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Abstract:  Following the recent demonstration that van der Waals forces control the 

ferroelectric ordering of layers within nanoflakes and bulk samples of CuBiP2Se6 and 

CuInP2S6, it is demonstrated that they also control the internal geometrical structure of 

isolated monolayers of these materials.  This internal structure involves large displacements 

of the copper atoms, either normal to the layer plane or else within the plane, that change its 

ligation environment.  In both cases, the van der Waals dispersion force out-competes 

traditional bonding effects to control structure.  However, we find that the aspects of the 

dispersion force giving rise to each effect are uncorrelated: long range effects control inter-

layer ferroelectric ordering whereas short-range effects control internal layer structure.  These 

conclusions are drawn considering predicted properties of monolayers, bilayers, and bulk 

materials obtained using 14 density-functional-theory based methods.  While the different 

methods used often predict starkly different quantitative results, they concur as to the basic 

nature of ABP2X6 materials.  Of the methods used, only the PBE-D3 and optPBEvdW 

methods were found to predict a wide range of observed properties without serious disparity.  

Finding optimal computational methods remains a significant challenge for which the 

unusual multi-scale nature of the van der Waals interactions in ABP2X6 materials provides 

demanding criteria. 

PACS Numbers  

31.13.E dft   or   31.15.eg  functionals 

68.65.ac  multilayers 
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77.80.-e   ferroelectric - antiferroelectric 

 

I. INTRODUCTION 

The competition between traditional chemical forces involving covalent and ionic bonding 

with the van der Waals (vdW) force is being recognized as a widespread phenomenon [1].  

Many different computational procedures are now available for modeling this competition, 

and we utilize these to consider the structure and properties of some 2D layered materials.  

These compounds are selected as the properties of the “van der Waals gap” is of critical 

current concern as a controlling influence on the properties of many conceived devices [2], 

but we here show that equally important in layered materials is also the effect the force has 

on the internal properties of each layer.   

Some metal seleno- and thio-phosphate materials ABP2X6 (A, B = metals with 

valences either A(I)B(III) or A(II)B(II); X = S or Se) form lamellar structures in which thin 

molecular layers (see Fig. 1) self-assemble under the influence of the van der Waals force [3].  

Each molecular layer involves (X3P-PX3)4- anions of near D3d symmetry, assembled with 

their P-P bonds normal to the layer.  In this way, two parallel “sheets” of S or Se atoms, that 

are of order 3.5 Å apart, form in a hexagonal lattice, with the metal atoms locating in 

octahedral holes between the sheets.  Figure 1 depicts such a high-local-symmetry structure, 

named “O”. It manifests S6 improper rotation axes normal to the layer that pass through the A 

atom, the B atom, and the P-P bond, as well as three C2 axes bisecting them.  The C2 axes are 

important as, within a monolayer, they make the top sheet of S or Se atoms symmetrically 

equivalent to the bottom sheet. 

If A and B are different atoms, then the O structure cannot have the full symmetry of 

the lattice. Indeed, it represents a high-energy unstable structure on the potential-energy 

surface, leading to 8 polymorphic forms associated with displacements of, in particular, the 

small Cu(I) atom.  It can either move vertically (z direction) towards one of the two layer 

sheets or horizontally in either direction along one of the three C2 axes.  Vertical 

displacements cause the loss of all C2 operators and reduce S6 to C3.  Horizontal 

displacements loose the S6 operator altogether but preserve one of the C2 operators, here 

taken to be the one in the x direction.   

Of considerable interest is the dipole polarization associated with internal 

displacements within each cell.  The (hypothetical) O structure has inversion symmetry and 
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hence manifests no dipolar polarization, but the magnitude of internal displacements can be 

quite large, of order 1.7 Å normal and 0.5 Å horizontal, so inducing significant electric 

polarization within a cell.  These effects are sketched in Fig. 2a.  

