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Abstract—With the advance in wireless networking technolo-
gies and communication infrastructures, mobile cloud computing
has emerged as a pervasive paradigm to execute computing
tasks for capacity-limited mobile devices. More specifically, at
the network edge, resource-rich and trusted cloudlet system
is acting as a ‘data center in a box’ to support compute-
intensive mobile applications. The mobile cloudlets can provide
in-proximity services by executing the workloads for nearby
devices. Nevertheless, load balancing in mobile cloudlet network
is of great importance and has a huge impact on response
time. Existing methods for cloudlet load balancing basically
rely on the user-cooperation or strategic placement. However,
above solutions require global task load information from the
network, which is costly in communication and computational
overhead. To achieve more efficient and low-cost load balancing,
we propose ‘CTOM’, a Collaborative Task Offloading Mechanism
for mobile cloudlet network. Our solution is based on balls-and-
bins theory and can balance the task load only with limited
information. Extensive simulations and mobility trace based
evaluation show that, the proposed ‘CTOM’ is effective and can
achieve similar performance to the greedy algorithm with low
computing complexity.

Keywords-load balancing; mobile cloudlet network; task allo-
cation

I. INTRODUCTION

In recent years, with the pervasive proliferation of mobile

devices and the advances in networking technologies, mobile

users are free to enjoy more powerful and functional ap-

plications, for example, Augmented Reality, Virtual Reality

and Face Recognition [1]. While mobile applications become

more demanding in computation and resources, the capacity

of smart devices are still constrained. Such that, mobile users

are constantly facing with the problems of resource-exhaustion

and energy-drain. To tackle this issue, cloud computing has

been proposed and pervasively used for processing resource-

intensive tasks [2]. However, due to the long distance between

the central servers and mobile users, there are some inevitable

limitations in cloud computing, such as network latency, signal

loss, link noise and transmission delays [3]. To overcome the

above issues and provide more accessible resource to mobile

users, an alternative cloud computing paradigm is proposed,

which is the so called cloudlet [4].

A cloudlet is a trusted, resource-rich cluster of servers

that integrated with wireless access points(APs), by which

it is accessible and connected to nearby mobile users [5].

By providing seamless computing services with low-latency

and high-bandwidth wireless access, cloudlets can execute

computation tasks offloaded from mobile users at real-time

speeds, thereby significantly improve the performance of cloud

computing [4], [6], [7]. Recent studies [8], [9], [10], [11]

focused on mobile cloudlets, which utilize the multitude

of near-user vehicular cloudlet to carry out more efficient

communication and computation.

A key challenge in mobile cloudlet network is how to keep

load balancing among all the mobile cloudlets, so that cloudlet

resources are fully utilized and tasks could be concurrently

processed by multiple servers, thus shortening the average

task response time. As vehicle-based cloudlets may randomly

travel around various areas with different population density,

it is impossible to centrally control the amount of user task

offloading to an exact cloudlet. Adding to that the connectivity

in mobile cloudlet network is intermittent, how to achieve the

load balancing still remains a challenge.

There are some studies address load balancing issues in

static cloudlet systems, either by strategic cloudlet placement

[12], [5] or cloudlet-oriented task redistribution [6], [13].

However, these methods are not applicable in mobile scenario,

where the cloudlets are enhanced with random mobility and

the network is intermittently connected. Indeed, it is quite

daunting to achieve load balancing among mobile cloudlets as

they are purely distributed. Even worse, for each cloudlet, the

load information of its neighbors is constantly changing, which

implies that the computation of obtaining overall load informa-

tion would be more costly. Accordingly, two challenges need

to be carefully addressed.

First, the load balancing should be achieved through the

collaborative task offloading. As the mobility of cloudlets can

neither be centrally controlled nor predicted, it is hard to

redirect exact amount of task flow from one cloudlet to anoth-

er. Fortunately, it is impossible for encountering cloudlets to

offload tasks collaboratively by sharing their load information.

