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A generalized four flux method which is capable of modeling and tuning the spectral reflectance of di-
verse range of complex composite coatings is presented. An example application is exploring and max-
imising the visible and near IR spectral reflectance available from the diverse structures arising from
combinations of the many practical paint ingredients which are available or can be made when applied
to different substrates. This requires consideration of scatterers which can differ in composition, particle
size, size distribution, fill factor, and are held in place by a variety of organic binders (which typically
partially absorb in the near IR). This extended model is further enhanced by an explicit matrix algorithm
which allows analysis of diverse multilayer stacks. This is applied to a multilayer and is designed to
model useful changes that result from varying pigment fill factor as a function of depth within a layer.
A novel feature is the way the scattering impacts on binder or matrix absorptance. The model includes
contributions to total absorptance from the scattering pigments and from the binder which can arise in
different bands or simultaneously at the same wavelengths. Model accuracy is demonstrated by exam-
ple results when compared to experimental data on dried single layer paint profiles using imaged cross
sections. The model input covering actual pigment and binder properties used are; material, shape, size,
and size distributions, mass added, and the measured optical constants from 400nm to 2,500nm of the
un-doped binder resin layer. One interesting novel result is the comparison of a two-layered stack, with
bigger particles in the first layer and smaller in the second, to one with the opposite depth profile. © 2017

Optical Society of America
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1. INTRODUCTION

Modeling of the reflectance and transmittance of scattering me-
dia has been an area of interest for decades, since particle sus-
pensions are ubiquitous in nature (e.g. clouds) and are utilized
for practical effect in artificial materials such as coatings and
paints [1–4]. The random distribution of the scattering elements
makes it impossible to solve these systems analytically; instead
Monte Carlo methods are often used requiring a long computa-
tional time to obtain accurate results. Also, the radiative transfer
problem for diffused light has been presented in the framework
of Chandrasekhar’s equation [5] solving the problem for dif-
ferent incident angles [6–9] which give accurate solutions for
diffused light. On the other hand, methods based on flux balance
equations usually present a much faster way to obtain results
[10–12]; two-flux models assume fully diffused fluxes propagat-
ing in opposite directions, among those there is the well known
Kubelka-Munk theory [13, 14], which has been intensively used

and researched [15–17]. In particular, the four-flux method has
been used broadly for its easy applicability and the good balance
that it offers between complexity and accuracy [10, 18–20], con-
sequently several developments have been made in its formu-
lation and applicability [21–23]; nevertheless implementations
presented to this point still have a number of limitations.

In this paper diluted dispersions are considered. As a con-
sequence the four-flux method is better suited to study them
than two-flux methods, due to the importance of both collimated
and diffused light. The four-flux offers versatility in modeling
the dependence between collimated and diffused fluxes as the
coating thickness.

The main innovations presented in this work are:

1. the capability to analyze the impact of absorbing matrices,

2. an implementation with an admix of different kinds of scat-
terers including different particle sizes and particle compo-
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sitions,

3. a systematic way to implement particle size distributions,

4. a clear and specific methodology to determine model pa-
rameters,

5. a convenient matrix formalism to apply the generalized
four flux method developed in this paper in a multilayer
system.

This paper is structured in the following way: in section 2
we will present the problem of study with the classical Four-
Flux balance equations and define the classical balance equation
using effective volumetric parameters, which will allow us to
generalize its applicability; the solutions of our method will be
presented in a normalized way in order to avoid possible inde-
terminations; in section 3 the effective volume coefficients will
be presented; in section 4 we will introduce the formalism to
include particle size distribution into the model; in section 5 we
present a matrix formalism to analyze multi-layered stacks; in
section 6 we will present example results, discuss the influence
that different factors have in the total reflectance and transmit-
tance and test the models ability to fit measured optical response
and structural parameters of two different paint layers; in section
7 we will compare simulated with experimental results.

2. FOUR-FLUX MODEL

Throughout this paper we will consider the problem represented
schematically in Figure 1. A slab of thickness Z that separates
two media has incident and exit fluxes on each side made up of
two collimated beams and two diffuse fluxes. In our model we
will assume the same hypotheses as the classical papers [10, 21],
which is that collimated light can become diffused but not the
other way around: this is not a very restrictive assumption,
since the probability that diffused light becomes collimated due
to scattering of random distributed particles is negligible; it
also assumes an infinite slab in the x,y-axis, and consequently
reflectance and transmittance on these directions are omitted.
These hypotheses should be taken into account depending on
which scenario is modeled, since the edge effect sometimes has
great importance. In our research we want to model paints. As
a consequence the difference in magnitude between the incident
direction (z-axis) length scale of microns; and the paint plane
dimensions (x,y-axis), scale of centimeters or meters, make the
four flux hypothesis applicable.

