Spectroscopy of single photon emitting defects in Gallium Nitride and Diamond

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy

School of Mathematical and Physical Sciences (MAPS) University of Technology Sydney

Author
Amanuel Michael Berhane
Research Supervisors
Prof. Igor Aharonovich
Prof. Milos Toth

March 2018

Certificate of original authorship

I, Amanuel Michael Berhane, declare that this thesis titled, 'Spectroscopy of single photon emitting defects in Gallium Nitride and Diamond' has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student: Signature removed prior to publication.

Date: $13 / 03 / 2018$

Acknowledgements

I, primarily, would like to thank my supervisor Prof. Igor Aharonovich, first, for taking a chance and allow me to undertake my PhD study at your group in the fascinating field of Nanophotonics. I also thank you for your guidance and for being there to help with my academic struggles. I admired and learned a lot from your regular presence as well as prompt, positive replies for many of my questions and requests over the years. The opportunities you provided me with have helped me grow as an experimental scientist, and I am forever grateful for that.

I would also like to extend my sincere thanks to my co-supervisor Prof. Milos Toth. Your invaluable comments and all-around advice are truly motivating. Thank you for all your support throughout my study.

I thank Mrs Katie McBean for accommodating me in the lab from the start and the training you gave me on the different set-ups around MAU. I am also thankful to Mr Geoff McCredie and Mr Herbert Yuan for the technical support as well as the training on different vacuum systems. Thanks are also extended to Dr Mark Lockrey and Dr Angus Gentle for the training and help you gave me during my study.

To my fellow students at MAU, thank you for being a great bunch to study and work with. Particularly, I thank James Bishop and Russell Sandstrom for the shared social life and making my time at UTS enjoyable.

I would like to acknowledge the collaborators with whom we worked with over the years. I am very grateful to Asst. Prof. Dirk Englund at Massachusetts Institute of Technology (MIT) for our fruitful collaboration and hosting me at your lab. I am thankful to Dr KwangYong Jeong, at MIT who measured half of the room temperature spectroscopy data
presented in Chapter 4. We also collected the low-temperature data featured in chapter 4 \& 5 together during my visit to MIT. I am also very grateful to Prof. Adam Gali and Dr Zoltán Bodrog at Wigner RCP of the Hungarian Academy of Sciences for carrying out the numerical work presented in chapter 4. Thanks, is also extended to Prof. Hiromitsu Kato at AIST, Japan for providing us with the single crystalline diamond diode which is used to present the work in chapter 7.

To my friends around the globe, thanks for sharing your ideas and experiences: Daniel Taye, thank you for being a pal through thin and thick for so many years. I also thank you for your help with some of the 3D images in this work. Getasew Admasu and Abreham Degarege, our regular meet-ups and your brotherly advice during my PhD study are genuinely appreciated.

To my inspirational wife, Mrs Fasika A. Tekest. Thank you for helping me stay true the cause. Thank you for being patient through all the hurdles and for being the support I ever needed. Everything works out when you are around.

Finally, to my mother Hanna Habtemariam and my late step-father Major Tessema, thank you for your unconditional love. This thesis is dedicated to you both.

Publications

Peer-reviewed publications including one under review that contributed to this work:

1) A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, "Bright RoomTemperature Single-Photon Emission from Defects in Gallium Nitride," Advanced Materials, 1605092, 29 (2017).
2) A. M. Berhane, C. Bradac, and I. Aharonovich, "Photoinduced blinking in a solidstate quantum system," Physical Review B 96, 041203 (2017).
3) A. M. Berhane, Kwang-Yong Jeong, Carlo Bradac, Michael Walsh, Dirk Englund, Milos Toth, Igor Aharonovich, "Photophysics of Single Photon Source in Gallium Nitride at the Visible Spectrum" (under review)
4) A. M. Berhane, S. Choi, H. Kato, T. Makino, N. Mizuochi, S. Yamasaki, and I. Aharonovich, "Electrical excitation of silicon-vacancy centres in single crystal diamond," Applied Physics Letters 106, 171102 (2015).

Peer-reviewed publications not included in this thesis but contain research contributions during the PhD study:

1) T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, "Quantum Emission from Defects in Single-Crystalline Hexagonal Boron Nitride," Physical Review Applied 5 (2016). This work reports the single photon emission from bulk hexagonal Boron Nitride (hBN). Spectroscopic properties of the emission are studied using photoluminescence (PL) and cathodoluminescence (CL). The fluorescence time trace, as well as time, resolved PL is used to characterise temporal behaviours of
the intensity. The results are vital in introducing hBN for nanophotonic applications.
2) S. Choi, A. M. Berhane, A. Gentle, C. Ton-That, M. R. Phillips, and I. Aharonovich, "Electroluminescence from localized defects in zinc oxide: toward electrically driven single photon sources at room temperature," ACS applied materials \& interfaces 7, 5619-5623 (2015). This study reports electrically driven defect fluorescence from Zinc Oxide (ZnO) diodes. Direct evidence of electroluminescence (EL) from the defect is provided by exciting it both by PL and later EL yielding the same spectral properties. The results entail that defects in ZnO can be further investigated to show electrically driven single photon emission.
3) S. Stehlik, L. Ondic, A. M. Berhane, I. Aharonovich, H. A. Girard, J.-C. Arnault, and B. Rezek, "Photoluminescence of nanodiamonds influenced by charge transfer from silicon and metal substrates," Diamond and Related Materials (2015).: Here NV centre in a 5 nm detonated nanodiamond is studied by varying the termination as well as the substrate. It is reported that the spectral, as well as lifetime of the NV centre, changes by varying the factors above. This result underpins the effect of surface electrostatics on the optical properties of nanodiamonds.

