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Abstract—Soft magnetic composite (SMC) materials and 
their application in electromagnetic devices have 
undergone significant development due to their unique 
advantages such as low eddy current loss, quasi-isotropy 
of mechanical and magnetic properties, low cost and low 
material consumption during the production process. 
However, the magnetic properties of SMC materials are 
very different from that of the laminated SiFe materials, 
which are particularly challenging for the design and 
application of electrical machines. This paper presents the 
modeling and measurement of magnetic properties of SMC 
materials under both alternating and rotational magnetic 
excitations. Based on the underlying magnetization 
mechanisms, a vectorial elemental operator with biaxial 
anisotropy is introduced, and the concept of distribution 
function is utilized to describe the density of operators in 
the specimen. To verify this proposed model, the magnetic 
hysteresis of SMC material is simulated and compared with 
the experimental results obtained by the 3-D magnetic 
property measurement system. The good agreement 
shows the validity and practicability of this vectorial 
elemental operator.  

 
Index Terms—Elemental operator, magnetic properties, 

soft magnetic composite (SMC) materials, vectorial 
hysteresis model. 

 

I. INTRODUCTION 

HE soft magnetic composite (SMC) materials, produced by 

powder metallurgical techniques, are composed of iron 

powders (about 100 µm in diameter) of high purity and surface 

coating for electrical insulation and mechanical bonding [1]. 

The coated iron powders, with high electrical resistivity, are 

pressed into a solid magnetic core after a series of technical 
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steps, such as the die pressing, heating and curing treatment [2]. 

Thus, compared with the laminated silicon-steel sheets, the 

SMC materials have many unique characteristics and 

advantages such as low eddy current loss, quasi-isotropy of 

mechanical, magnetic and thermal properties, great design 

flexibility, low cost and low material consumption during the 

production process [3]. 

In the laminated steel sheets, the magnetic flux can be 

designed to flow only within the lamination plane for its thin 

structure [4], [5]. If the magnetic flux is perpendicular to the 

laminations, great eddy-current loss would be produced during 

the magnetization process [6]-[8]. Hence, the laminated steel 

sheets are not suitable for some special electromagnetic devices 

with 3-D magnetic flux paths, such as transverse flux, claw pole, 

and axial flux permanent magnet motors [9]-[11]. To lift these 

restrictions, the SMC materials can be employed for fabricating 

electromagnetic devices of special structures [12]. Because of 

the powdered nature, the magnetic property of SMC material is 

naturally quasi-isotropic, although slight magnetic anisotropic 

property would be generated due to the pressing and heat 

treatment in the preparation process of SMC cores [13]. 

Since the SMC materials are being used in more and more 

applications with satisfaction, the magnetic properties, such as 

the relationship between the magnetic field strength (H) and the 

magnetic flux density (B) or magnetization (M) and the specific 

core loss under the one-dimensional (alternating field) and/or 

two-dimensional (rotational field) magnetizations, need to be 

fully understood for developing high performance 

electromagnetic devices. 

Furthermore, the core loss (mainly hysteresis loss) in the 

SMC electrical machine is comparable with the copper loss 

[14]. This is vastly different from the traditional laminated steel 

machines, in which the copper loss takes up a high proportion 

of nearly 90% of the total power loss [15]-[17]. Hence, accurate 

computation and simulation of magnetic hysteresis in SMC 

materials are crucial, and should be properly taken into account 

in the design of electromagnetic devices. 

To complicate the matter, due to the complex mechanism of 

the magnetic hysteresis, the B and H do not always align in the 

same direction during the process of magnetization, especially 

under the rotational excitation field [18]. Various hysteresis 

models have been proposed, such as the Stoner-Wohlfarth 

(S-W) model [19], the Preisach model [20], and the Della 

Torre-Pinzaglia-Cardelli (DPC) model [21]. Among them, the 
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Preisach model is a scalar hysteresis model, and thus difficult to 

describe the vectorial relationship between H and B [22]. The 

S-W model based on the S-W particle with uniaxial anisotropy 

is inconsistent with the physical mechanisms of SMC materials 

[23]. The phenomenological vector hysteresis operator 

(hysteron) in DPC model has weak appeal to physical intuition 

[24]. Therefore, the vectorial magnetic properties of SMC 

material have not been successfully described and analyzed, not 

to mention the application for engineering practice. 