Second, the balanced task allocation method should be low-

cost and light-weight in communication and computation. It is
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impractical to query global load information in a distributed

mobile cloudlet network. Even if it can be achieved, the

accumulative communication cost from the overall network

would be extremely high. Moreover, the out-sync task load

information caused by transmission delay may lead to wrong

offloading decision to already overloaded cloudlets.

In this paper, to deal with aforementioned challenges, we

propose ‘CTOM’, a Collaborative Task Offloading Mechanism

for mobile cloudlet networks. Our method leverages balls-

and-bins model to perfectly fit the distributed task allocation

scenario in mobile cloudlet networks [14]. Based on the

‘two-choice’ paradigm, by only querying load information

from two random neighbors in each interval, a cloudlet could

process a relatively balanced task offloading. Accumulatively,

the longest task queue among all mobile cloudlets would be

significantly reduced with high probability [15].

We summarize the contributions of this paper as follows.

1) To the best of knowledge, this is the first work on col-

laborative task offloading mechanism for mobile cloudlet

network, where the cloudlets are enhanced with mobility

and intermittently connected.

2) Inspired by probability theory derived from balls-and-

bins model, we propose an innovative algorithm for

balanced task allocation in distributed mobile cloudlet

network. By comparing the task load of only two neigh-

bors, a mobile cloudlet can make a valid task offloading

decision with low communication cost.

3) We validate the effectiveness of our method in simula-

tion and evaluation with real-world trace dataset. The

simulation results show that ‘CTOM’ achieves exceed-

ingly balanced results in mobile cloudlet task allocation

and performs closely to the optimal solution that using

global task load information.

The remainder of this paper is as follows. We introduce

the system model and the problem formulation in Section

II. The algorithm design is introduced in Section III. To

validate the proposed ‘CTOM’ scheme, extensive simulation

and evaluations have been done and the results are illustrated

in Section IV. Finally, we conclude our paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the preliminaries of our system

model. After that, we describe the load balancing problem in

mobile cloudlet networks.

Network Model We start the network model with a set of

mobile cloudlets deployed in a Metropolitan Area Network-

s(MAN). We assume there are K mobile cloudlets are inte-

grated with vehicular access points(APs), and we denote these

cloudlets by a set of C = {c1,c2,...,cK}. It is also assumed that

the user’s applications are dynamically partitioned into offload-

able and executable computing tasks that can be processed at

any of the k cloudlets. Also, cloudlets could communicate

with each other via WiFi networks. Such that, each cloudlet

can either locally process incoming tasks, or transmit current

tasks to neighboring cloudlets in the network(as depicted in

Fig. 1.

Cloudlet Model According to [6], for each mobile cloudlet

i ∈ {1, 2, ...,K}, we model it as a M/M/n queue. Each

cloudlet i has si server(s) with the service rate µi. Also, we

adopt random walk to model the mobility of cloudlets, as

they randomly travel around in the metropolitan area. For any

cloudlet i, as the amount of task offloading from nearby user

varies constantly, we also adopt the Poisson process from [6]

to represent the incoming user tasks, where the mobile users

choose the nearest mobile cloudlet to offload tasks and the task

arrival rate at cloudlet i is λi. Also, to store the arrived tasks

pending for execution, each mobile cloudlet holds a FIFO task

queue Q = {q1, q2, .., qk}, where the queueing length is ||Qi||.
Communication Model Similar to [6], the mobile cloudlets

in our model are also integrated with Wi-Fi Access Points,

which provides for one-hop, low-latency and high-bandwidth

wireless access opportunities for task offloading . Due to the

random mobility, the mobile cloudlet network is intermittently

connected. Only when the wireless connection is established

the mobile cloudlets can offload tasks to each other. We

assume that the geographical distributions that mobile cloudlet

follows an independent Homogeneous Poisson Point Process

[7]. To better investigate the task offloading in mobile cloudlet

networks, we divide the time domain into serial intervals as

time slots. During each time slot, a cloudlet i has probability

of accessing j cloudlet, which can be calculated as:

Pr{K = j} = e−πR2λc
(πR2λc)

j

j!
, j = 0, 1, 2, ..., k (1)

where λc is the distribution density of mobile cloudlets and R
is the inter-contact range between cloudlets. When the distance

dij between cloudlet i and j is within the inter-contact range

R, a communication can be established between them. The

inter-meeting time of cloudlets ci and cj is denoted as ti,j .