Table of Contents

Certificate of original authorship ii
Acknowledgements iii
Publications v
Table of Contents vii
List of Tables xii
List of Figures xiii
Symbolic Notation xxxiii
List of Abbreviations xxxviii
Abstract xxxix
1 Introduction 1
1.1 Motivation 1
1.2 Background 8
1.3 Objective 9
1.4 Organization of the thesis 10
2 Fundamentals 13
2.1 Photons as basis for quantum mechanical behaviour of light 13
2.1.1 Classical and semiclassical approach for the analysis of photon statistics 14
2.1.2 Quantum mechanical approach for the analysis of photon statistics 17
2.2 Excitation of single photon emitters 21
2.2.1 Continuous-wave (cw)-laser excitation of single photon emitters 22
2.2.2 Electrical excitation of single photon emitters 32
2.2.2.1 PN Junctions: Current and single photon emitting diodes 33
2.2.2.2 Single photon emitting diodes (SPEDs) and PIN-junction 40
2.3 Photon statistics and fluorescence blinking 47
2.3.1 Charging and discharging mechanisms of blinking SPEs 48
2.3.1.1 Quantum jump and auger ionisation model 48
2.3.1.2 Spatial diffusion model 49
2.3.1.3 Fluctuating electronic states model 49
2.3.2 Key parameters of blinking measurements 51
2.3.3 Blinking measurements and data analysis 52
2.3.3.1 Photon binning histograms 52
2.3.3.2 Probability density of "on"/ "off" times 52
2.3.3.3 Second-order autocorrelation $\left(g^{2}(\tau)\right)$ analysis 53
3 Defect related luminescence: single photon emission from wide bandgap semiconductors 54
3.1 Optical properties of point defects 54
3.1.1 Equilibrium point defect formation 54
3.1.2 Electronic states of defects. 57
3.2 Single photon emitters in III-nitrides 61
3.2.1 An optically active isolated defect in cubic GaN 61
3.2.2 An optically active isolated defect in wurtzite AlN 62
3.3 Optical properties of stacking faults 64
3.3.1 Formation of stacking faults (SFs) 64
3.3.2 Stacking faults in III-nitrides 66
3.3.3 Electronic states of stacking faults 67
3.4 Colour centres in diamond 72
3.4.1 Incorporation of SiV center in diamond 76
3.4.2 Structural and optical properties of SiV centre 78
4 Spectroscopy of single photon emitting defects in GaN 81
4.1 Materials and structural analysis 81
4.2 Experimental setting 85
4.3 Spectroscopy of SPEs in GaN at room temperature 87
4.4 Room temperature second-order autocorrelation measurements 93
4.5 Low-temperature Spectroscopy and second-order correlation measurements of SPEs in GaN 97
4.6 The role of stacking faults in the single photon emission from GaN films104
4.7 A numerical model of the origin of SPE in GaN 106
4.7.1 Modelling parameters 106
4.7.2 Modelling results 107
4.8 Conclusion 108
5 Photophysics of single photon emitters in GaN 110
5.1 RT fluorescence time-trace and saturation behaviours of SPEs in GaN 111
5.1.1 Florescence intensity trajectory of SPEs in GaN 111
5.1.2 Saturation behaviour of SPEs in GaN 112
5.2 RT transition kinetics analysis of SPEs in GaN 116
5.3 Polarisation properties of SPEs in GaN 125
5.4 Low-temperature photophysics of SPE in GaN 129
5.5 Conclusion 130
6 Photo-induced blinking in a solid-state quantum system 132
6.1 Excitation power dependent blinking of SPEs in GaN 133
6.2 Transition kinetics and saturation analysis of SPE in GaN before andafter blinking.. 139
6.3 Long correlation time $g^{2}(\tau)$-measurements of a blinking SPE in GaN 142
6.4 Probability density distribution of blinking SPE in GaN. 144
6.5 Conclusion 146
7 Electrical excitation of silicon-vacancy in single crystal diamond 147
7.1 Ion implantation of Si^{2+} in diamond PIN diode 148
7.2 EL and PL excitation of SiV ensembles in diamond diode 149
7.3 Saturation and stability behaviours of SiV ensembles under excess carrier injection 151
7.4 Charge switching between ensembles of SiV^{-}and SiV^{0} 152
7.5 Conclusion 154
8 Summary and outlook 155
8.1 Defect-based single photon emitters in GaN 155
8.2 Electroluminescence from Silicon-Vacancy in diamond 160
8.3 Outlook 162
Reference 165

List of Tables

Table 4.1: Optical microscope and AFM images of Sample B - E.................................. 83
Table 4.2: XRD data of the (0002) and AFM measurement of Sample A - E................. 83
Table 4.3: Parametric values a, τ_{1} and τ_{2} obtained by fitting the second-order autocorrelation functions of E1, E2 and E3, assuming the three-level system dynamics. 98

Table 5.1: Rate coefficients extracted for the selected three SPEs by fitting their powerdependent parameters in Figure 5.10. The quantities $\kappa_{12}, \kappa_{21}, \kappa_{23}$ and κ_{31} are the rate coefficients for transitions between coupled states $|1\rangle \rightarrow|2\rangle,|2\rangle \rightarrow|1\rangle,|2\rangle \rightarrow|3\rangle$ and $|3\rangle \rightarrow|1\rangle$, respectively. All emitters except $E 1$ show a power-dependent shelving state. α and β are linear fitting parameters for the power dependence of κ_{12} and κ_{31}, respectively.

Table 5.2: Calculated values of the excited state $\left(\tau_{|2\rangle}\right)$ and metastable state lifetime $\left(\tau_{|\beta\rangle}\right)$ for the 6 emitters 124

Table 6.1: Background-corrected intensity values at different excitation powers before and
\qquad

List of Figures

Figure 1.1: (a) Atomic structure of NV centre in the diamond unit cell (b) Spectrum from an NV centre showing fluorescence peak of the NV^{-}at $637 \mathrm{~nm} . ~ 5 ~ 5 ~$

Figure 1.2: The bandgap energies and lattice constants of various direct and indirect bandgap semiconductors including III-nitrides[48]

Figure 2.1: (a) Chaotic photon distribution at detectors. (b) beam splitter for photon correlation analysis where an incident beam of light (I) is split $50 / 50$ into a transmitted (T) and reflected (R) beams leading to two detectors $\mathrm{D} 1 \& \mathrm{D} 2$. (c) shows the autocorrelation results for chaotic light source obtained after intensity fluctuation at the two detectors is correlated in time by introducing delay (τ) in the arrival times in one of the beam paths (R or T)[64].

Figure 2.2: (a) Coherent photon distribution at detectors. (b) shows the autocorrelation results for a coherent light source obtained after intensity fluctuation at the two detectors is correlated in time by introducing delay (τ) in the arrival times in one of the beam paths (R or T)[64].

Figure 2.3: Single photon distribution at detectors with a characteristic time spacing. (b) Field operators at a beam splitter (c) Single photon autocorrelation function where the $g^{2}(\tau=0)=0$. This is referred to as photon antibunching[64]18

Figure 2.4: Energy level diagrams illustrating transition kinetics with decay paths and corresponding rate coefficients (a) two-level transition kinetics (b) three-level transition kinetics

Figure 2.5: (a) Schematics is showing coincidence statistics during a second-order correlation measurement for a single photon emitter. (b) The real second-order function used to fit data with background contribution offsetting $\mathrm{g}^{2}(0)27$

Figure 2.6: Antibunching characteristics of SPE in GaN with a three-level transition. (a) $g^{2}(\tau)$ vs delay time generated using equation (2.44) by considering a correlation time of up to 100 ns . (b) $g^{2}(\tau)$ vs delay time generated using equation (2.44) by considering a correlation time of up to $15 \mu s$. The antibunching rate $\left(\lambda_{1}\right)$ and fast non-radiative decay rate via shelving state $\left(\lambda_{2}\right)$ are depicted occurring at different time scales. (c) $g^{2}(\tau)$ vs delay generated using double decay function for long periods of from a few μs to 0.1 ms showing once again the λ_{2} and additional long-lived, dark-state with rate λ_{3} appearing once again at different time scales.