Based on the magnetization mechanisms of the SMC 

materials, a vectorial elemental operator (the core of the novel 

hysteresis model) is derived. The analytical expressions of the 

vectorial relationship between H and M of a single elemental 

operator under alternating and rotational fluxes are then 

deduced, respectively. The interaction field and the coercive 

force of each elemental operator can be considered in terms of 

the distribution function of elemental operators. The magnetic 

properties under different vectorial magnetizations can be 

finally obtained by integrating the effects of elemental 

operators according to the distribution. To verify the proposed 

model, the magnetic properties of SOMALOYTM 500, a 

classical type of SMC material, are simulated and compared 

with the experimental results. 

II. MODELLING OF MAGNETIC PROPERTIES OF SMC 

MATERIAL 

A. The Vectorial Elemental Operator 

In this model, it is assumed that each surface coating iron 

powder in SMC material can be regarded as a microscopic 

crystalline particle with magnetocrystalline anisotropy, i.e. 

multiple hard and easy axes. Inside each particle, there exist 

various magnetic domains, and each domain consists of a great 

number of dipoles with magnetization m. Fig.1 shows the 

magnetically hard, medium and easy axes of a unit cell of 

body-centered cubic (bcc) iron [25]. In this paper, only the two 

dimensional magnetization process in the (100) plane is 

investigated.  

 

 
Fig. 1.  Different magnetization axes of an iron particle with cubic anisotropy. 

 

Due to the spin-lattice coupling in cubic crystals, the 

anisotropy energy density has cubic symmetry, as shown in Fig. 

2. When the magnetic field H is rotating in the crystal with a 

fixed magnitude, both the magnitude and direction of the 

magnetization, m, may vary. If the magnetization is confined to 

the (100) plane which has biaxial anisotropy, the total energy on 

this plane can be expressed as 

 

                    (1) 

 

where θ is the angle of magnetization relative to the easy axis, 

and K is the biaxial anisotropy coefficient of the (100) plane. 

 

 
Fig. 2.  Cubic anisotropy energy density of a cubic textured magnetic material 
(anisotropy coefficient K>0). 

 

Based on the assumption that SMC materials are composed of 

a large amount of interacting magnetic dipoles which possess 

different biaxial anisotropy coefficients, the magnetization 

orientation of each dipole can be determined from the energy 

contributions of the applied field and anisotropy [26]. The 

magnetic dipole in the particle, which has the biaxial anisotropy, 

can be defined as a vectorial elemental operator. Thus, the total 

energy of this elemental operator can be written as 

 

                (2) 

 

where θ and θH are the angles of the resultant magnetization and 

the applied field, respectively, both with respect to the 

operator’s easy axis, and m is the magnetization of the operator, 

which can be deducted from the anisotropy energy. The first 

term is the biaxial anisotropic energy of the elemental operator, 

and the second the interaction energy associated with the 

applied magnetic field and the elemental operator’s 

magnetization.  

Different from the S-W particle with uniaxial anisotropy, the 

biaxial anisotropy is adopted in this vectorial elemental operator 

to be consistent with the magnetization mechanism of the SMC 

material. However, the stable orientation of the vectorial 

magnetization m can also be determined by minimizing the total 
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energy of the elemental operator as 

 

             (3) 

             (4) 

 

Solving the above equations, one obtains the expression of a 

biasteroid curve (also called wind rose) as the following 

 

                    (5) 

                     

(6) 

 

where Hx and Hy are the components of the applied field H along 

the two orthogonal easy axes, respectively. 

The biasteroid curve, as shown in Fig. 3, has biaxial 

anisotropy with two orthogonal hard axes and two orthogonal 

easy axes. This characteristic is strictly consistent with the 

physical mechanism of the SMC materials which have biaxial 

anisotropy on each crystal plane. 

Similar to the asteroid of the S-W model, graphical 

interpretation can be given for describing the magnetization 

process of this biaxial elemental operator. The biasteroid curve 

separates the Hx-Hy plane into four regions in accordance to the 

number of energy minima, as shown in Fig. 4. 

 

 
Fig. 3.  The biasteroid shape of the biaxial elemental operator with two 
orthogonal easy axes and two orthogonal hard axes. 