A monolayer is made up of a 2D grid of cells; its macroscopic properties will 

therefore be controlled by the nature of any short-range or long-range ordering of individual 

cell dipoles.  Monolayers of cells displaying vertical displacements that align either 

ferroelectrically or else randomly have been observed  [4].  However, monolayers of cells 

with horizontal displacements are yet to be observed.  As a result, discussion of 

ferroelectricity has historically focused on polarization normal to the monolayer, and indeed 

we follow this lead.  Hence in Figs. 1 and 2b we name the vertically displaced fully-ordered 

monolayer as ferroelectric (F).  Shown also in these figures is an ordered antiferroelectric 

(A) structure based on vertical displacements, and variants with random (R) polarization are 

known.  In contrast, horizontally displaced structures preserve one C2 operator and hence 

there is no z-dipole component by symmetry, so we name these structures as paraelectric; 

two such paraelectric forms are possible, one named Ps in which the A and B atoms move 

together to a short distance, ca. 3 Å apart, that can be considered as a (somewhat long) 

chemical bond, and one named Pl in which they move apart to display a long unique 

interaction distance, see Figs. 1 and 2b.    We show interest in such structures as one day they 

may be observed in some system, possibly with an exploitable metal-metal bond.  More 

pertinently, however, their properties could shed considerable light on the interaction 

between ionic and van der Waals forces in controlling monolayer structure.  To encompass 

such possibilities, our notation here is more general than that found elsewhere in which 

vertically displaced randomly aligned cells are sometimes referred to as being “paraelectric” 

[4].    

Nanoflakes and bulk samples of ABP2X6 materials also display inter-layer ordering.  For 

example, monolayers that are internally ferroelectrically ordered may be stacked together 

either ferroelectrically or antiferroelectrically.  Materials that have been previously 

investigated for their net ferroelectric properties include: CuInP2S6 [3, 5-9] CuBiP2Se6 [4], 

AgBiP2Se6 [4], AgBiP2S6 [4], CuCrP2S6 [10], and CuVP2S6 [11].  CuBiPS2Se6 is observed at 

97 K to form into an antiferroelectric polymorph comprised of vertically-displaced internally 

ferroelectrically-ordered monolayers stacked with alternating polarization, with dipole 

ordering being lost as the temperature rises to 173 K and then to 298 K  [4].  It has been 

suggested that random loss of dipole ordering within a monolayer is responsible for this 

effect [4], but alternate possibilities include the formation of antiferroelectric monolayers as 
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well as the formation of paraelectric monolayers (see Figs. 1 and 2).  In contrast, CuInP2S6 

was found to be ferroelectric with a Curie temperature of 315 K, thus sustaining a 

ferroelectric state up to room temperature [3, 5-7, 9, 12, 13].  Understanding the processes 

driving and opposing ferroelectricity in these materials therefore presents a significant 

modern challenge.  In general, the origin of antiferroelectricity in materials remains poorly 

understood [14].  

Recently, we demonstrated that, in CuBiP2Se6 and CuInP2S6, the van der Waals force 

controls ferroelectric ordering rather than traditional chemical forces [15].  This effect arises 

from strong dispersion interactions involving the copper ions of one internally ferroelectric 

monolayer interacting with the copper atoms in its neighbouring layers.  Figure 2c depicts 

two fundamentally different types of antiferroelectrically arranged bilayers of such a 

monolayer.  Most significantly, antiferroelectric nanoflakes and bulk materials by necessity 

must comprise alternating arrangements of each type.  They involve different copper-copper 

inter-layer interactions: in one case, named Aii, the vertically displaced Cu atoms both appear 

on the inside of the two layers, while in the other case, named Aoo, the two copper atoms 

appear on the outside.  Alternatively, bilayers made from ferroelectrically aligned 

monolayers, named F, (see Fig. 2c), present a single type of inter-layer interaction in which 

the copper atoms have intermediary separation to those in Aoo and Aii.  Shorter copper to 

copper distances result in stronger van der Waals attraction, meaning that the dispersion force 

scales non-linearly in order Aii > F > Aoo.  Comparison of the average interlayer interaction in 

antiferroelectric structures with that in the ferroelectric one then controls ferroelectric 

ordering in the crystals.  These net contributions to the total energy remain much larger than 

the electrostatic energy differences associated with both short-range and long-range dipole 

ordering.  Hence the inter-layer van der Waals force controls the ferroelectric ordering of 

monolayers within bilayers, nanoflakes, and bulk solids of these materials. 