Figure 2.7: Energy band diagrams of two semiconductors that are n - and p-doped.. (a) Before contact majority electrons reside in the conduction band (CB) of the n-doped semiconductors while majority holes reside in the valence band (VB) and p-doped semiconductor. (b) At contact, majority carriers from both sides diffuse into the opposite side to become a minority carrier before they recombine and dissipate. ... 33

Figure 2.8: The band energy diagram with subsequent band bending when two semiconductors that are n - and p -doped come in contact at equilibrium.................. 34

Figure 2.9: (a) Junction between a heavily doped p-type (p^{++}) semiconductor and undoped (intrinsic) semiconductors. (b) Charge density vs. position for the junction in (a) .. 36

Figure 2.10: The PN-junction under external bias at the contact terminals of the semiconductors. (a) Forward bias where the positive terminal of the external voltage source is connected to p -side of the device while the negative to the n -side. (b) Reverse bias where the negative terminal of the external voltage source is connected to p-side and vice versa.39

Figure 2.11: Schematic process illustrating band bending via carrier diffusion at equilibrium is illustrated for the PIN structure shown in the inset. The same steps as the PN-junction follower, where now three semiconductors are involved (p-type, intrinsic and n-type). .. 42

Figure 2.12: Schematic illustration of single photon emission at the charged defect site. (a) a hole is trapped by a defect state that has an electron in its ground state. (b) The successive decay of the trapped state from the excited to the ground state of the decay results in single photon emission switching the charge state to neutral. Subsequent electron trap by the defect switches it back to its negatively charged ground state. 43

Figure 2.13: Schematic illustration of single photon emission at the charged defect site. (a) a hole is trapped by a defect state that has an electron in its ground state switching to neutral charge state. (b) The neutral charge state then traps an electron in its excited state turning to the excited negative charge state of the defect. (c) Relaxation of the excited negative charge state emits a photon.

Figure 2.14: Charging and discharging mechanisms in SPE leading to "off" and "on episodes. (a) Auger ionisation model (b) Spatial diffusion models (c) Fluctuating electronic state model 50

Figure 3.1: A typical configuration coordinate diagram of a defect showing electronic transitions together with vibrational levels. ... 59

Figure 3.2: Configuration coordinate diagram of the neutral $\mathrm{V}_{\mathrm{Ga} \mathrm{O}_{\mathrm{N}} \text { in } 3 \mathrm{C}-\mathrm{GaN} \text { (a) and the }{ }^{\text {a }} \text { a }}$ neutral $\mathrm{V}_{\mathrm{Al}} \mathrm{O}_{\mathrm{N}}$ in WZ AIN (b). The corresponding absorption, emission and ZPL transition are indicated for both systems with calculated energies. 63

Figure 3.3: Illustration of a cross-sectional view on hexagonal sequencing of lattice atoms on two planes A and B .64

Figure 3.4: Illustration of stacking faults creation by agglomeration of vacancies in a hexagonal matrix.

Figure 3.5: Illustration of stacking faults creation by agglomeration of interstitials in a hexagonal matrix.65

Figure 3.6: Wurtzite and Zinc-blende crystal phase stacking sequence. 66
Figure 3.7: Schematics is showing the three main stacking faults, $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} in GaN .67

Figure 3.8: Schematics of a triangular band line up due to local cubic inclusion in otherwise hexagonal matrix.. 68

Figure 3.9: Schematics of triangular band line up of a cubic inclusion in a hexagonal matrix with point defects in the vicinity... 71

Figure 3.10: Schematic illustration of the diamond unit cell.. 73

Figure 3.11: Atomic structure of (a) NE8-(b) Cr-related defects in diamond.
Figure 3.12: A map illustrating the spectral characteristics of a few of the identified SPE in diamond. The length of the lines corresponds to a range of emission from the respective SPE including the PSB. The intrinsic carbon interstitials (TR12) emit with at ZPL of around 470 nm while the H 3 centre consisted of two nitrogen atoms and a vacancy emits at 503 nm . At ZPLs of 532 nm and 734 nm , SPE with unidentified origin is reported. The so-called ST1 centre is also unidentified SPE from the diamond with ZPL at around 550 nm and allows optical manipulation of its spin as indicated by the arrow. By incorporating europium $\left(\mathrm{Eu}^{3+}\right)$ in the diamond lattice, fluorescence emission with two separate ZPLs corresponding to allowed radiative transitions in the impurity is reported. The NiSi is a Nickel-Silicon complex showing emission with ZPL between 767-775 nm[10]. 75

Figure 3.13: (a) Atomic structure of SiV centre in Diamond (b) Spectrum of SiV^{-}in diamond (c) electronic structure of SiV^{-}centre in diamond 77

Figure 4.1: Raman spectroscopy of sample A showing known phonon modes for WZ GaN and sapphire 84

Figure 4.2: Post KOH sample topography analysis using (a) Optical microscope image with a scale bar of $100 \mu \mathrm{~m}$ (b) Scanning electron microscope (SEM) image with a scale bar of $10 \mu \mathrm{~m}$ with an inset magnifying the etched area with a scale bar of $100 \mathrm{~nm}85$

Figure 4.3: Schematics of confocal microscopy setup. The addition of two avalanche photodiodes and a time-correlation card illustrates the integrated HBT setup for single photon detection87

Figure 4.4: Defects in GaN wafers. a) $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$ AFM image of Sample A. The surface roughness is $<1 \mathrm{~nm}$. The scale bar is $2 \mu \mathrm{~m}$. Inset is the structure of Sample A depicting $2 \mu \mathrm{~m}$ Mg-doped GaN layer on $2 \mu \mathrm{~m}$ undoped GaN film grown on sapphire by MOCVD. b) $60 \mu \mathrm{~m} \times 60 \mu \mathrm{~m}$ confocal fluorescence scan of Sample A obtained using a $300 \mu \mathrm{~W}$ excitation laser power. The scale bar is $5 \mu \mathrm{~m}$. c) $40 \mu \mathrm{~m} \times 40 \mu \mathrm{~m}$ confocal fluorescence scans of Samples B-E under $100 \mu \mathrm{~W}$ excitation power: i) $2 \mu \mathrm{~m}$, undoped GaN, ii) $0.5 \mu \mathrm{~m}$, Mg-doped GaN on $13.2 \mu \mathrm{~m}$, Si-doped GaN, iii) GaN LED structure, iv) $1.2 \mu \mathrm{~m}$, undoped GaN. Samples B-D are grown on sapphire. Sample E is grown on silicon carbide. The bright spots inside the white circles indicate localised emitters. Insets: schematic diagrams of Samples A-E. 88