Based on [16] and [17], the inter-contact time ti,j would follow

exponential distribution with pairwise rate αij , i.e., f (t) =
1

αi,j
e
−

1

αi,j
·t
, t ≥ 0, t ≥ 0. Such that, between any two time

stamp ta and tb, the encountering probability of cloudlets ci
and cj is denoted as followed:

Pi,j (ta, tb) = e
−

1

αi,j
·ta − e

−
1

αi,j
·tb

(2)



According to computing task offloading experiment, for

applications such as augmented reality and face recognition,

under WiFi connection, the task execution time is approxi-

mately 10−4 ∼ 10−2 seconds [1]. Adding to that the round-

trip time (RTT) of wireless transmission only takes tens to

hundreds of milliseconds, we can set time interval reasonably

long enough for the inter-contact time (including execution

time and RTT), i.e., the task execution results can be sent

back to the corresponding mobile users within the same time

interval [8].

Task Offloading Model In our model, a ‘task’ refers

to an application phase that involves executable codes and

offloadable data to be processed at any mobile cloudlet [7].

Such that, the total number of tasks generated from different

user’s application fluctuates. We address above considerations

by sampling Poisson process to determine the actual number of

tasks at cloudlet i. We denote Ti = λi as the arriving task from

users to cloudlet i. We adopt the percent imbalance metric and

the statistical moment from [18] to evaluate the overall load

balancing of task allocation, i.e., percent imbalance metric η
and skewness ϕ. The above metrics are calculated as follows

η =

(

Lmax

L̄
− 1

)

× 100%, ϕ =

1
n

n
∑

i=0

(Li − L̄)
3

( 1
n

n
∑

i=0

(Li − L̄)
2
)
3/2

(3)

where Lmax and L̄ are the maximum and average load respec-

tively. The percent imbalance metric measures the severity of

load imbalance, while the skewness provides a detailed picture

of load distribution [18].

Problem Domain Given a mobile cloudlet network G with a

set of cloudlet C = {c1,c2,...,cK}, where each cloudlet i holds

a FIFO task queue in Q = {q1, ...qi, ...qk} to store received

tasks. Meanwhile, cloudlet i has ni servers with service rate

µi and the task arrival rate at cloudlet i is λi. We define the

Mobile Cloudlet Load Balancing Problem as follows.

Basic Load Balancing Problem: We investigate how to

collaboratively offload tasks in mobile cloudlet networks.

Particularly, our goal is to minimize the overall variance of

task queue in achieving balanced task distribution, which can

be given by

Minimizemin
∑

i∈C

‖Qi − E [Q]‖ (4)

Subject to µi · ni ≥ λi, i ∈ C.

Gap minimization and balance metric evaluation: Mini-

mizing the task load gap between maximum queue and average

queue is also worth evaluating. Note that the maximum load

Lmax and average load L̄ both count for the imbalance metric

and statistical skewness in 3. The evaluation of task load gap

can be given by

Minimizemax
i∈C

‖Qi‖ − Ei∈C [Qi] (5)

Subject to µi · ni ≥ λi, i ∈ C.
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Fig. 2: Theoretical results of maximum load in balls-and-bins

problem

III. OUR SOLUTION AND ALGORITHM DESIGN

A. Leveraging balls-and-bins based probability theory

The balls-and-bins model is a classic in probability model

for randomized allocation process [15]. Suppose that m balls

are to be thrown into n bins , with each ball choosing a bin

independently and uniformly at random. The question comes

with the maximumload, i.e., the largest number of balls at

any bin. In [14], a partially randomized allocation paradigm

called ‘d-choice’ is proposed. For each allocation, the ‘d-

choice’ places a ball into the least loaded bin of d (d ≥ 2)

bins. As the maximum load varies with different quantities of

balls and bins, we conclude the maximum load for random

allocation and ‘d-choice’ allocation in Fig. 2.