To understand this result more, we require independent means of assessing the nature of 

the van der Waals forces, plus ways of assessing the nature of the intrinsic chemical and 

electrostatic forces.  This includes both qualitative methods for the interpretation of observed 

results as well as quantitative schemes for the a priori prediction of the effects of the forces 

involved. 

The chemical bonding forces that singularly control ferroelectricity in traditional three-

dimensional materials are mostly well described using density-functional theory (DFT), 

employing simplistic functionals based on the generalized-gradient approximation (GGA) 
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such as the Perdew, Burke, and Ernzerhof (PBE) [16] functional.  Indeed, this method has 

been used to predict the ferroelectric order in lamellar materials related to our systems of 

interest [4, 9, 17], including the prediction of spontaneous dipole ordering in CuInP2S6 [9]. 

Often semiconductors with trigonal, tetrahedral and octahedral symmetry experience off-

center atomic displacements owing to the presence of partially occupied orbitals [18].  

Related off-center structural instabilities have also been investigated in various perovskite 

ABO3 ferroelectric compounds such as iron defect sites in KTaO3 [19], Ba0.5Sr0.5TiO3 [20], 

and BaTiO3 [21].  In such bulk ferroelectric compounds, ferroelectric instability results from 

a competition between long-range Coulomb interactions favoring the ferroelectric polymorph 

and short-range forces supporting the undistorted paraelectric structure.  Properties are then 

determined by the lattice dynamics [22] in competition with the electron screening of the 

Coulomb interactions [21].  Most relevant, however, is the analysis of CuBiP2Se6 by Gave et 

al. [4] which explains the off-centre displacement of the Cu(I) ion in terms of a second-order 

Jahn-Teller distortion. 

Naively, one would expect the PBE density functional to provide a reasonable description 

of all of these chemical effects.  However, improved computational methods are available, 

including the extension of PBE to make the HSE06 hybrid density functional [23].  This 

allows for a much more realistic description of the electron exchange effects that often 

control chemical reactions and ferromagnetism. 

In contrast, neither GGA nor hybrid functionals provide a realistic description of the 

dispersion force, the force responsible for the attractive part of the van der Waals interaction.  

The last decade has seen the development of many methods that take into account this basic 

deficiency in DFT methodology [24].  Indeed, in the area of materials research, density-

functionals with van der Waals corrections have been applied to critical questions such as the 

prediction of interlayer binding in various two-dimensional heterostructures including 

graphene, hexagonal boron nitride, phosphorene, and transition metal dichalcogenides [25].  

Our previous demonstration [15] that van der Waals forces control ferroelectric ordering in  

ABP2X6  materials builds on this research.   

Looking beyond this widely accepted understanding of the significance of van der Waals 

forces, today, many examples of systems traditionally believed to be treated well using DFT 

without van der Waals correction are now being found to be systems in which this effect is 

actually critical [1].  Noteworthy is that the dispersion can be large for interactions involving 

soft atoms like S, Se, In, and Bi, with the implication that it could also control atomic 
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structure within a single monolayer.  ABP2X6 materials therefore present a unique situation in 

which the role of the van der Waals force in controlling intermolecular interactions can be 

studied in parallel with its role in competing with chemical forces to control local bonding.  

This in turn provides a unique opportunity to assess modern computational approaches for 

modelling the van der Waals force. 

Just as many different density functionals have been developed, so also have many van der 

Waals approaches.  To date, the self-assembly of ABP2X6 layers has been considered using 

only one such approach, correcting the PBE density functional using the “D2” empirical 

dispersion correction of Grimme et al. [26] (PBE-D2), to investigate ferroelectric ordering in 

CuIn2P3S9 and CuInS2P6 [7].  For these systems, PBE-D2 was shown to give similar ordering 

to that obtained using PBE [9].  Here, we consider pure PBE as well as 11 different 

combinations of van der Waals corrections with PBE-based GGA density functionals.  We 

also consider the HSE06 functional, and in addition, that combined with the “D3” empirical 

dispersion correction of Grimme et al. [27, 28]. 