Figure 4.5: Single photon emitters in GaN. a) Room temperature spectra from emitters E1E5 (shown in Figure 4.1b) reveal distinct ZPL wavelength of $640 \mathrm{~nm}, 657 \mathrm{~nm}, 681$ $\mathrm{nm}, 703 \mathrm{~nm}$ and 736 nm . The peak at 696 nm is the $\mathrm{Cr}_{\mathrm{Al}}{ }^{0}$ emission from the sapphire substrate. b) Histogram of the zero-phonon line wavelength distribution and c) the corresponding FWHM distribution measured from emitters in sample A. d) Typical PL spectra and g^{2} measured from emitters in Samples B-E. 89

Figure 4.6: Room temperature spectra from emitters in GaN Sample A. Representative spectral characteristic of 16 different emitters collected from 5 different scans. 532
nm green excitation laser with a power of $100 \mu \mathrm{~W}-250 \mu \mathrm{~W}$ was used, and each spectrum was integrated for 10 s . Spectra from emitters E6, E7 and E8 (see Figure 4.1b) are also included and labelled accordingly. The wavelength of each ZPL is specified (the emission at 696 nm corresponds to the ruby line in sapphire and is present in all the spectra). 90

Figure 4.7: Histogram of the zero phonon line wavelength distribution and the corresponding FWHM distribution measured from emitters in samples $\mathrm{B}(\mathrm{a}, \mathrm{e}), \mathrm{C}(\mathrm{b}, \mathrm{f})$, $\mathrm{D}(\mathrm{c}, \mathrm{g})$ and $\mathrm{E}(\mathrm{d}, \mathrm{h})$. In $40 \mu \mathrm{~m}$ X $40 \mu \mathrm{~m}$ area, an average of $6 \sim 7$ emitters (Sample B), 3~4 emitters (Sample C), 1~2 emitters (Sample D and E) are found 91

Figure 4.8: PL spectra from samples that were etched using chlorine reactive ion etching (RIE) to depths of $300 \mathrm{~nm}, 4 \mu \mathrm{~m}$ and $6 \mu \mathrm{~m}$. As shown, after 300 nm etch, emitters were still resolved with representative fluorescence at 736 nm (black). However, after $4 \mu \mathrm{~m}$ (red) and $6 \mu \mathrm{~m}$ (pink) etching, no fluorescence can be observed except the chromium line in sapphire at 696 nm . PL from a sample that was not etched shows the familiar narrow line luminescence 684 nm (blue). 92

Figure 4.9: $g^{2}(\tau)$ characteristics of 8 emitters in Sample A. Emitters E1-E5 are single photon emitters with $g^{2}(0)<0.5$, whereas E6-E8 show antibunching with $g^{2}(0)>0.5$ All autocorrelation measurements were taken with a $50 \mu \mathrm{~W}, 532 \mathrm{~nm}$ laser and are not background corrected

Figure 4.10: Background corrected $g^{2}(\tau)$ characteristics of emitters E6-E8 in Sample A are shown in (a) - (c). E6 have strong de-shelving state that results in a weak signal to noise ratio and consequently $g^{2}(0)>0.5$. Additional background corrected $g^{2}(\tau)$ characteristics from six more single photon emitters in Sample A are provided through (d) - (i). All second-order correlation measurements are taken at excitation laser power of $50 \mu \mathrm{~W}$. 94

Figure 4.11: $g^{2}(\tau)$ characteristics of 7 emitters in Sample B. All 7 emitters are single photon emitters with $g^{2}(0)<0.5$. Each antibunching characteristic correspond to the 7 circled bright spots in the confocal map shown in Fig. 1d (i) 95

Figure 4.12: $g^{2}(\tau)$ characteristics of 3 emitters in Sample C. All 3 emitters are single photon emitters with $g^{2}(0)<0.5$. They correspond to the 3 circled bright spots in Figure 4.1d (ii)

Figure 4.13: $g^{2}(\tau)$ characteristics of 3 emitters in Sample D without background correction (a-c) and after background correction (d-f). 96

Figure 4.14: $g^{2}(\tau)$ characteristic of 3 emitters in Sample E. All 3 are single photon emitters with $g^{2}(0)<0.5$ 96

Figure 4.15: Low-temperature (4 K) spectroscopy and photon emission statistics of quantum emitters in GaN. a) Representative spectra from 6 emitters with ZPL peak energies of 1.796 eV (E1), 1.834, $1.852 \mathrm{eV}(\mathrm{E} 2), 1.895 \mathrm{eV}, 1.908 \mathrm{eV}$ and 1.981 eV (E3). b) ZPL peak energy distribution of 19 emitters with a mean value of xx
$(1.869 \pm 0.064) \mathrm{eV}$. c) Histogram showing the FWHM distribution of the emitters in (b) with mean linewidth value of $(3.39 \pm 1.12) \mathrm{meV}$. All measurements were taken with an excitation laser power of $100 \mu \mathrm{~W}$. d-f) Second-order autocorrelation measurements for the three emitters labelled E1-E3 in (a) under an excitation power of $50 \mu \mathrm{~W}$. The curves are fitted with three-level, second-order autocorrelation functions and show that the emitters E1-E3 are single photon emitters with $g^{2}(\tau=0)$ values of $0.30,0.27$ and 0.18 , respectively 97

Figure 4.16: (a-c) Long time fluorescence correlation measurements for E1, E2 and E3 under an excitation power of $50 \mu \mathrm{~W}$. The fit (red) for all the three $g^{2}(\tau)$ characteristics is a double exponential decay function giving the least chi-square value indicated by the respective inset figures. $g^{2}(\tau)$ starts with the bunching height corresponding to an ns-shelving state in each of the emitters, but drops to normal and remains constant for the measurement times scale range of up to 0.1 seconds. This is consistent with previous observation of stable SPEs in GaN 99

Figure 4.17: (a) Temperature-dependent spectroscopy of E1 showing both ZPL peak shift and linewidth broadening. There is a visible phonon mode 3.1 meV away from ZPL up to temperature of 80 K (b) Spectrum at 290 K of E1 plotted in a separate panel for better visualisation. (c) ZPL peak shift at low temperature showing the usual S-shaped temperature dependence for E1. (d) Corresponding linewidth broadening as a function temperature shown only up to 100 K for E 1 100