Thus, the balance equations will depend on the difference
of the refractive index between each interface, the scattering
appearing inside the slab due to the added particles, and any
absorption caused by the particles and the matrix itself. The
diffuse scattering profile depends on a parameter called forward
average path length (ε), which weights the amount of scattered
light entering a solid angle. The value of ε is a measure of the
impact of particle spatial distribution on average path length.
If distributed isotropically hence randomly the particles will
lead to isotropic optical response. If distributed anisotropically
with greater linear density along some directions than others,
anisotropic scattering results. Vargas [24] discussed this param-
eter and analytical ways to define it. In this work we assume
isotropic diffuse scattering, which yields a value of ε = 2.

The differential equations in the normal direction z are writ-
ten in terms of the forward (J) and backward (I) fluxes, divided
into collimated (subscript c) and diffuse (subscript d) compo-
nents:

Fig. 1. Diagram of the four fluxes and interface parameters
used in the four flux model. Jc,d, Ic,d are the incident collimated
and diffused fluxes at each side of the slab; Z is the slab thick-
ness; rj

i are the reflection coefficients at the interfaces; super-
script 0 refers to the side where J fluxes enter the slab, while Z
refers to the side where I fluxes are incident; subscript d refers
to diffused light, c for collimated; while subscript i refers to the
interior edge and e to the exterior edge.

dIc

dz
= (Kc + S)Ic, (1)

dJc

dz
= −(Kc + S)Jc, (2)

dId
dz

= −ζ̃ Ic − β̃Jc + ε(Kd + β̃)Id − εβ̃Jd, (3)

Jd
dz

= β̃Ic + ζ̃ Jc + εβ̃Id − ε(Kd + β̃)Jd, (4)

where ζ̃, β̃ are the averaged forward and back scattered light
per unit length, Kc,d is the total absorption per unit of length of
collimated (c) or diffused (d) light, and S the total scattered light
per unit of length. In the classical four flux models, those param-
eters are defined as the scattering and absorption rates. In most
studies to date the particles were embedded in a non-absorbing
matrix. However in our model these rates, hence the various
coefficients, have to be modified since Mie scattering rates are
now influenced by the extinction occurring in the matrix while
absorption rates involve the sum of two extinction processes,
matrix and particle absorption. In the next section we will give
a detailed explanation of those coefficients.

A. Total reflection and transmission coefficients
The solution of a position dependent differential equation is
usually given by the expression that defines the variable (here
each J or I) in terms of its position within the slab e.g. J(z) for
any z between 0 and Z. In the case of the four flux problem,
we are mainly interested in the light fluxes and electromagnetic
energy travelling away from and entering the slab. These can be
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expressed in terms of reflection and transmission coefficients at
each side of the slab and these total R and T values at z = 0 and
z = Z can be broken down into collimated or diffused radiation
if desired. For example we use three subscripts to distinguish
each R and T physical component. These are for (i) incident
collimated to exit collimated (cc) (ii) incident collimated to exit
diffuse (cd) (iii) incident diffuse to exit diffuse (dd). Superscripts
0 (z = 0) and Z (z = Z) denote the different boundaries and in
this work boundary 0 for total reflectance R0 is our main techni-
cal interest but we will also look at TZ since some transmittance
data has been obtained on free-standing composites. Hence
we derive expressions that are equivalent to those in reference
[25], but it is important to notice that our expressions are sim-
plified in order to avoid non-physical numerical singularities
that previous expressions could present. This presents a more
robust framework to accurately study the extreme cases were
the thickness of the slab becomes large or tends to zero, or the
cases where the extinction coefficient becomes very large. For ex-
ample, these expressions have allowed us to compute results for
composites with both small size parameter and thick matrices.
The R and T coefficients for collimated, diffused, and diffused
from collimated light at both ends of the slab (z=0 and z=Z) are:

R0
cc = r0

c +
rZ

c (1− r0
c )

2

ϕD̃1
, (5)

R0
cd =

(1− r0
di)(1− r0

c )

D̃1D̃2

[
C̃1 + C̃2 + C̃3

]
, (6)

R0
dd = r0

de +
(1− r0

d1)(1− r0
de)

D̃2
C̃4, (7)

Tcc =
(1− r0

c )(1− rZ
c )

D1
, (8)

T0
cd =

(1− rZ
di)(1− r0

c )

D̃1D̃2
(B̃1 + B̃2 + B̃3), (9)

T0
dd =

(1− rZ
di)(1− r0

de)

D2
(1− α2

3), (10)

Ci, Bi, Di coefficients are defined in the appendix (sec.10), the
r0

c , r0
di, r0

de are the reflection coefficients at the z = 0 interface of
collimated light, diffused light inside the matrix and diffused
light outside the matrix, respectively; equivalently the coeffi-
cients rZ

i are the respective reflection coefficients at the interface
z = Z. These coefficients are obtained using Fresnel equations,
and in order to obtain the diffused reflections we average the
Fresnel reflection coefficients over the hemisphere.

