Spectroscopy of single photon emitting defects in Gallium Nitride and Diamond

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy

School of Mathematical and Physical Sciences (MAPS) University of Technology Sydney

> Author Amanuel Michael Berhane

Research Supervisors Prof. Igor Aharonovich Prof. Milos Toth

March 2018

Certificate of original authorship

I, Amanuel Michael Berhane, declare that this thesis titled, 'Spectroscopy of single photon emitting defects in Gallium Nitride and Diamond' has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature of Student: <u>Signature removed</u> prior to publication.

Date: 13/03/2018

Acknowledgements

I, primarily, would like to thank my supervisor Prof. Igor Aharonovich, first, for taking a chance and allow me to undertake my PhD study at your group in the fascinating field of Nanophotonics. I also thank you for your guidance and for being there to help with my academic struggles. I admired and learned a lot from your regular presence as well as prompt, positive replies for many of my questions and requests over the years. The opportunities you provided me with have helped me grow as an experimental scientist, and I am forever grateful for that.

I would also like to extend my sincere thanks to my co-supervisor Prof. Milos Toth. Your invaluable comments and all-around advice are truly motivating. Thank you for all your support throughout my study.

I thank Mrs Katie McBean for accommodating me in the lab from the start and the training you gave me on the different set-ups around MAU. I am also thankful to Mr Geoff McCredie and Mr Herbert Yuan for the technical support as well as the training on different vacuum systems. Thanks are also extended to Dr Mark Lockrey and Dr Angus Gentle for the training and help you gave me during my study.

To my fellow students at MAU, thank you for being a great bunch to study and work with. Particularly, I thank James Bishop and Russell Sandstrom for the shared social life and making my time at UTS enjoyable.

I would like to acknowledge the collaborators with whom we worked with over the years. I am very grateful to Asst. Prof. Dirk Englund at Massachusetts Institute of Technology (MIT) for our fruitful collaboration and hosting me at your lab. I am thankful to Dr Kwang-Yong Jeong, at MIT who measured half of the room temperature spectroscopy data presented in Chapter 4. We also collected the low-temperature data featured in chapter 4 & 5 together during my visit to MIT. I am also very grateful to Prof. Adam Gali and Dr Zoltán Bodrog at Wigner RCP of the Hungarian Academy of Sciences for carrying out the numerical work presented in chapter 4. Thanks, is also extended to Prof. Hiromitsu Kato at AIST, Japan for providing us with the single crystalline diamond diode which is used to present the work in chapter 7.

To my friends around the globe, thanks for sharing your ideas and experiences: Daniel Taye, thank you for being a pal through thin and thick for so many years. I also thank you for your help with some of the 3D images in this work. Getasew Admasu and Abreham Degarege, our regular meet-ups and your brotherly advice during my PhD study are genuinely appreciated.

To my inspirational wife, Mrs Fasika A. Tekest. Thank you for helping me stay true the cause. Thank you for being patient through all the hurdles and for being the support I ever needed. Everything works out when you are around.

Finally, to my mother Hanna Habtemariam and my late step-father Major Tessema, thank you for your unconditional love. This thesis is dedicated to you both.

Publications

Peer-reviewed publications including one under review that contributed to this work:

- A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, "Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride," Advanced Materials, 1605092, 29 (2017).
- A. M. Berhane, C. Bradac, and I. Aharonovich, "Photoinduced blinking in a solidstate quantum system," Physical Review B 96, 041203 (2017).
- A. M. Berhane, Kwang-Yong Jeong, Carlo Bradac, Michael Walsh, Dirk Englund, Milos Toth, Igor Aharonovich, "Photophysics of Single Photon Source in Gallium Nitride at the Visible Spectrum" (under review)
- A. M. Berhane, S. Choi, H. Kato, T. Makino, N. Mizuochi, S. Yamasaki, and I. Aharonovich, "Electrical excitation of silicon-vacancy centres in single crystal diamond," Applied Physics Letters 106, 171102 (2015).