Figure 4.18: (a) Temperature-dependent spectroscopy of E2 showing both ZPL peak shift and linewidth broadening. A phonon mode is also shown here around 8 meV away from the ZPL up to 60 K (b) Spectrum at 290 K of E2 plotted in a separate panel for better visualisation. (c) ZPL peak shift at low temperature showing the usual S-shaped temperature dependence for E2. (d) Corresponding linewidth broadening as a function temperature shown only up to 100 K for E2.. 100

Figure 4.19: (a) Temperature-dependent spectroscopy of E3 showing both ZPL peak shift and linewidth broadening. A phonon mode is activated beginning 20 K around 3 meV away from the ZPL (b) ZPL peak shift at low temperature showing the usual S-shaped like temperature dependence for E3. (c) Corresponding linewidth broadening as a function temperature shown only up to 100 K for E3 101

Figure 4.20: ZPL shift and linewidth broadening in GaN emitters (a-c) ZPL peak shift of emitters E1-E3 as a function of temperature where the shift showed S-shaped temperature dependence (Figure 4.17-4.19). The data is fitted with polynomial functions of the form T^{4} (blue) and $a T^{2}+b T^{4}$ (red) where the later yield better fits at high temperature. (e-f) Shows the corresponding linewidth broadening of E1-E3 with increasing temperature. These trends are fitted with functions of the form T^{3} (blue), T^{5} (red) and T^{7} (green) with T^{3} yields reasonable fits for E1\&E2. 102

Figure 4.21: (a) Temperature dependence of the ZPL position of other emitters in Sample A and sample (B). ZPL wavelength shows 'S-shaped' dependence. 103

Figure 4.22: Depth-resolved cathodoluminescence (CL) from two spots on sample A at 80 K: (a) CL spectra using different beam energies to obtained depth-resolved CL from spot 1. In depths between around 78 nm to $465 \mathrm{~nm}, \mathrm{CL}$ peak of 3.3 eV dominates while at 761 nm deeper into the sample CL peak of 3.2 eV dominates. Same electron beam power of around $60.5 \mu \mathrm{~W}$ is used at the different depths. The inset shows depth estimation using Monte Carlo simulations for the different beam energies. (b) A similar measurement as in the case of (a) but on the spot 2. This measurement has also yielded a similar result with 3.3 eV peak dominating till depths of around 465 nm where 3.2 eV dominates at depths around 761 nm . 105

Figure 4.23: Numerical wavelength calculations: a) Schematic illustration of stacking faults generated by a cubic inclusion in wurtzite GaN. b) Location of the exciton in the cubic inclusion which spans 5 bilayers and is shown in a total slab of 12-bilayers of GaN . The potentials applied to the electron, and the hole is the conduction band minimum (green curve) and valence band maximum (purple curve), respectively. The hole (red circle on the valence band maximum) is pinned by a point defect, while the electron is delocalized across the inclusion according to the density profile shown in blue. c) Wavelength distribution, spanning 600 to 705 nm , based on model Hamiltonian GaN parameterised calculations for a defect arrangement along the cubic inclusion shown in Figure 4.23(b). 109

Figure 5.1: Long-time fluorescence stability of emitters from sample A (a,b,c), B(d),C(e), $\mathrm{D}(\mathrm{f})$ and $\mathrm{E}(\mathrm{g})$. The emission intensity was measured using excitation laser power of 3 mW (much higher than saturation powers) and a time bin of 50 ms 111

Figure 5.2: Spectral characteristics of 3 emitters in Sample A. All 3 are single photon emitters with $g^{2}(0)<0.5$ as shown in the insets of each spectra. The power dependent brightness behavior of emitter with spectra shown in (a) is given in (b). Similarly, brightness behavior of emitter whose spectra is shown in (c) is provided in (d) and of (e) is shown in (f). Maximum intensity and saturation power of (b), (d) and (f) is given in the inset of their respective figures

Figure 5.3: Saturation characteristics of the emitter from Sample B-E. Fluorescence intensity of emitters from sample $\mathrm{B}(\mathrm{a}), \mathrm{C}(\mathrm{b}), \mathrm{D}(\mathrm{c})$ and $\mathrm{E}(\mathrm{d})$ as a function of excitation power. The background-subtracted saturation curve (red) yields a maximum intensity of $160,200,300$ and $150 \mathrm{kCounts} / \mathrm{s}$ at a saturation power of $660,1200,410$ and 910 $\mu \mathrm{W}$, respectively. 114

Figure 5.4: Fluorescence intensity of emitter E2 as a function of excitation power. The background-corrected saturation curve (red) yields a maximum intensity of 501 $\mathrm{kCounts} / \mathrm{s}$ at a saturation power of $930 \mu \mathrm{~W}$. The g^{2}-corrected saturation curve (blue) yields a lower bound on the maximum single photon emission rate of $203 \mathrm{kCounts} / \mathrm{s}$ at a saturation power of $313 \mu \mathrm{~W}$. 115

Figure 5.5: Saturation behaviours of emitters in GaN at room temperature. a) Backgroundcorrected fluorescence intensity versus power from a representative emitter with a xxiv

ZPL at 1.818 eV , and a maximum intensity of $\sim 105 \mathrm{kCounnts} / \mathrm{s}$ at a saturation power of $558 \mu \mathrm{~W} . \mathrm{b}$, c) Statistical distribution of the maximum intensity and saturation power from 8 emitters, with a mean value of $\sim(427 \pm 215) \mathrm{kCounts} / \mathrm{s}$ and $\sim(1270 \pm 735)$ $\mu \mathrm{W}$, respectively 116

Figure 5.6: Power dependent antibunching characteristics of the three emitters presented in Figure 5.2 with spectral peak at $647 \mathrm{~nm}, 679 \mathrm{~nm}$ and 690 nm is provided in (a) (c) \& (e) respectively. As shown, emitters show power dependent bunching characteristics in the three emitters. 117

Figure 5.7: Schematic diagram illustrating three-level optical transitions. κ_{12} denotes transition coefficient from ground state, 1, to excited state, 2. Relaxation coefficient κ_{21} represent spontaneous emission, whereas κ_{23} is the metastable state, 3, populating rate coefficient and κ_{31} is de-shelving from metastable state to ground state. The red box further illustrates an alternate pathway for intensity dependent de-shelving from state 3 to a new excited state, 4 118

Figure 5.8: Power dependent single photon behaviour of the emitter. a) Measured $g^{2}(\tau)$ with different powers b), c) and d) show that radiative lifetime, τ_{1}, metastable nonradiative lifetime, τ_{2}, and scaling factor for bunching, a, extracted from fitting the $g^{2}(\tau)$ function for different powers in (a). 120

Figure 5.9: Power-dependent antibunching characteristics of the six emitters E1-E6. While all emitters showed power-dependent bunching behaviour, the strength of bunching
at intermediate time scales occurs at different fractions of the excitation power. The antibunching behaviours are well fitted (red curve) using second-order autocorrelation function for three-level systems. 122