 

Figs. 4(a)-(c) show the situations when the magnitude of 

applied magnetic field is inside the biasteroid shape. As the 

applied field H increases, there exist four, three and two energy 

minima. The establishment of the only one actual energy 

minimum is closely related to the magnetization history. In Figs. 

4(d) and (e), when the magnitude of applied magnetic field H is 

outside the biasteroid curve, the magnetization has only one 

stable orientation as there is only one energy minimum, and the 

magnetization m moves closer to the magnetic field H. 

B. Vectorial Elemental Operator under Alternating Field 

To clearly describe the vectorial magnetic properties of the 

elemental operator under alternating applied field, the vectorial 

magnetization m of the elemental operator can be divided into 

two components, the transverse and longitudinal magnetization 

components, which are the projections of m perpendicularly to 

and along with H, respectively. 
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Fig. 4.  Energy density and the magnetization behavior of the biaxial elemental 

operator with the applied field increasing along the fixed angle θ=30º. The 
number of local energy minima which determined by the vectorial applied field 

is (a) four, (b) three, (c) two, and one in (d) and (e). 

 

The longitudinal and transverse magnetization components 

for different orientations of the applied field are illustrated in 

Figs. 5 and 6, respectively. For convenience, the magnetic field 

and magnetization can be normalized by its saturation value, 

such that h = H / Hsat. Note that the orientation of external field 

relative to the easy axis must not exceed the 45º line, since the 

elemental operator has two orthogonal hard axes and two 

orthogonal easy axes, and the largest angle between the easy 

axis and the hard axis is 45º. 

 

 
Fig. 5.  The longitudinal hysteresis loops of vectorial elemental operator for 

different applied magnetic field orientation.  

 

 
Fig. 6.  The transverse hysteresis loops of vectorial elemental operator for 

different applied magnetic field orientation. 

Similar to the S-W model, a square longitudinal hysteresis 

loop can be obtained when the external field H is parallel to the 

easy axis, as shown in Fig. 5, which is exactly the conventional 

Preisach rectangular hysteron. Thus, this vectorial elemental 

operator can also be adopted to model the scalar magnetic 

hysteresis by restricting the applied magnetic field to vary 

along one dimension. 

To keep the consistency of the potential physical mechanism 

in the magnetization process, the interaction field hi, which is 

the synthetic field from neighboring elemental operators, must 

be taken into account. As shown in Fig. 7, the shift of biasteroid 

curve depends greatly on the interaction field, and the 

corresponding hysteresis loop is similar to the Preisach hysteon 

under interaction field. 

 

 
Fig. 7.  (a) The positional change of the elemental operator and (b) the 

corresponding longitudinal hysteresis loop vary with the interaction field. 

 

Another indispensable factor affecting the performance of 

the elemental operator is the crystal anisotropy. As shown in 

Fig. 8, the shape of biasteroid curve varies with the anisotropy 

constant, and so does the coercivity of the corresponding 

hysteresis loop. 

An analytical expression of the alternating field H and the 

magnetization m has been presented in [27]. However, this 

expression can only describe the uniaxial anisotropy S-W 

operator, and it ignores the magnetic interactions between the 

elemental operators with biaxial crystal anisotropy. Thus, in the 

frame of partial approximate substitutions, a modified 

analytical expression of the applied alternating field H and the 

magnetization m of an elemental operator can be presented as 
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          (7) 

 

where  is the normalized anisotropy field which 

corresponding to the coercivity for each elemental operator, 

and hi the interaction field on the elemental operator. The plus 

sign is for the upward branch and the minus sign for the 

downward branch in a given hysteresis loop. 

 
Fig. 8.  (a) The shape of biasteroid and (b) its corresponding longitudinal 

hysteresis loop vary with the anisotropy coefficient. 

 

Assuming that the SMC material is composed by lots of 

interacting elemental operators with different biaxial crystal 

anisotropy, the bulk magnetization M for a given applied 

alternating field H can be obtained by the following integral: 

 

                    (8) 

 

where P(hi, hk) is the distribution function of the elemental 

operators in the SMC material.  

To simulate the magnetic properities of SMC material 

SOMALOYTM 500, the distribution can be described by a 2-D 

Gaussian distribution which is assumed to be a product of two 

Gaussian distributions that are independent to each other, as 

shown in Fig. 9. The expression of this function is defined as 

follows: 

 

            (9) 

 

where N is the normalization factor, µk the center of distribution 

for the anisotropy field, σk and σi are the standard deviation of 

the normalized anisotropy field hk and the interaction field hi, 

respectively.  

