MPB(Johnson and Joannopoulos 2001).  The retrieved properties of 

finite films of Drude inclusions with propagation along the pillars were compared against the Fourier-modal code 

S4(Liu and Fan 2012). 

3. Results and discussion 

Static results and optimization 

Using the quasistatic method above, contours that achieve MG response can be found: Fig. 1 illustrates that this 

is primarily achieved by varying the curvature. As expected, circles percolate (Fig. 1a), and polygons generally 

have strong multimodes (Fig. 1d). A useful starting point for 2D optimization are the Schwarz-Christoffel (SC) 

contours (Fig. 1b), which conformally fill any polygonal structure(Driscoll 1996). Using SC brings the dipole 

mode closer to MG, but multimodes can be dramatically reduced by scaling SC for sharper contours (Fig. 1c) and 

then completely cancelled by a small amount of free optimization. 



 

 

 

Fig. 2 (color online): Effect of roundness in square lattices, with circular (a,e), conformal (b,f), nearly optimal (c,g), and 

nearly polygonal (d,h) contours. Modes are dark lines in (a-d), as a function of fill factor f and depolarization S. The 
dipole is the strongest mode, with MG response in (c). The evolution of dipole surface charge is shown (e-h), with guide 

contours in black at 20% intervals in f. Circles (a) percolate at f ≈ 78% in a square lattice. 

Concentration of surface charge is strongly correlated with multimode response (Fig. 2), so a balance of electric 

forces is important for pure dipole response. A circular shape (Fig. 2e) has optimal distribution at low f, but near 

percolation charge concentrates around the gap. Conversely, polygons (Fig. 2g) allow charge separation to the 

corners at low f, but at high f this is balanced by attraction across the gap. The conformal shape (Fig. 2f) is better 

but still too curved at most values of f, which can however be corrected with flattened faces and sharpened corners 

(Fig. 2g), allowing pure dipole distribution of charge. 

 

Fig. 3 (color online): Optimized shapes, with contours at intervals of 20% in f.  Here the lattices are labelled by their 

“vertex configuration”, where each base numeral is the number of edges of a corresponding face touching the vertex, 
and the power is shorthand for similar neighbouring vertices. Optimized configurations include the regular tilings (44, 

36, 63), all of the isotropic semi-regular tilings, and two anisotropic tilings (33.42, and rectangular with 2:1 aspect ratio). 

Similar trends hold true for several other lattices – Fig. 3 shows optimized shapes (typically to within 10-6 of MG), 

including the three regular lattices, and all of the isotropic semi-regular lattices. Even anisotropic lattices can be 

matched to isotropic MG: as shown I have optimized both rectangles (with 2:1 aspect ratio) and vertex 

configuration 33.42.  The hexagonal Vigdergauz contours(Vigdergauz 1999) are similar to corresponding contours 

presented here, but it is notable that the contours for triangular lattices in Fig 3 appear somewhat flatter. 

Detailed measurements on Fig 3 confirm that optimal shapes have sharper corners and flatter faces than SC 

contours.  The dominant changes in curvature are related to vertex angle of the particle and its neighbours: the 

change is largest for sharper shapes (e.g. triangles), and is decreased by rounder neighbours. These changes are 

summarized in Fig. 4, which provides a succinct parameterization of nearly optimal contours in terms of the 



 

 

effective conformal radii (with scaling to the fill factor) – larger radius implies sharper corners & flatter faces.  

These contours are close enough to MG for practical purposes ( C <10-3 and often much better). 

 

Fig. 4 (color online): Parameterization of nearly optimal contours in terms of the effective conformal radius of individual 

particles within an array, as a function of fill-factor. Results are grouped by number of sides (3, 4, 6, 8, 12) of particles. 

The usual conformal radius is shown as a solid black line (below all other curves). 

 

The contours implied by Figure 4 are close enough to MG for practical purposes, as demonstrated by low deviation 

in Figure 5b.  It is also interesting that configurations with good space-filling properties generally have the closest 

response to MG: in Fig 5a, hexagons are much better than triangles. 