Figure 5.10: Power-dependent properties of the decay rates λ_{1}, λ_{2} and the scaling factor a for the 3 emitters E1-E6 measured at room temperature. The data points (black dots) are fitted well (red lines) by considering three-level transition kinetics. 123

Figure 5.11: Polarization characteristics of the 3 emitters in Sample A. The polarisation measurement for emitters whose spectral characteristic is presented in Figure 5.2 (a), (c) \& (e) is shown here as (a), (b) and (c) respectively. Green curves represent excitation polarisation while red represents emission polarisation. 126

Figure 5.12: Room-temperature polarisation spectroscopy of emitters in GaN. a)

Abstract

Absorption (green) and emission (red) polarisation profiles from an emitter with a ZPL at 1.818 eV , exhibiting polarisation visibilities of 34% and 79%, respectively. b) Polarization visibilities of 14 emitters showing that while the emitters are strongly polarised in emission, they show variable degrees of absorption polarisation. c) Histogram of the difference in orientation between absorption and emission polarisation. 127

Figure 5.13: Maximum absorption angles for the 14 emitters shown in Figure 5.6. a) Scatter plot of the maximum absorption axis of the 14 emitters. b) Fundamental lattice directions of the wurtzite unit cell, showing that the maximum in angular distribution in (a) corresponds to the ${ }^{[1 \overline{1} 00]}$ lattice direction of wurtzite $\mathrm{GaN} . ~ 128$ xxvi

Figure 5.14: Fluorescence time trace measurements and corresponding photon statistics of the three emitters E1, E2 and E3 from in Figure 5.1 (main text) under an excitation power of $100 \mu \mathrm{~W}$. All three emitters are stable with single-photon statistics. The higher noise level observed on the time trace of E2 is due to sample drift during measurement. 129

Figure 5.15: PL decay time measurements of quantum emitters in GaN obtained at 4 K using a 532-nm pulsed excitation laser. a-c). Double exponential fits (red line) of the background-corrected measurements yield excited state lifetimes of 1.6, 2.7 and 2.0 ns for emitters E1, E2 and E3, respectively. ... 130

Figure 5.16: Time-resolved PL spectra of the emitters E1-E3 obtained at 4 K using an excitation power of $50 \mu \mathrm{~W}$. a-c) ZPL peak energy (left) measured every second for 2 minutes. The spectral maps show the bright yellow points as the peaks of the ZPL corresponding to the integrated spectrum (top) for each emitter. A stable mean ZPL peak energy of $(1.796 \pm 0.0002) \mathrm{eV},(1.852 \pm 0.0005) \mathrm{eV}$ and $(1.981 \pm 0.0002) \mathrm{eV}$ is observed for E1, E2 and E3, respectively. 130

Figure 6.1: Excitation power-induced blinking of an SPE in GaN. a) RT spectra of the SPE taken under $200-\mu \mathrm{W}$ power excitation; the ZPL lies at 647 nm with an FWHM of ~ 4 nm. b) Fluorescence trajectory of the same emitter. The time trace is collected from the ZPL with $630 \pm 30 \mathrm{~nm}$ bandpass filter for 2 minutes. c) Occurrence statistics of the number of photon counts in (b) over a time of 2 minutes. The emitter shows stable emission d) Fluorescence trajectory of the same emitter excited with 5 mW . The time
trace is collected from the ZPL using the same BP filter. e) Photon occurrence statistics of (d) at the same excitation power of 5 mW , with notable blinking. Time binning in (a-e) is 50 ms . f) The $g^{2}(\tau)$ measured for the same emitter before (red), and after (blue) the blinking was induced with high-power excitation; the $g^{2}(\tau)$ curves in (f) are taken with $100 \mu \mathrm{~W}$ excitation power. The blue curve is offset vertically by 1 for clarity (see Figure 6.4). The same emitter yield two different values of g2(0) ≈ 0.24 vs $g^{2}(0) \approx 0.65$ for before and after the high-power-excitation blinking was induced, respectively. 133

Figure 6.2: Comparison of fluorescence trajectories of the same SPE before (black) and after (red) high-power-excitation blinking was induced: [black] and [red] curves are measured at the same excitation powers. Note how at lower excitation powers (50$700 \mu \mathrm{~W}$) the emitter shows reduced fluorescence intensity after blinking (a random blinking event is shown in the graph for $2000-\mu \mathrm{W}$ excitation). 135

Figure 6.3: Sequence diagram of how the second-order autocorrelation function $g^{(2)}(0)$ and trajectory measurements were measured. First, the data is collected at low power of 0.1 mW ("before"), then the laser power is increased to induce blinking, and the same optical measurements are repeated at lower powers ("after").

Figure 6.4: (a) RT spectra of the SPE taken under $200-\mu \mathrm{W}$ power excitation before (red) and blue (after blinking). (b)\&(c) are replots of autocorrelation curves in Figure 6.1(f) on two separate panels for better visualization of the absolute change in the antibunching dip as well as bunching curves before and after blinking.

Figure 6.5: Schematics of the transition kinetics before (a) and after (b) power-induced blinking. After blinking, a new trap state (red) is formed as shown in (b). Transition rates are indicated with $\kappa_{i j}$ where $i, j=1,2,3,4$ indicate the ground, first electronic excited state, metastable and induced trap state, respectively. Continuous and dashed arrows indicate radiative and non-radiative transitions, respectively137

Figure 6.6: $g^{2}(0)$ measured from the SPE before and after blinking at increasing powers. Individual curves are shifted vertically for comparison purposes. For powers, 50-700 $\mu \mathrm{W}$, the bunching effect at intermediate time scales is more pronounced in the 'after blinking' case than the 'before blinking' one. See main text 138

Figure 6.7: Excitation-power dependent parameters of the emitter. a) The brightness of the emitter before (red) and after (blue) blinking is shown as the average photon counts at different powers. Before blinking, at saturation power $\left(P_{\text {sat }}\right) \sim 660 \mu \mathrm{~W}$, the highest intensity of 527 kcounts $/ \mathrm{s}$ is obtained. After blinking, the saturation behaviour is fitted with a three-level model showing a remarkably different curve. b-d) Power-dependent characteristics for the fit parameters τ_{1}, τ_{2}, a, respectively, for the $g^{2}(\tau)$ function. These values are extracted as parameters from the $g^{2}(\tau)$ function fitting (Figure 6.6). A three-level model with linear power dependence for the shelving state described the transition kinetics before blinking (red fitting lines) accurately. After blinking, however, the same model fails to fit λ_{2} and a as highlighted by the blue lines in (c) and (d)

Figure 6.8: Spectroscopy and power-saturation analysis of stable and blinking emitters analysed in the study. a) Photoluminescence spectrum of the stable emitter with ZPL at 631 nm and FWHM $\sim 8 \mathrm{~nm}$. b) Saturation behaviour of the stable emitter collected using excitation power of up to 4 mW . c) Photoluminescence spectrum of an emitter that showed power induced blinking with ZPL at 652 nm and FWHM $\sim 6 \mathrm{~nm} . \mathrm{d}$) Saturation behaviour of the blinking emitter fitted with a three-level model. The radiative transition is unaffected by the blinking behaviour.