Peer-reviewed publications not included in this thesis but contain research contributions during the PhD study:

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, "Quantum Emission from Defects in Single-Crystalline Hexagonal Boron Nitride," Physical Review Applied 5 (2016). This work reports the single photon emission from bulk hexagonal Boron Nitride (hBN). Spectroscopic properties of the emission are studied using photoluminescence (PL) and cathodoluminescence (CL). The fluorescence time trace, as well as time, resolved PL is used to characterise temporal behaviours of

the intensity. The results are vital in introducing hBN for nanophotonic applications.

- 2) S. Choi, A. M. Berhane, A. Gentle, C. Ton-That, M. R. Phillips, and I. Aharonovich, "Electroluminescence from localized defects in zinc oxide: toward electrically driven single photon sources at room temperature," ACS applied materials & interfaces 7, 5619-5623 (2015). This study reports electrically driven defect fluorescence from Zinc Oxide (ZnO) diodes. Direct evidence of electroluminescence (EL) from the defect is provided by exciting it both by PL and later EL yielding the same spectral properties. The results entail that defects in ZnO can be further investigated to show electrically driven single photon emission.
- 3) S. Stehlik, L. Ondic, A. M. Berhane, I. Aharonovich, H. A. Girard, J.-C. Arnault, and B. Rezek, "Photoluminescence of nanodiamonds influenced by charge transfer from silicon and metal substrates," Diamond and Related Materials (2015).: Here NV centre in a 5 nm detonated nanodiamond is studied by varying the termination as well as the substrate. It is reported that the spectral, as well as lifetime of the NV centre, changes by varying the factors above. This result underpins the effect of surface electrostatics on the optical properties of nanodiamonds.

Table of Contents

Certificate of original authorship	ii
Acknowledgements	iii
Publications	V
Cable of Contents	vii
List of Tables	xii
ist of Figures	xiii
Symbolic Notation	xxxiii
List of Abbreviations	xxxviii
Abstract	xxxix
Introduction	1
1.1 Motivation	1
1.2 Background	8
1.3 Objective	9
1.4 Organization of the thesis	
P. Fundamentals	
2.1 Photons as basis for quantum mechanical behaviour of light	
2.1.1 Classical and semiclassical approach for the analysis of	photon
statistics	
2.1.2 Quantum mechanical approach for the analysis of photon sta	itistics 17
2.2 Excitation of single photon emitters	
vii	

	2.2.1	Continuous-wave (cw)-laser excitation of single photon emitters	22
	2.2.2	Electrical excitation of single photon emitters	32
	2.	2.2.1 PN Junctions: Current and single photon emitting diodes 2.2.2 Single photon emitting diodes (SPEDs) and PIN-junction	40
	2.3.1	Charging and discharging mechanisms of blinking SPEs	48
	2. 2.	 3.1.1 Quantum jump and auger ionisation model 3.1.2 Spatial diffusion model 3.1.3 Fluctuating electronic states model	49 49
	2.3.3	Blinking measurements and data analysis	52
3	2. 2.	3.3.1 Photon binning histograms 3.3.2 Probability density of "on"/ "off" times 3.3.3 Second-order autocorrelation ($g^2(\tau)$) analysis et related luminescence: single photon emission from wide bandgap	52
	semic	onductors	54
	3.1 O	ptical properties of point defects	54
	3.1.1	Equilibrium point defect formation	54
	3.1.2	Electronic states of defects	57
	3.2 Si	ngle photon emitters in III-nitrides	61
	3.2.1	An optically active isolated defect in cubic GaN	61
	3.2.2	An optically active isolated defect in wurtzite AlN	62
	3.3 O	ptical properties of stacking faults	64
	3.3.1	Formation of stacking faults (SFs)	64
	3.3.2	Stacking faults in III-nitrides	66