 
Fig. 9.  The 2-D Gaussian distribution function of the elemental operators under 
alternating field. 

 

In this study, all the parameters of this 2-D Gaussian 

distribution function can be determined numerically by fitting 

the model to the limiting hysteresis loop. With the comparison 

of the key points (saturation, residual magnetism, and coercive 

force) on the measured and simulated limiting hysteresis loop, 

the parameters of distribution function can be chosen while the 

error is suitably small.  

C. Vectorial Elemental Operator under Rotational Field 

In some specific part of the electromagnetic devices, such as 

the cores of rotating electrical AC machines and the T-joints of 

multi-phase transformers, the magnetic flux rotates. The design 

and analysis of such devices require the modelling and 

experimental measurement of vectorial magnetic properties, 

which are totally different with the case under alternating field. 

In this part, these phenomena are explained and modeled based 

on the vectorial elemental operator.  

When a rotating magnetic field H, with fixed magnitude but 

varying rotation angle, is applied on an elemental operator, the 

corresponding magnetization will follow the rotation but with 

different rotation angle and generate varying magnitude, as 

illustrated in Fig. 10. Thus, the flower-shaped loci of the 

magnetization m will be obtained under the normalized 

rotational magnetic field h.  
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Fig. 10.  The performance of an elemental operator in one period of rotational 

applied magnetic field: the blue dashed lines connect the normalized applied 
magnetic field (black circles) and the corresponding magnetization (red dots). 

 

In another case, if we control the elemental operator to work 

under the circularly rotational flux B, in other words, make the 

generated magnetization M have a fixed magnitude, the 

magnetic field H will also follow the rotation and produce a 

flower-shaped trajectory, as illustrated in Fig. 11. 

The flower-shaped trajectory is directly related to the 

anisotropy of the elemental operator. Different anisotropy 

coefficients correspond to different shapes of the trajectory. As 

shown in Fig. 12, the smaller the anisotropy coefficient, the 

closer the shape of the loci to the circular shape. 

It is assumed that under the rotating field, the interaction 

from other elemental operators will deflect the elemental 

operator Meanwhile, an inclined angle will occur on the loci of 

the applied field as shown in Fig. 13. 

 

 
Fig. 11.  The performance of an elemental operator in one period of circularly 

rotational magnetic flux: the blue dashed lines connect the normalized 
magnetization (red dots) and the corresponding applied magnetic field (black 

circles). 

 

 
Fig. 12.  The flower-shaped trajectories of the applied field correspond to 
different anisotropy coefficients. When K= 0, the shape is circular which means 

the 2-D isotropy of the elemental operator. 

 

 
Fig. 13.  An incline occurs on the loci of the applied field after taking into 

account the interaction. 

 

To describe the vectorial relationship between H and m of a 

single elemental operator under rotational flux and the 

flower-shape of the loci, an analytical expression is proposed as 

the following 

 

     (10) 

 

where k is the coefficient related to the anisotropy of the 

elemental operator, Ms the saturation magnetization along the 

easy axis, α the inclination angle of elemental operator, hm = H 

cos(θH-θ) / Hsat the normalized projection of the magnetic field 

H on the direction of magnetization M, Nk = 0.45 h2-0.56 h + 

0.35 a correction factor in this expression, and h the normalized 

magnetic field.  

Meanwhile, the orientation of the magnetization θ and the 

angle θH-θ, which is the angle between magnetic field H and 

magnetization M, can be determined by the biasteroid curve 

method, as illustrated in Fig. 3. Therefore, in this rotational 

magnetization, both the directions and magnitudes of the H and 

M may vary, as well as the directional angle difference between 

H and M, which means H may either be ahead or lag behind of 

M. This vectorial relationship between H and M can be defined 

as the rotational hysteresis. In addition, this vectorial property 

can produce the hysteresis loss due to the rotational 

magnetization. 

Similar to the scalar case, the 2-D Gaussian distribution can 

be adopted to describe the distribution of the anisotropy and the 

inclination angle of the elemental operator in the rotating 

magnetic field. The vectorial magnetization M for a given 

rotational field H at an arbitrary angle θ can be calculated by the 

superposition of elemental operators, as shown in (8) above. 