Figure 6.9: Power-dependent long lifetime fluorescence of a stable and a blinking emitter. a) Long time scale, excitation-power-dependent $g^{2}(\tau)$ characteristics of a stable emitter. The best fit is determined using a single and double exponential decay function with the least chi-square value. $g^{2}(\tau)$ starts with monotonic decay that corresponds to ns shelving state but remains constant for the measurement time scale range of microseconds to 0.1 seconds. b) Long time scale $g^{2}(\tau)$ characteristics of a power-induced blinking emitter at different excitation powers. Fitting the $g^{2}(\tau)$ characteristics at excitation powers of $100 \mu \mathrm{~W}$ is done using single exponential decay function where $g^{2}(\tau)$ remained constant along the normal; whereas, for excitation power of $500-2000 \mu \mathrm{~W}$, the emitter showed an additional bunching curve in the ms range with the height increasing with power. c) Fluorescence photostability and photon occurrence statistics under 50-ms binning for the emitter in (b) with increasing excitation power. The emitter, initially stable with near-Poissonian statistics, starts blinking for excitation powers $\geq 500 \mu \mathrm{~W}$.

Figure 6.10: Probability distribution of "on" (orange) and "off" (dark yellow) states of the blinking emitter at different excitation powers. a-d) Semi-log plots of the "on" and "off" time distributions of the fluorescence trajectories shown in Figure 6.9(c). The probability distributions of both the "on" and "off" times at all excitation powers show exponential decay, as indicated by the linear trend on the semi-log plots. The "off" probability distributions hold characteristic decay time ($\tau_{\text {off }}$) that drop with increasing excitation power starting at $221.2 \mathrm{~ms}, 213.5 \mathrm{~ms}, 86.1 \mathrm{~ms}$ and 43.1 ms for power excitation in the range $50-2000 \mu \mathrm{~W}$. Conversely, the "on" time distribution did not show dependence on excitation power and gave a mean characteristic decay time ($\tau_{\text {on }}$) of (548 ± 137) ms 145

Figure 7.1: (a) Schematic illustration of a single crystal PIN diode with implanted Si -atoms and an optical image of the device. The diameters of the n-type diamond mesa are 120 $\mu \mathrm{m}$, and the metallic contacts on top are $100 \mu \mathrm{~m}$. (b) Monte Carlo depth profile of ion-implanted Si-atoms into diamond obtained using SRIM calculations. The end of range is estimated at 820 nm . (c) I-V-characteristic plot is showing diode rectification at a forward threshold voltage of 43 V at room temperature. The inset shows LogLinear curve of the same data set 148

Figure 7.2: (a) Electroluminescence map of an $80 \mu \mathrm{~m} \times 80 \mu \mathrm{~m}$ area showing luminescence from the edge of the pillar. (b) EL spectrum from the circled bright spot of the EL map. The EL spectrum is collected at a forward bias of 50 V used to inject current of 2.9 mA into the device. (c) Photoluminescence map of a $60 \mu \mathrm{~m} \times 60 \mu \mathrm{~m}$ area,
exhibiting comparable emission from around the edge of the pillar (d) PL spectrum from the circled bright spot of the PL map. The excitation is performed using a 532 nm cw-laser at $867 \mu \mathrm{~W}$. 150

Figure 7.3: (a) Electrical driven luminescence saturation measurement of the stable SiV vacancy together with fitting curve indicated by the solid red line. (b) Shows stability measurement from the negative charge state of SiV centre when 2.5 mA of current is injected into the device. The colour centre showed stable emission for more than 6 \min. 152

Figure 7.4: (a) Forward and reverse biased PL measurement show reduction in the intensity of the $\mathrm{SiV}^{-} \mathrm{ZPL}$. The bias voltage is varied between 52 V and -60 V . In forward bias, higher injection of carriers excites more centres resulting in higher luminescence intensity from SiV^{-}centre. As the reverse current increases, intensity from SiV^{-} decreases due to injection of holes into the centre. Charge switching to SiV^{0}, however, is not observed with emission around 946 nm . (b) CL spectra from SiV ensemble at different electron beam fluence153

Symbolic Notation

Symbol	Meaning	Page
ω	Angular frequency	5
h	Planck's constant	5
g^{2}	Second-order correlation function	13
τ	Delay time	13
I	Intensity	13
$P_{1,2}$	Probability of counting photons	15
$\eta_{1,2}$	Detection efficiency	15
Δt	Detection time	15
$\hat{n}_{1,2}$	Antensity operator	16
\hat{a}_{i}	Creation operator	16
\hat{a}_{i}	Input field operator	16
\hat{a}_{1}	Vacuum field operator	17
\hat{a}_{2}	Number of photons	17
n	Photon number variance	22
Δn^{2}	Number of emitters	17
N	Probability of emission per time	17
p_{j}	Discrete intensities	22
i_{j}	Pigenvalues $^{r_{j}}$	22
$\kappa_{i j}$	2	22
λ		22

t_{d}	Antibunching time constant	25
q	Scaling factor	25
S	Signal counts	26
B	Background counts	26
λ_{1}	Radiative decay rate	28
λ_{2}	Non-radiative decay rate	28
a	Scaling factor for bunching	28
V_{b}	Potential barrier	28
E_{f}	Fermi energy level	31
E_{e}	Conduction band energy	32
E_{v}	Valance band energy	32
$N_{e, v}$	Intrinsic carrier concentration	32
N_{d}	Electron carrier density	32
N_{a}	Hole carrier density	32
E_{g}	Band gap energy	32
q	Charge of electron	32
ρ	Charge density	32
d	Width of depletion region	32
$E_{\text {max }}$	Maximum field	34
ε	Dielectric constant	34
$J_{d i f f}$	Diffusion current	34
D	Concentration gradient	34
∇_{f}		34
J_{r}		34