While GGA and hybrid functions are naively thought to provide a good description of 

electron correlation at short distance and van der Waals corrections thought to provide a good 

description at long distance, no clear-cut separation really exists, with both contributions 

applicable to a broad intermediary region.  For example, the crude local-density 

approximation (LDA) to DFT provides an exact description of the dispersion force at all 

length scales in a free-electron gas.  Changing the density functional modifies how a van der 

Waals correction describes long-range interactions, while changing a long-range correction 

also modifies chemical bonding forces.  Hence each density functional and applied correction 

present a combination that should be considered as a unique methodology.  Fourteen 

computational methods were used, as summarized in Table I.  It is the long-range aspect of 

each combination that dominates traditional areas of van der Waals force research, such as 

those demonstrated to control self-assembly in general and also specifically ferroelectric 

ordering in ABP2X6 materials [15], while the short to medium range part controls the 

competition between van der Waals and covalent bonding [1].     

These 14 computational methods are applied to study first monolayers, then bilayers, then 

bulk solids of CuBiP2Se6 and CuInP2S6.  Looking only at monolayers allows not only their 

basic properties (Fig. 1) to be investigated at a fundamental level, but also how these 

phenomena are perceived using the different computational methods that embody the van der 

Waals force.  Progressing to bilayers then allows the traditional inter-layer aspect of the van 
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der Waals force to be depicted.  Moving to solids then allows assessment of the 

computational methods, and the visions they portray concerning the interplay of van der 

Waals and chemical forces, to be examined in the light of a range of observed phenomena.   

II. COMPUTATIONAL METHODS 

All calculations were performed using VASP 5.4.1 [29], where the valence electrons were 

separated from the core by use of projector-augmented wave pseudopotentials (PAW) [30]. 

The energy cut-off for the plane-wave basis functions was set at 500 eV.  The energy 

tolerance for the electronic structure determinations was set at 10-7 eV to ensure accuracy.  

We used k-space grids of 8×8×1 for the GGA functionals and 4×4×1 for HSE06, with test 

calculations indicating that the reduced sampling introduces relative errors in calculated 

energies of order 3 meV.  VASP performs periodic imaging in all three dimensions and so to 

model monolayers and bilayers we introduced a vacuum region of ca. 15 Å between the 

periodic images in the direction normal to the layer(s).  To minimize interactions between 

these periodic images, we applied the dipolar correction implemented in VASP (by setting 

the “IDIPOL” to “TRUE”).  However, for a selection of structures, we tested the influence of 

this correction, finding that it does not influence the qualitative or quantitative nature of the 

results. 

Geometry optimizations were made for all internal structures, terminating when the forces 

on all atoms fell below 0.01 eV/Å.  In monolayer and bilayer calculations, the in-plane unit-

cell dimension a was kept fixed at the value observed for the related bulk materials of 6.6524 

Å for CuBiP2Se6 [4] and a=6.0955 Å, b = 10.5645 Å and β = 107.101° for CuInP2S6 [12], 

with the CuInP2S6 calculations done enforcing hexagonal symmetry.  The starting structures 

for geometry optimizations were based on the properties of adjacent layers observed in these 

materials, with test calculations done for alternate structures using the PBE-D3 method not 

realizing lower-energy alternatives.  For bulk structures, all lattice vectors were fully 

optimized.  

The 14 computational methods considered, (see Table I), include the raw PBE density 

functional, plus this combined with various dispersion corrections: Grimme’s D2 empirical 

correction [26] (PBE-D2), Grimme’s D3 empirical correction [27] in its original form 

without Becke-Johnson damping with PBE (PBE-D3) and revPBE [31] (revPBE-D3), the 

exchange-hole based correction of Steinmann and Corminboeuf [32] (PBE-dDsC), the 

Tkatchenko-Scheffler method [33] (PBE-TS), that with self-consistent screening (SCS) [34] 

(PBE-SCSTS), and that extended to make Tkatchenko’s many-body dispersion method [35, 
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36] (MBD@rsSCS) (VASP flag “IVDW= 202”).  The other computational methods were all 

based around the pioneering van der Waals density-functional approach devised initially by 

Lundqvist et al. [24, 37].  This correction was applied to the revPBE density functional [38] 

(revPBEvdW), the optPBE density functional [38] (optPBEvdW) or the optB88 density 

functional [38] (optB88-vdW).  Also, in a form modified by Lee et al., it was combined [39] 

with the BP86 density functional [40] (vdW-DF2).  Finally, we also considered the raw 

HSE06 hybrid density functional [23] as well as that combined with D3 [28].   