III. MEASUREMENT OF MAGNETIC PROPERTIES OF SMC 

MATERIAL 

The magnetic properties of SMC material under alternating 

field (1-D) and rotational field (2-D) can be measured by using 

the 3-D magnetic property measurement system [28], [29]. 
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Fig. 14 illustrates the block diagram of measurement system, 

which consists of a 3-D magnetic property tester, a 3 channel 

power amplifier, and a data acquisition and control unit. 

 

 
Fig. 14.  The functional block diagram of 3-D magnetic property measurement 

system. 

 

Fig. 15 depicts the schematic diagram of the structure and a 

photo of the 3-D tester [30]. By controlling the magnetic 

excitation in three axes, this tester can produce different 

magnetic flux patterns, e.g. alternating flux in arbitrary 

direction, rotational flux in arbitrary plane or 3-D space, 

according to the requirement of the measurement. 

In order to measure the magnetic properties of SMC material 

and verify the proposed model, SOMALOYTM 500, a kind of 

SMC material, is measured under different magnetic flux 

patterns by this 3-D magnetic property measurement system 

[31]. 

 

 
(a) 

 

 
 (b) 

Fig. 15.  (a) The schematic diagram, and (b) the real structure of the 3-D 

magnetic property tester. 

 

For SOMALOYTM 500, the parameters of the 2-D Gaussian 

distribution function in the proposed model are σi = 0.04, σk = 

0.43 and µk =0.011, which can be directly determined by fitting 

the measured limiting hysteresis loop of the material.  

Fig. 16(a) depicts the comparison between the simulated and 

measured limiting hysteresis loop of SOMALOYTM 500. Fig. 

16(b) plots the comparison between the simulated and measured 

major hysteresis loops with different flux densities at 50 Hz. For 

better readability and the symmetry of the hysteresis loop, only 

the upper-half hysteresis loops are illustrated. 
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(b) 

Fig. 16.  Comparison between simulation and measurement of (a) limiting 

hysteresis loop and (b) major hysteresis loops with different flux densities 

under 50 Hz. 

 

Fig. 17 shows a series of B and H loci while the magnetic 

flux densities are controlled to form circular loci with 

magnitudes of 0.3, 0.6, 0.9, 1.2, 1.5 T at 50Hz, in which the 

measurement results are denoted with blue dashed lines and the 

simulation results with red solid lines respectively. The 

parameters in this case are obtained by fitting the model to the 

largest B and H loci. It is clear that the B loci are well 

controlled as the round loci, and the H loci change from circles 

to square-like loops with increasing magnitudes of B.  

The comparison demonstrates that although the simulated 

results do not match exactly with the simulated results, 

especially in the high flux density area, it is still acceptable and 

valid for developing high performance electromagnetic devices 

[32]. It is obvious that the simulations of the magnetic 

properties, especially the hysteresis, of SMC material under 

under different magnetic flux patterns agree in general with the 

measured results, which can prove the effectiveness of the 

proposed model. 

 
(a) 

 
(b) 

Fig. 17.  The comparison of measurement results (blue dashed line) and 

simulation results (red solid line) about the loci of (a) B and (b) H in 

SOMALOYTM 500 specimen with circular rotating flux density at 50 Hz. 

IV. CONCLUSION 

A vectorial elemental operator with biaxial anisotropy, based 

on the physical mechanisms of magnetic materials, was 

proposed to simulate the surface coated iron particles in the 

SMC material. Then, the magnetic properties of SMC material 

under different magnetic flux patterns can be determined by the 

superposition of these different elemental operators. 

This paper presents also the measured magnetic property of a 

kind of SMC material under alternating and rotational fields, 

respectively, by using the 3-D magnetic property measurement 

system. The hysteresis phenomenon under rotational field is 

totally different from that under alternating field. The 

relationship of the vectorial B-H cannot be described by a loop, 

but circular loci of B plus the corresponding flower-shaped loci 

of H. With the help of the elemental operator and distribution 

function, both the magnitudes and directions of B and H can be 

described in this proposed model. 

The results predicted by the proposed model agree well with 

the experimental results in SMC materials. This model is 

convenient for incorporation in the software packages for 

practical engineering electromagnetic field analysis, which can 

be helpful for design optimization of electromagnetic devices 

with SMC cores. 
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