	3.3.3	Electronic states of stacking faults	. 67
	3.4 Co	olour centres in diamond	72
	3.4.1	Incorporation of SiV center in diamond	. 76
	3.4.2	Structural and optical properties of SiV centre	. 78
4	Spectr	roscopy of single photon emitting defects in GaN	81
	4.1 M	aterials and structural analysis	81
	4.2 Ex	xperimental setting	85
	4.3 Sp	bectroscopy of SPEs in GaN at room temperature	87
	4.4 Ro	bom temperature second-order autocorrelation measurements	93
	4.5 Lo	ow-temperature Spectroscopy and second-order correlation	
	m	easurements of SPEs in GaN	97
	4.6 Tł	ne role of stacking faults in the single photon emission from GaN films	
			104
	4.7 A	numerical model of the origin of SPE in GaN	106
	4.7.1	Modelling parameters	106
	4.7.2	Modelling results	107
	4.8 Co	onclusion	108
5	Photo	physics of single photon emitters in GaN	110
	5.1 R	T fluorescence time-trace and saturation behaviours of SPEs in GaN	111
	5.1.1	Florescence intensity trajectory of SPEs in GaN	111
	5.1.2	Saturation behaviour of SPEs in GaN	112

	5.2	RT transition kinetics analysis of SPEs in GaN	116
	5.3	Polarisation properties of SPEs in GaN	125
	5.4	Low-temperature photophysics of SPE in GaN	129
	5.5	Conclusion	130
6	Phe	oto-induced blinking in a solid-state quantum system	132
	6.1	Excitation power dependent blinking of SPEs in GaN	133
	6.2	Transition kinetics and saturation analysis of SPE in GaN before and	
		after blinking	139
	6.3	Long correlation time $g^2(\tau)$ -measurements of a blinking SPE in GaN	142
	6.4	Probability density distribution of blinking SPE in GaN	144
	6.5	Conclusion	146
7	Ele	ectrical excitation of silicon-vacancy in single crystal diamond	147
	7.1	Ion implantation of Si ²⁺ in diamond PIN diode	148
	7.2	EL and PL excitation of SiV ensembles in diamond diode	149
	7.3	Saturation and stability behaviours of SiV ensembles under excess	
		carrier injection	151
	7.4	Charge switching between ensembles of SiV ⁻ and SiV ⁰	152
	7.5	Conclusion	154
8	Su	mmary and outlook	155
	8.1	Defect-based single photon emitters in GaN	155
	8.2	Electroluminescence from Silicon-Vacancy in diamond	160

8.3	Outlook	162
Reference		

List of Tables

Table 4.1: Optical microscope and AFM images of Sample B – E
Table 4.2: XRD data of the (0002) and AFM measurement of Sample A $-$ E 83
Table 4.3: Parametric values a , τ_1 and τ_2 obtained by fitting the second-order autocorrelation
functions of E1, E2 and E3, assuming the three-level system dynamics
Table 5.1: Rate coefficients extracted for the selected three SPEs by fitting their power-
dependent parameters in Figure 5.10. The quantities κ_{12} , κ_{21} , κ_{23} and κ_{31} are the rate
coefficients for transitions between coupled states $ 1\rangle\!\rightarrow\! 2\rangle$, $ 2\rangle\!\rightarrow\! 1\rangle$, $ 2\rangle\!\rightarrow\! 3\rangle$ and
$ 3\rangle \rightarrow 1\rangle$, respectively. All emitters except E1 show a power-dependent shelving state.
α and β are linear fitting parameters for the power dependence of κ_{12} and κ_{31} ,
respectively
Table 5.2: Calculated values of the excited state $(\tau_{ 2\rangle})$ and metastable state lifetime $(\tau_{ 3\rangle})$ for
the 6 emitters
Table 6.1: Background-corrected intensity values at different excitation powers before and
after blinking