III. RESULTS AND DISCUSSION 

Optimized Cartesian coordinates for monolayers, bilayers, and bulk solids calculated 

using the different computational methods are reported in full in Supporting Data.  Extensive 

summaries of system properties are also provided therein, with particularly important 

properties also reported in the main text figures and tables.  All computational methods 

considered predict that CuBiP2Se6 and CuInP2S6 materials are narrow band-gap 

semiconductors, with for example the PBE bandgaps being of the order of 1 eV.   

A. van	der	Waal	forces	control	the	internal	structure	of	isolated	ABP2X6	

monolayers		

Figures 1 and 2b sketch the basic chemical processes available to ABP2X6 monolayers as 

their cells distort from their (hypothetical) octahedral structure O.  We do not consider 

explicitly random structures R of any form, focusing instead on ferroelectric monolayers F, 

antiferroelectric monolayers A, and the two possible types of paraelectric monolayers Ps and 

Pl.  For the 14 computational methods used, Table II compares key values for the Cu to In or 

Bi displacements in the z and x directions, Δz and Δx, respectively, the vertical displacement 

between the Cu atoms in the antiferroelectric monolayers ΔzCuCu, and the relative energy 

difference per cell of the A, Ps, and Pl structures compared to F, ΔEF; additional related 

properties are listed in Supporting Data Table S1. 

The vertical displacement data is highlighted in Fig. 3. First, Δz is compared for 

ferroelectric monolayers of CuBiP2Se6 and CuInP2S6 in Fig. 3a.  In this and later figures, 

results for each computational method are presented using the hexadecimal code “0” to “D”, 

as defined in Table I.  Different computational methods predict variations in Δz of up to 0.8 

Å, indicating that the internal structure of monolayers in isolation is highly sensitive to the 

treatment used for the van der Waals force and its associated GGA or hybrid density 

functional.  CuInP2S6 is found to be only 73% as sensitive to these effects as is CuBiP2Se6, a 
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reasonable result given that the van der Waals force is naively expected to be stronger in 

CuBiP2Se6 as Bi is softer than In and Se is softer than S.  Figures 3b and 3c compare Δz in the 

ferroelectric monolayer to ΔzCuCu in the antiferroelectric one, demonstrating a linear 

correlation for CuInP2S6 but a bifurcated pattern for CuBiP2Se6, suggesting that the van der 

Waals force is more perturbative for CuInP2S6 and more dominant for CuBiP2Se6. 

Returning directly to Table II, we consider the displacements Δx occurring in the 

paraelectric monolayers Ps and Pl.  For CuInP2S6, the structures Ps present a short apparent 

bond between the Cu and In atoms of length ~ 2.9 Å.  This length is contracted from the 

value of 3.52 Å found in the ferroelectric monolayer by 0.53 to 0.72 Å, depending on the 

computational method. For CuBiP2Se6, the situation is similar: the apparent Cu to Bi bond 

length is ~ 3.1 Å, contracted from the value of 3.78 Å found in the ferroelectric monolayer by 

0.62 to 0.76 Å.  Greater variation is found in the alternate paraelectric structures Pl that 

manifest one unique long inter-metallic interaction, the increase in interaction distance being 

0.07 to 0.28 Å for CuInP2S6 and 0.13 to 0.55 Å for CuBiP2Se6.  From the energy differences 

ΔEF reported in the table, we see that most computational methods predict Ps to be more 

stable than Pl.  For CuBiP2Se6, all methods predict this result with a preference of 27 to 73 

meV, but for CuInP2S6, PBE-D2 and HSE06-D3 predict Pl to be the most stable, with a much 

wider range in predicted energy differences.  In summary, we see that different combinations 

of van der Waals corrections with density functionals have smaller effects on geometrical 

structures for displacements in the x direction than they do for displacements in z, but 

nevertheless key energetic properties remain determined by these factors. 