 

Figure 5 (color online): Comparison of MG deviation as a function of fill factor f for conformal (a), and sharpened 

conformal (b) contours.  The contours in (b) correspond to the parameterization in Figure 4.  Circles (not shown) have 

large deviation and cannot reach f=1.  Fully optimized results (as in Figure 3) are not shown – typically these have C
< 10-6.  In most of the following results 44 from (b) are used.  

Electrodynamic deviations 

Finally, I explore electrodynamic deviations from MG on square lattices (circles deviate more in 36 and less in 63) 

with high index inclusions (networks deviate less).  First the deviation compared to MG for dielectric inclusions 

(  =12, approximately that of Si) can be examined (Figs 6 & 7). 

 

 

Fig. 6 (color online): Electrodynamic deviation of modes of square arrays of cylinders with 12  as a function of 

period:wavelength at fill factors in steps of 0.1 from f = 0.1(blue) to 0.7 (red) near percolation.  The polarizations are 

(from left to right) longitudinal E (transverse k), transverse E transverse k, and transverse E longitudinal k as in Fig 1.  

Lines are derived from the first MPB mode up to the edge of the Brillioun zone (actually infinite for longitudinal k), 

and the dots are COMSOL mode calculations, circles are the BEM static result – all are in good agreement. 



 

 

 

Fig. 7 (color online): Electrodynamic deviation of modes of square arrays of optimized pillars, at 12 ,  with all other 

parameters as in the previous except that the maximum f=0.9 (red). 

 

The deviation of circles from MG even at low frequency is evident at high fill-factor in Fig 6, but not for 

longitudinal E because L=0.  As expected there is minimal low-frequency deviation for optimized shapes in Fig 

7.  All cases show some degree of deviation at higher frequency: this is typically worse for longitudinal E because 

the effective index is higher. In general, higher fill-factors also suffer greater deviation due to higher effective 

index, although f=0.9 shows some improvement for longitudinal k and longitudinal E is significantly flattened at 

moderate frequency (Fig 7).   The quasistatic multimode dispersion in Fig 6 at f=0.7 is about 6% which is similar 

in magnitude to the spatial dispersion at a period:wavelength ratio of about 0.1 in Fig 7. 

 

Next we explore issues pertinent to spatial dispersion around plasmon resonances assuming Drude inclusions.  In 

this case, multiple waveguide modes can be excited at a single frequency, but their importance depends on the 

source distribution, and hence it is useful to consider the response of a realistic experiment such as plane-waves 

normally incident on finite slabs of pillar media (as represented in Figure 1). Inversion of the complex reflectance 

and transmittance retrieves effective refractive index and impedance, but these can vary with thickness.   

 

In Figure 8, the results of various methods are compared for three different periods.  At small periods, all methods 

produce similar results as expected: there is a minor difference between eigenmode and retrieved results due to 

the finite thickness of the latter. As period increases deviations are observed around the resonance, especially 

between refractive impedance and inverse impedance.  Additional prominent deviations in impedance are 

correlated with low reflection as noted in the literature(Chen, Grzegorczyk et al. 2004).  The stronger thickness 

dependence of impedance suggests that it is more of a surface property of these materials: surface termination 

effects have also been shown to be important in other metamaterials(Lapine et al. 2012).  Again there is minor 

disagreement between eigenmode and retrieved n due to finite thickness, but the field homogenization at the center 

of the slab closely matches the eigenmode result.  At large periods more than a single mode is excited so the 

quasistatic approximation is clearly invalidated, and retrieval becomes problematic due to weak transmission.  

Together these results support the validity of the quasistatic approximation at sufficiently small periods and the 

premise that the dominant eigenmode is the more reliable measure of bulk properties. 