List of Figures

Figure 1.1: (a) Atomic structure of NV centre in the diamond unit cell (b) Spectrum from
an NV centre showing fluorescence peak of the NV ⁻ at 637 nm
Figure 1.2: The bandgap energies and lattice constants of various direct and indirect
bandgap semiconductors including III-nitrides[48]6
Figure 2.1: (a) Chaotic photon distribution at detectors. (b) beam splitter for photon
correlation analysis where an incident beam of light (I) is split 50/50 into a transmitted
(T) and reflected (R) beams leading to two detectors D1&D2. (c) shows the
autocorrelation results for chaotic light source obtained after intensity fluctuation at
the two detectors is correlated in time by introducing delay (τ) in the arrival times in
one of the beam paths (R or T)[64]

- Figure 2.7: Energy band diagrams of two semiconductors that are n- and p-doped.. (a)
 Before contact majority electrons reside in the conduction band (CB) of the n-doped semiconductors while majority holes reside in the valence band (VB) and p-doped semiconductor. (b) At contact, majority carriers from both sides diffuse into the opposite side to become a minority carrier before they recombine and dissipate. ... 33
- Figure 2.9: (a) Junction between a heavily doped p-type (p⁺⁺) semiconductor and undoped (intrinsic) semiconductors. (b) Charge density vs. position for the junction in (a) .. 36

- Figure 2.10: The PN-junction under external bias at the contact terminals of the semiconductors. (a) Forward bias where the positive terminal of the external voltage source is connected to p-side of the device while the negative to the n-side. (b) Reverse bias where the negative terminal of the external voltage source is connected to p-side and vice versa.
- Figure 2.12: Schematic illustration of single photon emission at the charged defect site. (a) a hole is trapped by a defect state that has an electron in its ground state. (b) The successive decay of the trapped state from the excited to the ground state of the decay results in single photon emission switching the charge state to neutral. Subsequent electron trap by the defect switches it back to its negatively charged ground state. 43

Figure 2.14: Charging and discharging mechanisms in SPE leading to "off" and "on
episodes. (a) Auger ionisation model (b) Spatial diffusion models (c) Fluctuating
electronic state model
Figure 3.1: A typical configuration coordinate diagram of a defect showing electronic
transitions together with vibrational levels
Figure 3.2: Configuration coordinate diagram of the neutral $V_{Ga}O_N$ in 3C-GaN (a) and the
neutral $V_{Al}O_{N}$ in WZ AlN (b). The corresponding absorption, emission and ZPL
transition are indicated for both systems with calculated energies
Figure 3.3: Illustration of a cross-sectional view on hexagonal sequencing of lattice atoms
on two planes A and B 64
Figure 3.4: Illustration of stacking faults creation by agglomeration of vacancies in a
hexagonal matrix
Figure 3.5: Illustration of stacking faults creation by agglomeration of interstitials in a
hexagonal matrix
Figure 3.6: Wurtzite and Zinc-blende crystal phase stacking sequence
Figure 3.7: Schematics is showing the three main stacking faults, I_1 , I_2 and I_3 in GaN 67
Figure 3.8: Schematics of a triangular band line up due to local cubic inclusion in otherwise
hexagonal matrix
Figure 3.9: Schematics of triangular band line up of a cubic inclusion in a hexagonal matrix
with point defects in the vicinity
Figure 3.10: Schematic illustration of the diamond unit cell

- Figure 4.2: Post KOH sample topography analysis using (a) Optical microscope image with a scale bar of 100 μ m (b) Scanning electron microscope (SEM) image with a scale bar of 10 μ m with an inset magnifying the etched area with a scale bar of 100 nm...... 85

- Figure 4.6: Room temperature spectra from emitters in GaN Sample A. Representative spectral characteristic of 16 different emitters collected from 5 different scans. 532