B. Algorithm Design

1) Overview: To solve unbalanced task allocation problem,

we propose ‘CTOM’, a collaborative task offloading mechanis-

m for mobile cloudlet networks. Here, the tasks and cloudlets

are considered as balls and bins respectively. As the network

connectivity is intermittent, the neighbor’s load information of

each cloudlet also continuously changes. Such that, traditional

methods that based on global load information will be costly

in communication and computation for our problem.

In designing the algorithm, we adopt ‘d-choice’ paradigm

from balls-and-bins model as ‘2-choice’ method, By applying

‘2-choice’ method, a mobile cloudlet compares the task load of

2 random selected neighbors in its communication range, and

offload a computing task to the one with shorter task queue.

There are some basic assumptions in the model for algo-

rithm design. First, we assume that the incoming tasks from

mobile users are of the same size, thus the final allocation

results can be measured precisely. Second, at each cloudlet

i, the arrived tasks are stored at the task queue Qi. Third,

the time interval is long enough for the inter-contact time

(including execution time and RTT).

2) Algorithm: As illustrated in Algorithm 1, we present the

two-choice based mobile cloudlet collaborative task offloading

algorithm, which balances the task distribution and computes

the imbalance metrics as well as statistical moments.

First, the algorithm starts with initializing mobile cloudlet’s

location At the beginning of each time interval, the algorithm

will update cloudlet’s location and task load. For cloudlet i,



Algorithm 1 Algorithm CTOM

Input:

Mobile Cloudlet C, Time Interval t, Contact Range R
User Task Flow λi, Number of Servers S, Service Rate µi

Output:

Task Queue Q, Imbalance Metric and Statistical Moments

1: Minimize min
∑

i∈C

‖Qi − E [Q]‖ using ‘two-choice’

method.

2: Initialize cloudlet’s location (X,Y)

3: for Interval i = [1 : t] do

4: Update cloudlet’s location based on random walk

5: Update cloudlet’s load information with λi, si, µi

6: for Each cloudlet j = [1 : k] do

7: Updating neighboring list L(j) according to Equ.1

8: Initialize the offloading task weight W(i)

9: Randomly select d neighbors

10: s← the first selected one of d neighbors

11: for v = 2 to d do

12: if qs > qv then s← v
13: end if

14: end for

15: if qj > qs then

16: P ← 1− qs/qj
17: qj ← ls +W (i) ∗ P
18: lu(i) ← lu(i) −W (i) ∗ P
19: end if

20: end for

21: end for

22: return Q, η, ϕ

based on Equation 1, the algorithm computes the number of

its neighbors in current time interval. And then, by randomly

selecting d neighbors, the algorithm begins to iteratively

compare their task load in sorting for the least task load.

Note that, here we use d for illustrating different algorithm.

The proposed ‘CTOM’ adopt ‘two-choice’ paradigm for task

offloading, which determines ‘d’ as 2. For greedy algorithm,

‘d’ equals to the total number of current cloudlet’s neighbors.

After that, the algorithm will check whether the selected

neighbor is appropriate for taking over the current cloudlet’s

task by further comparing their task load. The proportional

algorithm [19] continues to compute the offloading probability

based on the proportion of task load between current cloudlet

and the selected cloudlet.

At last, the imbalance metric together with statistical mo-

ments will be calculated for evaluation use.

IV. PERFORMANCE EVALUATION

The performance evaluation of proposed scheme is twofold.

First, we evaluate ‘CTOM’ in simulated network scenario,

where cloudlet encounters are generated from random walk

simulations. Second, we apply the proposed algorithm to a

real-world trace for further evaluations.
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Fig. 3: Task allocation results under different schemes

A. Simulation Study

1) Basic setups: We run the simulation in a 10km2 re-

gion, which is of the similar scale of a city’s central area.