Finally, the problem is solved using the previous equations
(5-10) to express the total reflectance and transmittance at both
ends of the slab.

R0 =
(R0

cc + R0
cd)Jc + R0

dd Jd

Jc + Jd
, (11)

TZ =
(T0

cc + T0
cd)Jc + T0

dd Jd

Jc + Jd
, (12)

RZ =
(RZ

cc + RZ
cd)Ic + RZ

dd Id

Ic + Id
, (13)

T0 =
(TZ

cc + TZ
cd)Ic + TZ

dd Id

Ic + Id
. (14)

3. EFFECTIVE VOLUME COEFFICIENTS

In this section we will introduce the effective volume coefficients,
which will allow us to include in the energy balance equations
characteristic of the Four-Flux method the effects of different
kind of particles, same particles but with different sizes, or the
absorption of the matrix. These effects are crucial when we try
to model real matrices, which we will show in the discussion
section. The balance equations that define our problem study the
change of flux per unit of length, i.e. dI = Idz, which means that
if we want to use a coefficient to express loss or gain of this flux,
it has to have units of [length]−1, this is one of the main things
that we will have to have in mind when defining the effective
volume coefficients.

A. Absorption and scattering coefficients
In this work we assume that the scatterers inside the medium
are spherical and at a low concentration. Thus, under these
conditions, Mie theory can be used to obtain the scattered and
absorbed energy by the particles. Also, as the series expansion
used in Mie Theory can present convergence problems for large
size parameters or very absorbing media, in those cases the
scattering results have been validated using Debye series formu-
lation [26–28]. As has been done in the classical paper [10, 21]
and as explained before, we have to normalize dimensions of
length for cross sections, i.e. the cross sections from Mie theory
have units of inverse of area ([length]−2), in other words they
express the intensity absorbed or scattered per surface. In or-
der to obtain a parameter with the proper dimensions it seems
natural to use the number density of this kind of scatterers. In
doing so and assuming that the particles are symmetrical we
can estimate the energy absorbed or scattered per unit of length.
Thus, the absorption (scattering) parameter will be defined as:

ki
abs = ηi · Cabs, (15)

si = ηi · Cscat, (16)

ηi is the number density of the ith scatterer.
On the other hand, if we want to obtain the absorption due

to the matrix, first we should obtain the absorption coefficient
of the medium for collimated and diffused light, i.e. we want
to obtain how much light is absorbed only by the matrix when
the collimated and diffused light are traveling in the considered
system. Thus, as the traveled distance of the diffused light
depends on the average path-length, ε should be considered
when studying the effective decay of diffused light in the system.
To do so we will consider an equivalent dispersive medium
(diffused light has same average path-length as the original
system), only composed of the particular matrix, therefore in this
scenario the balance equations 1-4 are reduced to the following:

dJc

dz
= −Kc Jc, (17)

dJd
dz

= −εKd Jd. (18)

These differential equations are straightforward to solve and
have as a solution a decaying exponential:

Ji = J0,i · exp[−αi], (19)

where i = c, d and αc = K, αd = εK. Thus, using previous
expressions we can obtain the skin depth (δs) in terms of the
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decaying constant (αi), which allows us to find the following
relation [29]:

αi =
2
δs

=
4πn2

λ
, (20)

where n = n1 + in2, is the refractive index, being n2 the extinc-
tion coefficient. Then, we can define the absorption collimated
and diffused coefficients due to the matrix:

kc =
4πn2

λ
, (21)

kd =
4πn2
λ · ε . (22)

Therefore, we can define a characteristic coefficient of the
composite that expresses the total energy loss due to absorption
per unit of length. These effective coefficients (Kc(d)) will be the
result of doing a volume average of the absorption coefficients of
each element (ki). Thus, using previous definitions we can write
a discrete expression for the effective coefficient, considering the
volume occupied for each element yields:

Kc(d) =
N

∑
i

ki
abs + kc(d) ·

(
1−

N

∑
i

fi

)
, (23)

where fi is the fill factor of particles of type i of N different types.
Notice that the previous expression converges to the case of a

non-absorbing matrix for α = 0 which of course, by construction,
also must agree with the case of a bulk absorbing material for
the case N = 0, when the absorption is exactly the absorption
coefficient, i.e. K = α.

Similarly as we did for the loss due to absorption, we can
define a characteristic parameter of the slab that expresses the
scattering occurring inside the slab per unit of length. In this
situation we only need to consider the particles inside the slab,
since they are responsible for this scattering.