Figure 4.10: Background corrected $g^2(\tau)$ characteristics of emitters E6-E8 in Sample A are shown in (a) - (c). E6 have strong de-shelving state that results in a weak signal to noise ratio and consequently $g^2(0) > 0.5$. Additional background corrected $g^2(\tau)$ characteristics from six more single photon emitters in Sample A are provided through (d) - (i). All second-order correlation measurements are taken at excitation laser power Figure 4.11: $g^2(\tau)$ characteristics of 7 emitters in Sample B. All 7 emitters are single photon emitters with $g^2(0) < 0.5$. Each antibunching characteristic correspond to the Figure 4.12: $g^2(\tau)$ characteristics of 3 emitters in Sample C. All 3 emitters are single photon emitters with $g^2(0) < 0.5$. They correspond to the 3 circled bright spots in Figure 4.13: $g^2(\tau)$ characteristics of 3 emitters in Sample D without background correction Figure 4.14: $g^2(\tau)$ characteristic of 3 emitters in Sample E. All 3 are single photon emitters Figure 4.15: Low-temperature (4 K) spectroscopy and photon emission statistics of quantum emitters in GaN. a) Representative spectra from 6 emitters with ZPL peak energies of 1.796 eV (E1), 1.834, 1.852 eV (E2), 1.895 eV, 1.908 eV and 1.981 eV (E3). b) ZPL peak energy distribution of 19 emitters with a mean value of

- Figure 4.17: (a) Temperature-dependent spectroscopy of E1 showing both ZPL peak shift and linewidth broadening. There is a visible phonon mode 3.1meV away from ZPL up to temperature of 80K (b) Spectrum at 290 K of E1 plotted in a separate panel for better visualisation. (c) ZPL peak shift at low temperature showing the usual S-shaped temperature dependence for E1. (d) Corresponding linewidth broadening as a function temperature shown only up to 100 K for E1.

- Figure 4.18: (a) Temperature-dependent spectroscopy of E2 showing both ZPL peak shift and linewidth broadening. A phonon mode is also shown here around 8 meV away from the ZPL up to 60K (b) Spectrum at 290 K of E2 plotted in a separate panel for better visualisation. (c) ZPL peak shift at low temperature showing the usual S-shaped temperature dependence for E2. (d) Corresponding linewidth broadening as a function temperature shown only up to 100 K for E2.

- Figure 4.22: Depth-resolved cathodoluminescence (CL) from two spots on sample A at 80 K: (a) CL spectra using different beam energies to obtained depth-resolved CL from spot 1. In depths between around 78 nm to 465 nm, CL peak of 3.3 eV dominates while at 761 nm deeper into the sample CL peak of 3.2 eV dominates. Same electron beam power of around 60.5 μ W is used at the different depths. The inset shows depth estimation using Monte Carlo simulations for the different beam energies. (b) A similar measurement as in the case of (a) but on the spot 2. This measurement has also yielded a similar result with 3.3 eV peak dominating till depths of around 465 nm where 3.2 eV dominates at depths around 761 nm.

- Figure 5.3: Saturation characteristics of the emitter from Sample B-E. Fluorescence intensity of emitters from sample B (a), C (b), D(c) and E (d) as a function of excitation power. The background-subtracted saturation curve (red) yields a maximum intensity of 160, 200, 300 and 150 kCounts/s at a saturation power of 660, 1200, 410 and 910 μW, respectively.
- Figure 5.5: Saturation behaviours of emitters in GaN at room temperature. a) Backgroundcorrected fluorescence intensity versus power from a representative emitter with a

- Figure 5.6: Power dependent antibunching characteristics of the three emitters presented in Figure 5.2 with spectral peak at 647 nm, 679 nm and 690 nm is provided in (a) (c)
 & (e) respectively. As shown, emitters show power dependent bunching characteristics in the three emitters.