Here, we set the number of mobile cloudlets as 100 and the

communication range as 20 metre. The total number of time

slot is 600. According to [6], for each cloudlet i, we set the

service rate µi by sampling normal distribution N (2, 1) > 0,

and we set the number of its servers by sampling the Poisson

distribution with a mean of 2. For arriving tasks at cloudlet i,
we set task arrival rate λi by sampling the Normal distribution

N (4, 2) > 0

Under the ‘CTOM’ scheme, during each time interval, a

cloudlet first randomly choose 2 neighbors in its contact range.

After querying and comparing their load states, the cloudlet

choose offload a task to the one with less task load, where the

computing complexity in each time interval is O(1). Similar to

[17], we compare performance of proposed scheme with three

benchmarks, i.e., random allocation, proportional allocation

[14] and greedy allocation. In random allocation, a mobile

cloudlet offloads tasks by randomly selecting another mobile

cloudlet in its contact range. Conversely, the greedy alloca-

tion method queries all load information from its neighbors.

then by comparing their task loads to allocate tasks to the

optimal cloudlet (with computing complexity of O(n)). As

for proportional allocation, the chance for task offloading to a

randomly selected cloudlet is based on a probability parameter,

which is calculated with task load information. The simulation

programs are all written in MATLAB codes. We run the

programs in a Dell laptop with Intel Core i5 processor and

8 GB RAM. In general, each simulation program is executed

for 100 times, and we take the average results as the final

performance.

2) Simulation Results: Fig.3a plots the overall task alloca-

tion results of mobile cloudlets. As the cloudlet’s servers keep

processing tasks, the overall allocation shows the remaining

tasks at each mobile cloudlet. In random allocation, the

task distribution is centralized among a adjacent group of

cloudlets(ID 18 to 60), where most of the task loads are more

than 10 and up to 24. Meanwhile, the mobile cloudlets at edge

area are loaded with much fewer tasks (average less than 5)

or even in idle state. This may be due to the density of mobile

users at central area is usually high, so that the cloudlets are
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offloaded with more tasks and have more chances to share

to task load. Similarly, the task allocation by ‘Proportional’

method is also extremely unbalanced, where the distribution

of overloaded mobile cloudlets(with 25 remaining tasks) is

more sparse. In contrast, under ‘CTOM’ and greedy allocation,

mobile cloudlets are allocated with equivalent tasks(mostly

around or below 10).

Fig.3b demonstrates the task allocation performance in

cumulative distribution. Under random allocation and propor-

tional allocation, about 30% mobile cloudlets are allocated

more than 10 tasks, which will drag the overall task response

time. Meanwhile, The ‘CTOM’ performs closely to greedy

method in achieved balanced task offloading, where nearly

90% cloudlets are with task load under 10 and 55% cloudlets

are offloaded with 5 to 10 tasks. Based on the imbalance metric

[18], we further evaluate the task offloading performance. The

percent imbalance metric and statistical skewness are calcu-

lated as in 3. The lower imbalance metric means the better

balance performance in task allocation, i.e., lower ratio of

maximum and average task loads. From Fig.4, it is obviously

that the greedy algorithm achieves the best performance in

imbalance metric, which converges closely to 0. The imbal-

ance metric of proposed ‘CTOM’ and proportional algorithm

converges to 0.1 and 0.25 respectively. The random allocation

performs with worst imbalance metric(0.5). Meanwhile, the

positive or negative skewness means that, the quantities of

mobile cloudlets that have higher or lower task load then

average. In Fig.5, we can observe that the greedy allocation

and ‘CTOM’ both achieved best skewness values at about 0,

which means that there are few or no cloudlet with unbalanced

load. While the proportional method has a skewness of 2,

the random allocation’s skewness value fluctuates violently

in negative values, which means there exist many mobile

cloudlets with much lower task load then average.

The above simulation results demonstrate that, the proposed

‘CTOM’ can achieve balanced and sustainable overall task

allocation. As task distribution is more balanced and tasks

are processed concurrently, ‘CTOM’ improves the utilization

efficiency of mobile cloudlets and thus shortens the overall

task response time.