$V_{\text {ext }}$	Applied voltage	35
ΔE	Potential step	36
K	Boltzmann constant	36
T	Temperature	36
n_{i}	Intrinsic concentration	37
$N_{\text {acc(don })}$	Acceptor or donor concentration	37
τ	Lifetime	37
L	Diffusion length	37
R_{d}	Electron recombination rate	40
c_{d}	Electron capture cross-section	40
n_{e}	Electron density	40
f	Number of neutral defects in ground state	40
$N_{S P S}$	Number of single photon source per unit volume	40
c_{u}	Hole capture rate	41
n_{p}	Hole density	41
x	Population of neutral state	41
G_{d}	Electron generation rate	41
G_{u}	Hole generation rate	41
e_{d}	Electron re-emission rate	41
e_{u}	Hole re-emission rate	41
e_{r}	Re-emission rate of the neutral defect state	41
$R_{S P S}$	Recombination rate at single photon source	42
ϕ	Quantum efficiency	42
$\sigma_{d(u)}$	Capture cross-section	42
$v_{d(u)}$	Group velocity	42
P	Probability density of blinking events	45
$\tau_{O n, \text { Off }}$	Characteristic on- and off- blinking times	45

C^{0}	Neutral defect concentration	56
C^{-}	Ionized defect concentration	56
C_{0}	Total defect concentration	56
f	Probability of occupation	56
E_{a}	Acceptor energy level	56
E_{f}	Fermi energy level	56
C_{v}	Concentration of point defects	56
n_{v}	Number of point defects	56
N^{\prime}	Total number of crystal electrons	56
G_{F}	Gibbs free energy	56
H_{F}	Formation enthalpy	56
S_{F}	Formation entropy	56
$W_{n 0}$	Transition probability	56
S	Huang-Rhys factor	56
E_{0}	Energy difference	57
n	Excitation vibrionic level	57
a	Offset parameter	59
b	Initial intensity amplitude	59
ϕ	Angle between excitation laser and dipole orientation	59
Γ	Transform limited linewidth	60
$a_{e c}$	Bohr-radius	Reduced mass
μ^{*}	Mass of electron	70
m_{e}		70

Symbolic Notation

m_{h}	Mass of hole	70
$\Delta E_{e x}$	Effective binding energy	70
κ	Semiconductor permittivity	70

List of Abbreviations

Abbreviation	Meaning	Page
SPEs	Single Photon Emitters	xxxix
GaN	Gallium Nitride	xxxix
cw	continuous Wave	xl
ZPL	Zero Phonon Line	xl
FWHM	Full Width at Half Maximum	xl
PL	Photoluminescence	xli
EL	Electroluminescence	xli
CL	Cathodoluminescence	4
PMT	Photomultiplier Tube	6
APDs	Avalanche Photo Diodes	6
HBT	Hanbury-Brown and Twiss	12
SCR	Space Charge Region	31
SPEDs	Single Photon Emitting Diodes	38
LEDs	Light Emitting Diodes	38
PD	Point Defect	55
HPHT	High-Pressure High Temperature	61
CVD	Chemical Vapor Deposition	62
SF	Stacking Fault	65
QW	Quantum Well	69
MOCVD	Metalo-Organic Chemical Vapor Deposition	74
HVPE	Hybrid Vapor Plasma Epitaxy	75
PIC	Photonic Integrated Circuit	84

Abstract
 Amanuel Michael Berhane
 Spectroscopy of single photon emitting defects in Gallium Nitride and Diamond

A single photon is among the few quantum mechanical systems that are finding applications in myriad fields. The applications include serving as building blocks for the ongoing endeavour to realise faster computers and secure communication technologies. As a result, a variety of platforms are being inspected to generate single photons on-demand. Point defects and complexes in wide bandgap semiconductors such as nitrogen-vacancy (NV) and silicon-vacancy (SiV) centres in diamond, carbon antisite in Silicon Carbide (SiC), etcetera, are shown to be reliable room temperature (RT), single photon emitters (SPEs). Despite reports of several defect based SPEs in diamond and other semiconductors, the exploration continues to find ideal sources for applications. The central part of this work also focuses on the discovery and characterisation of novel SPE in the device fabrication friendly material- Gallium Nitride (GaN).

The other important aspect in the study of SPEs is the method by which emitters are excited. While optical technique via laser excitation is the standard approach, electrically excited single photon generation is highly desirable for large-scale nanophotonic applications. The second part of the work investigates electrically driven fluorescence from SiV ensemble in diamond, whose properties so far, were only investigated using optical excitations. Therefore, the thesis consists of two main parts. First, the discovery as well as study of a new family of SPEs in GaN via optical excitation is covered. The second part features electrically driven characterisation of SiV centre in diamond.

The RT stable, SPEs are discovered in GaN films using a confocal microscope. The emitters are off-resonantly excited using a continuous wave (cw) laser of wavelength 532 nm . The centre of wavelength in the emission spectra spans a wide range of from around 600 nm to 780 nm . Also, a significant portion of the emission comes from the characteristic, narrow zero-phonon lines (ZPLs) with the mean cryogenic and RT Full Width at Half Maximum (FWHM) of around 0.3 nm and 5 nm , respectively. The nature of the defect responsible for the emission is studied experimentally via temperature resolved spectroscopy as well as numerical modelling giving a strong indication that the emitter is a defect localised near cubic inclusions.

Absorption and emission polarisation properties from the SPEs in GaN is studied in detail via polarization-resolved spectroscopy. High degree of linear, emission polarisation is observed with an average visibility of more than 90%. The absorption polarisation measurement shows that individual emitters may have different dipole orientation. In addition, brightness measurements from several of the SPEs in GaN show the average maximum intensity of around $427 \mathrm{kCounts} / \mathrm{s}$ placing the emitters among the brightest reported so far. A three-level model describes the transition kinetics of the SPEs successfully which explains some of the observed properties of the emitters such as photon statistics.

A small number of the SPEs in GaN show unusual photo-induced blinking. This blinking is shown to be due to a permanent change in the transition kinetics of the emitters when exposed to a laser power above a certain threshold. This is evidenced by the change in the transition kinetics observed before and after blinking of SPEs. Combining long-time autocorrelation measurement and photon statistics analysis, numerical values for powerdependent blinking behaviours are determined.

The second major result in this work is the first electrically driven luminescence from the negative charge state of Silicon-Vacancy $\left(\mathrm{SiV}^{-}\right)$. The result was directly obtained by measuring photoluminescence (PL) and electroluminescence (EL) spectra from SiV^{-} ensemble located in PIN diamond diode. The defect was incorporated into the diode via ion implantation. Further characterisation shows that the saturation behaviour under excess carrier injection yields similar results with when the defect is pumped optically by lasers. Finally, charge state switching between the negative and neutral states of the defect was also attempted by using reverse-biased PL elucidating transition dynamics of SiV centres in diamond.

This work, therefore, reports new findings in the spectroscopic studies of defect based single photon emission. Furthermore, it provides detailed photophysical studies which may serve as a benchmark for future investigation of SPEs in GaN for multiple applications. The results provide new platform as well as alternative excitation approach for the application of defect based SPEs in nanophotonics.