S =
N

∑
i

si. (24)

A.1. Forward and back scattering ratios

In the four-flux model, an additional two coefficients called
the forward and back scattering coefficients are required. They
are not to be confused with the forward and back scattering of
the particles, instead these coefficients are a ratio that indicates
how much of the scattered light from the particle goes towards
the forward or back hemisphere. Thus, as in this work we are
assuming spherical particles, these coefficients can be defined
using Mie theory. Using notation of Bohren-Huffman [30], the
scattered light on the two main polarizations depends on the
coefficients S1, S2, defined as follows:

S1 = ∑
n

2n + 1
n(n + 1)

(anπn + bnτn), (25)

S2 = ∑
n

2n + 1
n(n + 1)

(anτn + bnπn), (26)

where τn and πn are the angular dependent functions, thus if
we want to know the ratio of scattered light in the forward or
back hemisphere we have to integrate over the respective angles
and then average the polarizations.

ζ1,2 =

∫ 2π
0

∫ π/2
0 |S1,2|2| cos θ| dΩ∫ 2π

0

∫ π
0 |S1,2|2| cos θ| dΩ

, (27)

β1,2 =

∫ 2π
0

∫ π
π/2 |S1,2|2| cos θ| dΩ∫ 2π

0

∫ π
0 |S1,2|2| cos θ| dΩ

, (28)

where dΩ = sin θdθdφ is the solid angle, |S1,2|2 are the scattered
irradiance per unit incident irradiance given that the incident
polarization is perpendicular (|S1|2) or parallel (|S2|2) to the
scattering plane given by θ. Note that the cosine term should
be considered, because ζ and β are the ratios of scattered light
in the forward and backward directions, so the projection on
that direction is what should be considered. The reason to use
the absolute value of the cosine is that these ratios consider
the amount of energy scattered in each projection and to do
so the sign of the cosine should be omitted, since the direction
information is implicit on ζ and β.

Finally averaging over the two polarizations,

ζ =
1
2
(ζ1 + ζ2), (29)

β =
1
2
(β1 + β2), (30)

and by definition they satisfy the relation ζ + β = 1.
Therefore, we can define the amount of light scattered into

the forward or backward hemisphere for each kind of scatterer
in order to obtain the final forward and back scattering ratios
used in the balance equations 1-4. Finally in order to obtain the
average scattered light in the forward and back hemisphere, we
will use the ratios that we just defined (eq.29-30), and use them
to average the scattered light.

ζ̃ =
N

∑
i

ζ i · si, (31)

β̃ =
N

∑
i

βi · si, (32)

where βi, ζ i are the coefficients of the ith scatterer, and si its total
scattered light.

4. SCATTERER SIZE DISTRIBUTION

In previous works this problem has been usually solved con-
sidering only one kind of scatterer with a fixed size, but in a
real sample what we really have are particles with a range of
different sizes. Thus, accounting for this diversity of scatterers
we can improve the realism of this model, and hence obtain a
broadened spectrum as seen in experiments.

As has been shown in the previous section, using effective
coefficients we can define the effect of scatterers with different
Mie characteristics. In this section we will apply the same prin-
ciple but for scatterers of the same composition, but different
size. Thus, we will define the parameters of a particular kind of
particles using the distribution function of their radius to weight
the total fill factor of that kind of particles.

k =
∫ r0+∆

r0−∆
η(r) · C(r)dr, (33)
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where C(r) is the cross-section of the particle of size r and η(r) is
the probability density function of particle radii, which is given
by the number of particles with size r per unit of volume (units
of m−3). Therefore, if we know how the sizes are statistically
distributed, we can obtain the effective coefficient of all of them
combined.

From a computational point of view it is more suitable to
define the discrete version of previous equation as a finite sum:

k ∼
M

∑
i=−M

η(ri) · C(ri), (34)

with 2M + 1 being the number of points that discretize the dis-
tribution, thus for M → ∞ the sum converges to the integral
(equation 33).

5. MULTILAYER FORMALISM

In this section an iterative matrix algorithm is presented to solve
a multilayer problem using the four-flux method in each slab.
A four flux multilayer method has been studied before [25],
nevertheless in that article the propagation phase matrix was
not explicitly done, only continuous equations where presented.
Therefore the aim of this section is to present explicitly the matrix
formalism for an arbitrary number of layers (a similar approach
was used by Simonot et al [31], also at the time of writing another
multilayer 4 flux approach was published [32]).

Let us assume a system of slabs as presented in diagram
figure 2, where the number of layers increases in the z-axis
direction; interfaces are labelled as follows: increasing along the
z direction, the first interface of each layer is labelled with 0 and
the ending interface with Z. In order to find the propagation
matrix from one layer to another, we need to know the incoming
and outgoing fluxes of a particular slab.