- Figure 5.9: Power-dependent antibunching characteristics of the six emitters E1-E6. While all emitters showed power-dependent bunching behaviour, the strength of bunching

- Figure 5.14: Fluorescence time trace measurements and corresponding photon statistics of the three emitters E1, E2 and E3 from in Figure 5.1 (main text) under an excitation power of 100 μ W. All three emitters are stable with single-photon statistics. The higher noise level observed on the time trace of E2 is due to sample drift during measurement.
- Figure 5.16: Time-resolved PL spectra of the emitters E1-E3 obtained at 4 K using an excitation power of 50μW. a-c) ZPL peak energy (left) measured every second for 2 minutes. The spectral maps show the bright yellow points as the peaks of the ZPL corresponding to the integrated spectrum (top) for each emitter. A stable mean ZPL peak energy of (1.796±0.0002) eV, (1.852±0.0005) eV and (1.981±0.0002) eV is observed for E1, E2 and E3, respectively.
- Figure 6.1: Excitation power-induced blinking of an SPE in GaN. a) RT spectra of the SPE taken under 200- μ W power excitation; the ZPL lies at 647 nm with an FWHM of ~4 nm. b) Fluorescence trajectory of the same emitter. The time trace is collected from the ZPL with 630 ± 30 nm bandpass filter for 2 minutes. c) Occurrence statistics of the number of photon counts in (b) over a time of 2 minutes. The emitter shows stable emission d) Fluorescence trajectory of the same emitter excited with 5 mW. The time

- Figure 7.1: (a) Schematic illustration of a single crystal PIN diode with implanted Si-atoms and an optical image of the device. The diameters of the n-type diamond mesa are 120 μm, and the metallic contacts on top are 100 μm. (b) Monte Carlo depth profile of ion-implanted Si-atoms into diamond obtained using SRIM calculations. The end of range is estimated at 820 nm. (c) I-V-characteristic plot is showing diode rectification at a forward threshold voltage of 43V at room temperature. The inset shows Log-Linear curve of the same data set.
- Figure 7.2: (a) Electroluminescence map of an 80 μm x 80 μm area showing luminescence from the edge of the pillar. (b) EL spectrum from the circled bright spot of the EL map. The EL spectrum is collected at a forward bias of 50V used to inject current of 2.9 mA into the device. (c) Photoluminescence map of a 60 μm x 60 μm area,

exhibiting comparable emission from around the edge of the pillar (d) PL spectrum
from the circled bright spot of the PL map. The excitation is performed using a 532
nm cw-laser at 867 μW150
Figure 7.3: (a) Electrical driven luminescence saturation measurement of the stable SiV
vacancy together with fitting curve indicated by the solid red line. (b) Shows stability
measurement from the negative charge state of SiV centre when 2.5 mA of current is
injected into the device. The colour centre showed stable emission for more than 6
min
Figure 7.4: (a) Forward and reverse biased PL measurement show reduction in the intensity
of the SiV ⁻ ZPL. The bias voltage is varied between 52 V and -60 V. In forward bias,
higher injection of carriers excites more centres resulting in higher luminescence
intensity from SiV ⁻ centre. As the reverse current increases, intensity from SiV ⁻
decreases due to injection of holes into the centre. Charge switching to SiV ⁰ , however,
is not observed with emission around 946 nm. (b) CL spectra from SiV ensemble at

Symbolic Notation

Symbol	Meaning	Page
ω	Angular frequency	5
h	Planck's constant	5
g^2	Second-order correlation function	13
τ	Delay time	13
Ι	Intensity	13
<i>P</i> _{1,2}	Probability of counting photons	15
$\eta_{\scriptscriptstyle 1,2}$	Detection efficiency	15
Δt	Detection time	15
$\hat{n}_{1,2}$	Intensity operator	16
\hat{a}_i	Annihilation operator	16
\hat{a}_i	Creation operator	16
\hat{a}_1	Input field operator	17
\hat{a}_2	Vacuum field operator	17
п	Number of photons	17
Δn^2	Photon number variance	17
Ν	Number of emitters	22
p_{j}	Probability of emission per time	22
i _j	Discrete intensities	22
r _j	Position of emitters	22
κ_{ij}	Rate coefficients	23
λ	Eigenvalues	24