Focusing more on the energy differences, the paraelectric structures are all predicted to be 

much less stable than the ferroelectric and/or antiferroelectric ones, consistent with the lack 

of observation of paraelectric species.  This energy preference is by 170 to 315 meV for Ps of 

CuInP2S6, but by values as low as 60 meV for CuBiP2Se6.  Increasing the van der Waals 

interactions therefore favours paraelectric forms with short A-B distances and so it is 

conceivable that some ABP2X6 species could one day be made.  Exploitation of A-B spin or 

other interactions may make such species of practical interest. 

For CuInP2S6, all methods predict that the antiferroelectric monolayer is more stable than 

the ferroelectric one by 6 to 46 meV.  This is inconsistent with the observation of only 

ferroelectric structures for this compound.  However, monolayers themselves are yet to be 

observed.  The observed ferroelectric bulk and nanoflake structures [3, 5-9] may result as a 

consequence of inter-layer interactions, given that many methods predict only small energy 
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differences less than 20 meV.  For CuBiP2Se6 with its stronger van der Waals interactions, 

the computational methods predict energy differences between the antiferroelectric internal 

monolayer structure and the ferroelectric one ranging from -70 to 31 meV.  Both types of 

structures are observed in CuBiP2Se6 crystals [4], indicating small energy differences.  These 

issues are pursued in subsequent subsections. 

B. van	der	Waals	forces	and	the	properties	of	ABP2X6	bilayers		

Table III lists the calculated energies of the antiferroelectric bilayers Aii and Aoo made 

from ferroelectric monolayers, and well as energies for bilayers MA made from 

antiferroelectric monolayers, relative to the energies of the ferroelectric bilayers F.  In 

addition, the calculated vertical displacements between the Cu and In or Bi atoms, Δz, are 

listed in Supporting Data Table S1, with also the inter-layer spacings between the monolayers 

of the bilayer, d, listed in Supporting Data Table S2.  Further, the data from Tables II and III 

is represented in a different way in Supporting Data Table S3 as the energy of binding ΔE of 

the two monolayers to make the bilayer.  This information, along with results from Table II, 

is correlated in Figs. 5 and 6:  Fig. 5 compares average energies of binding ΔE for CuInP2S6 

versus those for CuBiP2Se6, whereas Fig. 6 compares average ΔE, Δz, and d values for each 

individual compound.  These averages are evaluated considering properties of the Aii, Aoo , 

MA, and F bilayers, with expanded results depicting each individual bilayer type shown in 

Supporting Data Figs. S1-S5.  While the expanded data reveal significant systematic 

differences between results obtained for the various bilayer types, the features of greatest 

relevance herein are independent of these perceived variations, being generic properties of 

inter-layer interactions rather than specific structure-related effects. 

First, we consider the average energies of binding, ΔE, of the monolayers.  These are 

indicative of the strength of the classic van der Waals attractive force that holds together 

lamellar materials, biological structures, polymers, etc..  Figures 5 and S1, also Table S3, 

show that most methods predict similar results for CuInP2S6 as for CuBiP2Se6.  The binding 

for CuBiP2Se6 is typically predicted to be 50 to 100 meV stronger than that for CuInP2S6, 

consistent with the general expectation that the van der Waals forces are stronger within 

CuBiP2Se6.  There are some exceptions, however, with results ranging from -50 to 250 meV; 

PBE-D2 predicts the greatest enhancement in binding while PBE-SCSTS depicts the reversed 

effect.  In absolute magnitude, the binding energies range from -400 to -800 meV per cell, all 

indicative of strong binding yet the total magnitude shows considerable variation.  PBE-

SCSTS binds the strongest, whereas PBE-TS binds the weakest.   