Fig. 2. Diagram of the multilayer structure and notation.

IZ
c (i− 1) = I0

c (i + 1)Tcc(i) + JZ
c (i− 1)R0

cc(i), (35)

IZ
d (i− 1) = I0

c (i + 1)TZ
cd(i) + I0

d (i + 1)TZ
dd(i)

+ JZ
c (i− 1)R0

cd(i) + JZ
d (i− 1)R0

dd(i), (36)

J0
c (i + 1) = JZ

c (i− 1)T0
cc(i) + I0

c (i + 1)RZ
cc(i), (37)

J0
d(i + 1) = JZ

c (i− 1)T0
cd(i) + JZ

d (i− 1)T0
dd(i)

+ I0
c (i + 1)RZ

cd(i) + I0
d (i + 1)RZ

dd(i), (38)

where the brackets with the i arguments denote the layer.{
I0
c (i + 1) = IZ

c (i), J0
c (i + 1) = JZ

c (i),
I0
d (i + 1) = IZ

d (i), J0
d(i + 1) = JZ

d (i).
(39)

Using equations (35-38) and imposing the conservation of the
flux between interfaces eq.(39), we can obtain a linear system
that relates two adjacent slabs, which can be expressed in matrix
form eq.(40). In order to obtain explicitly the flux-propagation
matrix, it is more suitable to write a matrix equation relating the
fluxes at both interfaces of a particular layer.


Tcc 0 0 0

Tcd0 Tdd0 0 0

−Rcc0 0 1 0

Rcd0 Rdd0 0 −1




Jc(i− 1)

Jd(i− 1)

Ic(i− 1)

Id(i− 1)

 =


1 0 −RccZ 0

0 1 −RcdZ −RddZ

0 0 TccZ 0

0 0 −TcdZ −TddZ




Jc(i)

Jd(i)

Ic(i)

Id(i))

 (40)

where all reflectance and transmittance coefficients are the coef-
ficients of the ith layer. Expressing previous equation in matrix
form we can generalize the flux transfer for an arbitrary number
of layers.

A · F(i−1) = B · F(i), (41)

with Fi = (Jc(i), Jd(i), Ic(i), Id(i))T , thus we can easily express
the transfer matrix from eq.41.

F(i−1) = A−1
i BiF(i), (42)

F(i−1) = MiF(i). (43)

By induction it is easy to see that we can write the flux F at
the first interface of the stack in terms of the flux at the final
interface of it.

F0 = φ · Fτ , (44)

φ =
L

∏
i=1

Mi, (45)

where ∏L
i=1 Mi = M1 · M2 · M3 · · · · · ML. Finally, the last

step to do is to relate the incident flux (initial condition) with
the outgoing flux of the whole stack. The incident fluxes are
X0 = (Jc(0), Jd(0), Ic(τ), Id(τ))

T , and the outgoing fluxes are
X = (Jc(τ), Jd(τ), Ic(0), Id(0))T , with τ the total stack thick-
ness.

6. RESULTS AND DISCUSSION

One of the main purposes of this work is to present the overall
effect in a turbid medium caused by different kind of scatterers:
different in composition, size and size dispersion. It is important
to know the extent that exploiting these differences and allowing
their combinations in one sample will allow wider degrees of
spectral tuning of the optical response. Thus, in order to com-
pare such effects we will first consider a fixed layer thickness
of 380µm. It is important to clarify that we are fixing this thick-
ness parameter in order to emphasize the relevance of other key
parameters; nonetheless, if the objective was to analyse or im-
prove a particular system the thickness of the composite should
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also be considered, especially if the matrix is absorbing. Also, if
not stated otherwise we are considering size distributions with
standard deviation of 20% of the mean radius.

We have implemented this formalism using MATLAB; some
of the Mie scattering routines where based on C. Mätzler code
[33].

A. Binder absorption

The aim of this section is to convince the reader of the effective-
ness and value of the modifications presented in this work. With
this goal in mind we will present systematic simulations that
show, first the effect of these effective coefficients and second,
the improvement of the accuracy that they bring. Thus, we will
be able to show the improvement in the agreement with experi-
mental data due to the incorporation of the binder absorption
by comparing results obtained without binder absorption but
all other model parameters retained.
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Fig. 3. Simulations of the spectra of acrylic paint with a nor-
mal distribution of TiO2 particles of mean radius 0.08µm and
fill factor 10%; (a) without binder absorption; and (b) with
absorption of the actual Acrylic resin used included.