t _d	Antibunching time constant	25
q	Scaling factor	25
S	Signal counts	26
В	Background counts	26
λ_1	Radiative decay rate	28
λ_2	Non-radiative decay rate	28
а	Scaling factor for bunching	28
V_b	Potential barrier	31
E_{f}	Fermi energy level	32
E _e	Conduction band energy	32
E_{v}	Valance band energy	32
$N_{e,v}$	Intrinsic carrier concentration	32
N_d	Electron carrier density	32
N_{a}	Hole carrier density	32
E _g	Band gap energy	32
q	Charge of electron	32
ρ	Charge density	33
d	Width of depletion region	33
$E_{\rm max}$	Maximum field	34
ε	Dielectric constant	34
$J_{\it diff}$	Diffusion current	34
D	Diffusion constant	34
∇n	Concentration gradient	34
J_{f}	Forward current	35
J_r	Reverse current	35

V_{ext}	Applied voltage	35
ΔE	Potential step	36
Κ	Boltzmann constant	36
Т	Temperature	36
n _i	Intrinsic concentration	37
$N_{acc(don)}$	Acceptor or donor concentration	37
τ	Lifetime	37
L	Diffusion length	37
R_d	Electron recombination rate	40
C _d	Electron capture cross-section	40
n _e	Electron density	40
f	Number of neutral defects in ground state	40
$N_{\rm SPS}$	Number of single photon source per unit volume	40
C _u	Hole capture rate	41
n _p	Hole density	41
x	Population of neutral state	41
G_d	Electron generation rate	41
G_{u}	Hole generation rate	41
e_{d}	Electron re-emission rate	41
e_u	Hole re-emission rate	41
e _r	Re-emission rate of the neutral defect state	41
R _{SPS}	Recombination rate at single photon source	42
ϕ	Quantum efficiency	42
$\sigma_{_{d(u)}}$	Capture cross-section	42
$\mathcal{D}_{d(u)}$	Group velocity	42
Р	Probability density of blinking events	45
$ au_{On,{ m Off}}$	Characteristic on- and off- blinking times	45

C^{0}	Neutral defect concentration	56
C^{-}	Ionized defect concentration	56
C_0	Total defect concentration	56
f	Probability of occupation	56
E_a	Acceptor energy level	56
E_{f}	Fermi energy level	56
C_{v}	Concentration of point defects	56
n _v	Number of point defects	56
N	Total number of crystal electrons	56
$G_{_F}$	Gibbs free energy	56
H_F	Formation enthalpy	56
S_F	Formation entropy	56
W_{n0}	Transition probability	56
S	Huang-Rhys factor	56
E_0	Energy difference	57
п	Excitation vibrionic level	57
а	Offset parameter	59
b	Initial intensity amplitude	59
ϕ	Angle between excitation laser and dipole orientation	59
Γ	Transform limited linewidth	60
a _{ec}	Bohr-radius	70
μ^{*}	Reduced mass	70
m _e	Mass of electron	70

m_h	Mass of hole	70
ΔE_{ex}	Effective binding energy	70
K	Semiconductor permittivity	70

List of Abbreviations

Abbreviation	Meaning	Page
SPEs	Single Photon Emitters	xxxix
GaN	Gallium Nitride	xxxix
CW	continuous Wave	xl
ZPL	Zero Phonon Line	xl
FWHM	Full Width at Half Maximum	xl
PL	Photoluminescence	xli
EL	Electroluminescence	xli
CL	Cathodoluminescence	4
PMT	Photomultiplier Tube	6
APDs	Avalanche Photo Diodes	6
HBT	Hanbury-Brown and Twiss	12
SCR	Space Charge Region	31
SPEDs	Single Photon Emitting Diodes	38
LEDs	Light Emitting Diodes	38
PD	Point Defect	55
HPHT	High-Pressure High Temperature	61
CVD	Chemical Vapor Deposition	62
SF	Stacking Fault	65
QW	Quantum Well	69
MOCVD	Metalo-Organic Chemical Vapor Deposition	74
HVPE	Hybrid Vapor Plasma Epitaxy	75
PIC	Photonic Integrated Circuit	84