  

 

Figure 8 (color online): Comparison of the effective index calculated by various methods: spectra for optimized pillars 

with f=0.6 Drude inclusions ( 1.0/ p ) and are shown for three increasing periods.  Methods include COMSOL finite 

element (FE) eigenmode solver, retrieval (n & 1/z) and central field homogenization on FE results for a finite slab 10 

periods thick, and retrieval on the plane-wave code S4.  The center panel shows additional results for 5 & 20 



 

 

thickness:periods as thin yellow lines, and the right panel shows the bifurcation of excited eigenmodes as thin blue 

dashed lines. 

 

It is evident that spatial dispersion, and indeed disagreement between various definitions of material properties, 

is greatest around the resonance.  To quantify how various parameters contribute to the deviation of the refractive 

index, the dominant mode at the MG resonant frequency r was surveyed over a range of periods (

2.0/02.0  pa  ), Drude damping ratios ( 2.0/02.0  r ) and fill factors ( 8.03.0  f ).  Results outside 

this range were omitted from Figure 9 due to numerical limitations or obvious violation of quasistatic assumptions 

(e.g. at large a).  The observed deviation increases with increasing period 
2)/(~ pan  which also implies 

2)/(~ pn  . Further, deviation is increased by decreasing damping ratio 3)/(~  pn  , and since a MG 

resonance in a Drude material has 
3)/(~ 

prn  it follows that 
6

~ rnn . The effect of fill-factor is more 

complicated, because increasing it decreases the resonant frequency 2/1]2/)1[(/ fpr  , but this also 

increases the effective index 2/12]})/(2[/{~  prprrn   which has already been included above.  Since the 

observed deviation is lower at high and low fill-factors, finally we have that 
2622 )]1([)/()/(~ ffnan rpp   : the interdependence ))(( fn r allows many possible variants, but this 

seems to be the most convenient form. This model accounts for much of the n  seen in Figure 9, but at low 

deviations numerical errors are relatively significant, and at high deviations the relationship changes due to 

significant movement in the peak frequency.  

 

Figure 9 (color online) The electrodynamic deviation n  of the dominant mode from MG at the MG resonance )( rn   

as a function of period a, Drude damping  and fill-factor f, is shown in the top panels.  The effect of derived parameters 

)( fr  and ),( fn  is shown in the lower panels.  Results for variations in the remaining parameters are shown in light 

blue, and for reference dark blue lines highlight results intersecting a = 0.05,  = 0.1, f = 0.5.  The thick black line 

shows the fit suggested in the text, which is condensed into the lower left panel.   

 

We now consider real materials, which have more complicated permittivity functions. Spatial dispersion in 

selected materials is demonstrated in Fig 10, at f=0.7, where multimode deviations start to become substantial.   

As expected, electrodynamic deviation increases with period, especially for conducting inclusions (e.g. Ag in Fig 



 

 

6c), but in the visible the quasistatic approximation is good at 10 nm and still better than circles at period<100 

nm.   

 

Fig. 10 (color online): Comparison of real refractive index n in square lattices at f=0.7 for MG, small circles, and 44 
shape from Fig 3 at various periods (10 to 100 nm).  Representative materials include (a) dielectric Si, (b) lossy W, (c) 

plasmonic Ag, taken from CRC Handbook. 

 

Figure 11 summarizes the effect of fill factor on the resonant deviation.  With the exception of K, the results 

are somewhat different from Fig 9 due to interband transitions.  As expected, lossier metals such as W & Ta have 

much lower deviation.  Unusually, Al has a prominent interband at low frequency so it is flattened at high f.  Many 

metals have interbands at high frequency, so deviation is decreased by increased losses at low fill factor.  

 

Fig. 11 (color online) Relative resonant deviation from MG as a function of fill-factor f, for selected metals with period 

a=20nm.  Permittivity from the CRC Handbook. 

 

7. Conclusion 

There are several special geometries that exactly match quasistatic MG over a much wider range of fill-factors 

than usually expected. Optimal surface contours are sharper than conformal, with the surface charge spread evenly 

to match the projection of the normal: this insight should also be applicable to a broad range of other geometries.  

Electrodynamic effects in these materials place some restrictions on the applicability of a static approach 

(especially at high permittivities), but the proposed morphologies still offer significant improvement over circular 

shapes. 
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