Figure 3 shows that the effect of simulating the binder ab-
sorption is obvious, with strong absorption bands evident in
the infrared region. From figure 4 it can be easily seen that the
difference in reflection in the IR is due to added acrylic poly-
mer related absorption (green lines). We can also appreciate
that in the visible-NIR the binder adds significant absorptance
and therefore the reflectance profile in this region also changes
considerably. For instance, if we were interested in improving
the reflectance in the visible we might consider adding smaller
particles in the mixture in order to add backscattered light in
this particular region. Also, it is interesting to see the high ab-
sorption in the ultraviolet region. In figure 4 this band appears
in both simulations, the one with and without binder absorption.
This fact tells us that this absorption comes from the embedded
particles, indeed this absorption region matches closely with the
inter-band absorption edge of rutile TiO2.

The study of the NIR absorption bands resulting from the
binder is a crucial matter in coatings used for cooling, therefore
being able to model this effect accurately can help us to improve
coatings, so there is less absorption in the IR.
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Fig. 4. On the left side we can see a non-absorbing acrylic
paint with a normal distribution of TiO2 particles of mean ra-
dius 1µm and fill factor 10%. Right graph shows acrylic paint
with a normal distribution of TiO2 particles of mean radius
1µm and fill factor 10%.

B. Distribution sizes

In Figure 5 we show the reflectance of acrylic paint for different
size of scatterers and solar energy wavelengths. It can be seen
that particles with radius between 0.3− 0.4µm yield the highest
average reflectance over the whole wavelength spectrum, while
these smaller particles are also the ones that yield reflectance
values of nearly 100% across the visible range. This is because
they backscatter more in this wavelength region. On the other
hand bigger particles reflect and backscatter more strongly in
the NIR.

By comparing different composites in which mean particle
diameter d changes in large steps over a wide range , with its
standard deviation σ a fixed fraction of d, and particle volume
fraction fixed we can systematically study the way configuration
changes can be used to increase transmission or reflection of
light in particular wavelength bands. As an example we con-
sider the case of a white acrylic based paint with TiO2 pigments
as scatterers. Thus, in Figure 6 we present the reflectance of
four different paint compositions, where we fix the volume frac-
tion of scatterers, but vary their mean diameter d while setting
the standard deviation at 0.1d about each d. It is interesting to
see that the back-scattering ratio, which is defined as the frac-
tion of light scattered into the half-hemisphere in the backward
direction, is strongly dependent on the size as can be seen in
the bottom-left image on Figure 6. In this picture we can see
that smaller particles are more efficient at backscattering over-
all, but this advantage diminishes at NIR wavelengths as their
scattering there is less than at visible wavelengths. In contrast,
bigger particles become much more efficient at backscattering
at these longer wavelengths. Nevertheless, what matters is the
product of backscattered ratio to total scattered light, in other
words, how much scattered intensity goes into the backward
hemisphere. Thus, even though for wavelengths around 2µm
small particles scatter more in the forward direction, the inte-
grated scattering rate of smaller particles is large. Integrated
solar reflectance clearly decreases as diameter increases since
the solar intensity falls beyond 1µm. This analysis links the total
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spectral reflectance presented on the top-left image in figure 6 to
the directional composition of internal scattering. On the other
hand, if we were more interested in improving transmittance,
we should consider bigger particles, since they back-scatter less
on average across the whole solar wavelength spectra, as can be
seen in the black lines on the two bottom images on figure 6.
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Fig. 5. Shows the reflectance for different scatterer sizes and
wavelengths.

If spectral adjustment of backscattering to total scattering
ratio is of interest a response that combines those of small and
big particles can help. In order to achieve that we have two
main options: the first would be choosing a dominant size, the
mean size, and to increase the standard deviation of the size
distribution about a single d value, which will yield a broader
spectral response. On the other hand, two or more considerably
different mean d values can provide a different spectral response,
so then we may have to include two or more different distribu-
tions of diameter d which may be separate or partially overlap
as a function of d. Figure 7 follows the first idea of one mean
d value. There it can be seen that the wider the distribution
is, the more the different spectral responses come together. As
the Gaussian approaches a delta function, the spectral response
approaches that for a composite with mono-disperse, single
diameter particles.

On the other hand, sometimes we will want the response of
two distinct distributions, and in those cases, we will follow the
second approach. As an example of this influence in figure 8
we compare three types of composites, two of them are char-
acterized by a single size distribution of scatterers with well
separated mean diameter values of 0.2µm and 3µm, whereas the
third example is a result of the weighted combination of the two
separate spreads. It can be clearly seen that in doing so a com-
posite is achieved that maintains the very high visible reflectance
of the small particles, and the high NIR reflectance achievable
with big particles. In the bottom images of figure 8 it can be
appreciated that the mixed composite has backscattering and
total scattering spectral responses in between the values arising
with either a small or large mean radius. Thus it seems intuitive
to think that by mixing two particle supplies with very different
mean diameters an improvement of overall solar reflectance will
occur in the final composite.