B. Trace-driven study

We further explore the balanced task allocation in a trace-

driven study. The mobility dataset we used is called ’Roller-

Net’ [16], which was collected during a 2500 people partici-

pated roller tour in Paris, France.
1) Basic setups: ‘RollerNet’ includes the traces of op-

portunist sightings by wireless sensor network nodes called

iMotes. The iMotes were distributed to a group of people

to collect any opportunistic sighting of other mobile devices

(including the other iMotes distributed) by Bluetooth. We drew

a sample diagram of iMote deployment as depicted in Fig.6,

where totally 62 skaters are equipped with iMotes and were

divided into 6 groups at different region of the roller crowd.

In this evaluation, we consider iMotes as mobile cloudlets that

can remotely execute computing tasks for mobile users. For

cloudlet i with service rate µi, we assign the service rate by

sampling the normal distribution N(6, 2) > 0. The number

of servers at cloudlet i is sampled from Poisson distribution

with a mean of 3. The task arrival rate λi follows a Normal

distribution 0 < N(18, 6) < si · µi, where si is number

of servers at mobile cloudlet i. All the settings are derived

according to [6], differently, our evaluation is based on real-

world trace dataset for mobility-enhanced cloudlets.

We conduct a twofold pre-processing on ’RollerNet’ dataset.

First, we unify the timing of user encounter records. By

setting a common starting time based on the earliest record,

we convert duration of all encounters into serial time slots

in minutes. Based on the unified encounter records, we find

that the total inter-contact time is 1567 − 1417 = 150. Such

that, we set the total interval for task offloading as 166.

Second, we plot a encounter graph to depict the frequency of

communications(FoC) among all the iMote skaters in Fig.7.

From the FoC Fig.7, we find that the iMote carriers can be

roughly divided into three groups based on communication

frequency, which are: active group (with 800-1000 contacts),

common group (with 500-800 contacts) and passive group

(with 300-500 contacts). The above division consist with the

formation of iMote skaters: skater association, staff and a set

of friends.
2) Evaluation performance: Fig.8 shows the task allocation

results based on ’RollerNet’ in bar graph. The performance

of ’CTOM’ is similarly good to the greedy allocation, where

most of the mobile cloudlets are offloaded with around 50

tasks. Meanwhile, in random and proportional allocation, the

allocation results are unbalanced with task loads fluctuating

severely among different cloudlets(up to 80 and down to 10).

Fig.9 illustrates the cumulative distribution of task alloca-
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tion. In random allocation, more than 30% mobile cloudlets

have more than 50 tasks and about 30% others are with less

than 30 tasks, this unbalance would result in longer average

task response time. Meanwhile, under ’CTOM’ around 95% of

cloudlets are allocated with 30-50 tasks, which is equivalent.

As the CDF line of greedy algorithm is the most centralised, it

means that the task loads at different cloudlet only vary within

a small range(around 40 to 50).

We also evaluate the percent imbalance metric and statistical

skewness. In Figure.10, still the greedy algorithm achieved

the best performance with 0.2 imbalance value, followed by

‘CTOM’ with converged results of 0.5. Interestingly, random

allocation and proportional allocation here have similarly

worse imbalance metric at 1, showing that both of them are not

applicable enough for trace-driven mobile cloudlet scenario.

In Figure.11, random allocation’s skewness value fluctuates

violently between positive and negative values, which implies

that the task loads are continuously unbalanced throughout the

process of allocation. While greedy allocation achieves the

best performance in skewness with 0, there are overloaded

mobile cloudlets under ‘CTOM’ and proportional method,

which are revealed by their statistical skewness values of 2 and

3 respectively. The effectiveness of ‘CTOM’ is validated with

the above simulation and evaluation results. which shows that

our method can effectively tame the complex mobility issue

and balance the load in mobile cloudlet networks.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the load balancing problem

in mobile cloudlet networks (MCNs). By leveraging balls-

and-bins theory, we devise ‘CTOM’, a collaborative task

offloading mechanism. By locally querying limited task load

information, the proposed scheme can reduce the longest

task queue in allocation process effectively. The simulation

and trace-driven evaluation results demonstrate that ‘CTOM’

performs exceedingly close to the optimal solution in load

balancing, with computing complexity reduced from O(n) to

O(1) in each allocation interval.
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