Abstract

Amanuel Michael Berhane Spectroscopy of single photon emitting defects in Gallium Nitride and Diamond

A single photon is among the few quantum mechanical systems that are finding applications in myriad fields. The applications include serving as building blocks for the ongoing endeavour to realise faster computers and secure communication technologies. As a result, a variety of platforms are being inspected to generate single photons on-demand. Point defects and complexes in wide bandgap semiconductors such as nitrogen-vacancy (NV) and silicon-vacancy (SiV) centres in diamond, carbon antisite in Silicon Carbide (SiC), etcetera, are shown to be reliable room temperature (RT), single photon emitters (SPEs). Despite reports of several defect based SPEs in diamond and other semiconductors, the exploration continues to find ideal sources for applications. The central part of this work also focuses on the discovery and characterisation of novel SPE in the device fabrication friendly material-Gallium Nitride (GaN).

The other important aspect in the study of SPEs is the method by which emitters are excited. While optical technique via laser excitation is the standard approach, electrically excited single photon generation is highly desirable for large-scale nanophotonic applications. The second part of the work investigates electrically driven fluorescence from SiV ensemble in diamond, whose properties so far, were only investigated using optical excitations. Therefore, the thesis consists of two main parts. First, the discovery as well as study of a new family of SPEs in GaN via optical excitation is covered. The second part features electrically driven characterisation of SiV centre in diamond.

The RT stable, SPEs are discovered in GaN films using a confocal microscope. The emitters are off-resonantly excited using a continuous wave (cw) laser of wavelength 532 nm. The centre of wavelength in the emission spectra spans a wide range of from around 600 nm to 780 nm. Also, a significant portion of the emission comes from the characteristic, narrow zero-phonon lines (ZPLs) with the mean cryogenic and RT Full Width at Half Maximum (FWHM) of around 0.3 nm and 5 nm, respectively. The nature of the defect responsible for the emission is studied experimentally via temperature resolved spectroscopy as well as numerical modelling giving a strong indication that the emitter is a defect localised near cubic inclusions.

Absorption and emission polarisation properties from the SPEs in GaN is studied in detail via polarization-resolved spectroscopy. High degree of linear, emission polarisation is observed with an average visibility of more than 90 %. The absorption polarisation measurement shows that individual emitters may have different dipole orientation. In addition, brightness measurements from several of the SPEs in GaN show the average maximum intensity of around 427 kCounts/s placing the emitters among the brightest reported so far. A three-level model describes the transition kinetics of the SPEs successfully which explains some of the observed properties of the emitters such as photon statistics.

A small number of the SPEs in GaN show unusual photo-induced blinking. This blinking is shown to be due to a permanent change in the transition kinetics of the emitters when exposed to a laser power above a certain threshold. This is evidenced by the change in the transition kinetics observed before and after blinking of SPEs. Combining long-time autocorrelation measurement and photon statistics analysis, numerical values for powerdependent blinking behaviours are determined. The second major result in this work is the first electrically driven luminescence from the negative charge state of Silicon-Vacancy (SiV⁻). The result was directly obtained by measuring photoluminescence (PL) and electroluminescence (EL) spectra from SiV⁻ ensemble located in PIN diamond diode. The defect was incorporated into the diode via ion implantation. Further characterisation shows that the saturation behaviour under excess carrier injection yields similar results with when the defect is pumped optically by lasers. Finally, charge state switching between the negative and neutral states of the defect was also attempted by using reverse-biased PL elucidating transition dynamics of SiV centres in diamond.

This work, therefore, reports new findings in the spectroscopic studies of defect based single photon emission. Furthermore, it provides detailed photophysical studies which may serve as a benchmark for future investigation of SPEs in GaN for multiple applications. The results provide new platform as well as alternative excitation approach for the application of defect based SPEs in nanophotonics.