These examples shown that mixing different size particles
with tailored size distributions can be used to adjust spectral
diffuse response over a wide range. This revised 4-flux model is
an excellent and flexible composite layer design tool as demon-
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Fig. 6. (Top-Left) Reflection of acrylic paint for different size
particle distributions. (Top-Right) Gaussian distribution of
particle radius for each paint. (Bottom-Left) Back-scattering
ratio of each distribution. (Bottom-Right) Total scattering of
each distribution.

strated by its ability to optimize the hemispherical reflectance
spectrum of heterogeneous composites, by taking advantage of
the spectral variations in their radiative-transfer profiles which
are very sensitive to particle size.
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Fig. 7. Shows the effect of varying the standard deviation of
the composite size distribution. This system represents an
acrylic based paint with 14% of TiO2 particles with fixed mean
radius of 1.8µm.

C. Analysis of a two-layer stack
Very often natural or artificial composites present a grading in
composition, which can be modelled as a multi-layered structure.
For instance, some heterogeneous paint solutions that dry into
composites with a gradient in composition , which can change
the overall optical response. The aim of this subsection is to
show the capability of the formalism introduced in section 5, for
different configurations. In particular, we will study a two layer
stack, where both layers have same binder, same volume ratio
of composites and same thickness, but different scatterer size.

Figures 9 shows that there is a significant difference in the
optical response due to the arrangement of particles. In figure 9-
(a), where the first layer contains the big particles, the reflectance
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Fig. 8. Top-left figure shows the reflectance of 3 different
paints. Top-right graph shows the size distribution of each
paint. Bottom-left shows the backscattering ratio of each paint.
Bottom-right shows the total scattering of each composition.

spectra is relatively flat, and importantly the absorption in the
NIR is much lower than for the opposite configuration (fig 9-
(b)). This result can be explained considering previous results
presented in this paper; bigger particles backscatter more at
long wavelengths corresponding to the bigger absorption bands.
Thus, reflecting those wavelengths as soon as they get inside the
stack is an easy way to prevent absorption.

7. VALIDATING RESULTS WITH EXPERIMENTAL DATA

Finally, our model is tested by its ability to model experimen-
tal data using structural information obtained from two sam-
ples whose spectral hemispherical reflectance and transmittance
had been measured. Including binder absorption and particle
(e.g. paint pigment) size distributions significantly improved the
agreement obtained between experimental and model data. The
experimental hemispherical reflectance data was collected using
a Perkin Elmer Lambda 950 with 150mm integrating sphere. The
refractive index of the binder was determined via preparation of
a binder-only sample on a silicon wafer measured via ellipsom-
etry, using a JA Woollam V-VASE ellipsometer, combined with
spectroscopic transmittance of the same free-standing film after
peeling it off the silicon wafer substrate. The TiO2 refractive
index data was modeled using a Tauc-Lorentz oscillator model
matching the bandgap to the experimental data.

A. Sample preparation

Two samples were made following the same process: mixing the
compounds and leaving the samples to dry for one week, after
which the weights of the composites were estimated. Paint used
in figure 10 was made mixing water (0.53g), acrylic (2.25g) and
TiO2 (0.74g small size, 0.1g big size); after drying the volatile
component loss leaves weights of: 1.24g acrylic, small size TiO2
0.41g and big size TiO2 0.06g; and a final thickness of 380µm.
Using the final weight of the compounds the fill factors of TiO2
particles were found to be 7.72% for the small size, and 1.79%
for the big size. Paint represented by figure 11 was made mixing
water (0.67g), acrylic (1.46g) and TiO2 (0.40g); after the drying
process the compound weights got reduced to: acrylic (0.5g) and
TiO2 (0.34g). The estimated fill factor for the TiO2 was 15%.

Fig. 9. (a) Left image is a cartoon of the system modeled in the
right image. The system is a two-layered stack with acrylic
matrix and a 7% of TiO2 scatterers for both layers; first layer,
particles with mean radius 1µm and standard distribution
200nm; second layer, particles with mean radius 100nm and
standard distribution of 20nm. Reflectance, transmittance and
absorptance are calculated for incidence fluxes from the left.
(b) Left image is a cartoon of the system modeled in the right
image. The system is a two-layered stack with acrylic matrix
and a 7% of TiO2 scatterers for both layers; first layer, particles
with mean radius 100nm and standard distribution of 20nm;
second layer, particles with mean radius 1µm and standard
distribution 200nm.
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B. Comparing results

In order to fit simulation with experimental results, the scatterers
size and fill factor have been used as a fitting parameter, thus
the best fitting results give a close estimate of the average size of
the pigments and their fill factor.

Figure 10 compares the experimental and simulated data.
The position of the absorption bands of the binder allows a good
match to the experimental optical result over most of the solar
spectral range. Reflectance agrees with some minor quantitative
differences in the depths of the absorption bands. In order to
obtain this result we used two distribution sizes, one with mean
radius of 10nm and the other with mean radius 180nm. In both
cases the distributions follow a Gaussian with standard devia-
tion set at 10% of the mean diameter value. Thus, combining
different distribution allowed us to match the experimental be-
havior in both the visible and IR. However, it is important to test
the response of other distributions to determine if this result is
unique. This is because as shown in the previous sections the re-
flectance of a composite is very sensitive to the size and volume
fraction of the scatterers inside, therefore different combinations
of them could give a similar result. This is why we cannot use
only the reflectance to fit optical data. Some of the variables
must be constrained to avoid any ambiguity on structural im-
pacts. For instance, the total volume fraction of scatterers can
be measured, or the size distribution of the composites can be
found using microscopy. In addition, pigment supplies often
come with information on mean pigment diameters and their
distribution which can also be used. Figures 10 and 11 show
that the simulated results agree with the experimental data at all
wavelengths apart from details in some NIR absorption bands.
Differences between simulation and experiment could be at-
tributable to differences between the refractive index data of the
acrylic used in the simulation which was separately character-
ized for index, and its actual refractive index in the measured
material after formulation and drying, for example some voids
might be present. We also note that we have not considered
multiple-scattering which could affect the reflectance spectra.
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Fig. 10. Comparison between the reflectance of experimental
and simulated data of an acrylic paint with 6% TiO2 scatterers
where their size follows a normal distribution with mean ra-
dius µ0 = 90nm and standard deviation σ = 18nm, and a 1%
TiO2 with a size distribution characterized by a mean radius
µ0 = 500nm and standard deviation of σ = 100nm.
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Fig. 11. Comparison between the reflectance of experimental
and simulated data of an acrylic paint with 14% TiO2 scatter-
ers where their size follows a normal distribution with mean
radius µ0 = 80nm and standard deviation σ = 16nm.

8. CONCLUSION

In this paper we introduced an extended version of the classi-
cal four-flux method , explained how to obtain all the model
coefficients needed and then how to analyse heterogeneous me-
dia with different composites. Including any attenuation in
the matrix is important. Using this method we can easily ana-
lyze the extreme cases where material thickness becomes very
large, or when extinction governs the flux transfer. However
it is important to note that in our formalism we are assuming
non-dense media. For the study of a highly packed medium
multi-scattering effects should be considered [18, 34, 35].

Finally, good agreement was obtained between experimen-
tal reflectance and reflectance obtained using our model with
structural data obtained independently using a SEM. In a future
publication we will use this method to optimize white paints in
order to improve cooling of buildings exposed to solar radiation.
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10. APPENDIX

The coefficients used in section 2.A are defined here.

C̃1 = e−2
√

A1Z(α3 − rZ
di)
[
rZ

c e−2ΓZ(α2 − α1α3) + (α1 − α2α3)
]

,

(46)

C̃2 = (1− α3rZ
di)
[
rZ

c e−2ΓZ(α1 − α2α3) + (α2 − α1α3)
]

, (47)

C̃3 = φ−1 · (1− α2
3)
[
rZ

c (r
Z
diα2 − α1) + (rZ

diα1 − α2)
]

, (48)

C̃4 = α3(1− α3rZ
di)− e−2

√
A1Z(α3 − rZ

di). (49)

D̃1 = 1− rZ
c r0

c e−2ΓZ, (50)

D̃2 = (1− α3rZ
di)(1− α3r0

di)− e−2
√

A1Z(α3 − rZ
di)(α3 − r0

di)
(51)
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B̃1 = e−(Γ+2
√

A1)Z(α3 − r0
di)
[
rZ

c (α1 − α2α3) + (α2 − α1α3)
]

,

(52)

B̃2 = e−ΓZ(1− α3r0
di)
[
rZ

c (α2 − α1α3) + (α1 − α2α3)
]

, (53)

B̃3 = e−
√

A1Z(1− α2
3)
[
e−2ΓZrZ

c (r
0
diα1 − α2) + (r0

diα2 − α1)
]

.

(54)

where Γ = Ke f f + Se f f is the extinction parameter, ϕ ≡ eΓZ

and the relation between the coefficients with and without tilde
depends on an exponential:

φ = ϕ · ψ = e(Γ+
√

A1)Z, (55)

Ci = φ · C̃i (i = 1, 2, 3), (56)

C4 = ψ · C̃4, (57)

D1D2 = ϕD̃1 · ψD̃2 = φ · D̃1D̃2. (58)

Coefficients A1, αi are those introduced by Tonon et al [25].
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