11 
 

Next, Fig. 6a-b shows that the vertical displacements Δz between the Cu and In or Bi 

atoms calculated for the bilayers strongly correlate with the values predicted for the 

ferroelectric monolayer.  This indicates that internal layer polarization is controlled by the 

van der Waals forces acting within each layer and is not sensitive to van der Waals forces 

acting between layers.  Further, Figs. 6c-h show that there is no correlation between the 

bilayer interaction energy ΔE or the bilayer inter-layer spacing d with Δz, indicating again 

that the computational methods perceive the van der Waals forces acting between layers very 

differently to how they perceive them acting within layers.  These layered ABP2X6 materials 

hence present a scenario in which the critical component is electron correlation at length 

scales intermediary between the short-range part, which is normally well treated with GGA-

type density functionals, and the long-range part, which is normally well treated by DFT 

dispersion correction approaches. 

Of interest also is the magnitude of the optimized inter-layer spacings d.  The different 

van-der-Waals corrected methods used predict values over a substantial range, from 3.1 to 3.5 

Å.  As expected, the computational methods used that do not include van der Waals 

corrections, PBE and HSE06, predict much larger values than those that do include them 

(Table S2).  PBE does not predict stable bilayers for the antiferroelectric bilayers of CuInP2S6 

(Table S3) and hence the reported spacings d merely reflect the convergence criterion set for 

the force minimization during the geometry optimization.  Thus these methods fail severely 

for the evaluation of the interlayer interactions, as expected.  Of note, however, are the values 

predicted by these methods for the short-range property Δz, which fall mid-way within the 

range predicted by the van-der-Waals corrected methods.  The van der Waals corrections, 

with their associated modifications to the GGA density functionals, therefore seemingly 

perturb the short-range correlation in a random way, sometimes enhancing it and sometimes 

reducing it. 

C. Assessment	of	the	computational	methods	through	examination	of	
predicted	bulk	properties		

Table IV lists calculated enthalpies ΔH for various polymorphs of bulk CuInP2S6 and 

CuBiP2Se6, while Table V compares related calculated geometric properties with 

observed values; results are provided for only the 12 computational methods not 

involving hybrid functionals.  The structures considered are shown in Fig. 7.  These are 

all periodic after 6 layers in the direction normal to the plane, but some have only two 

unique layers per cell.  They include the observed low-temperature structure for each 
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compound, as well as that modified by pushing the Cu atoms in every second layer to the 

other side of their octahedral cavity (interchanging ferroelectric and antiferroelectric 

arrangements) [15].  Other variants are also considered, inspired by scanning the bilayer 

configuration space using the PBE-D3 method in search of alternative low-energy 

arrangements.  Two primary issues are considered: the ability of the different 

computational methods to predict the actual observed polymorphs, and their ability to 

predict accurately the structural details of those polymorph.    

In Table IV, the calculated enthalpies at atmospheric pressure are listed with respect 

to those for the observed low-temperature polymorphs; the associated relative interaction 

energies ΔE are listed in Supporting Data Table S4 and are very similar.  If the reported 

enthalpy difference is negative, then the calculation predicts a result that is contrary to 

low-temperature experimental observation.  Only two methods correctly predict the 

observed structure of both materials: revPBEvdW and vdwDF2.  The data is summarized 

in the column in the table that lists the total number of negative ΔH values predicted by 

each method, i.e., the number of structures considered that are predicted to be more stable 

than the observed structure.  However, many enthalpy differences are quite small, 

indicating in general that many polymorphs are likely to have similar enthalpies, making 

the observed structure intrinsically difficult to predict.  To allow for this, the last column 

in the table lists the total number of predictions with a significant enthalpy error of 

magnitude > 10 meV.  Only three methods fail this less-demanding criterion: revPBE-D3, 

PBE-SCSTS, and PBE-MBD@rsSCS. 

Similarly, Table V shows deviations from experiment for the observed polymorph 

pertaining to: the a axis vector length, the periodicity dimension normal to the layers, cz, 

the interlayer distances across antiferroelectric boundaries (dii or doo) and ferroelectric 

boundaries (dio), as well as the vertical separation between Cu and In or Bi atoms, Δz. 

Summarizing the results, for each method, the number of properties for which there are 

only small deviations and the number for which there are large deviations are counted in 

the right-hand columns of the table.  This reveals that PBE-D2 and optB88vdW perform 

the best for quantitative geometrical predictions.  However, a method that performs 

poorly in Table IV for enthalpies, revPBE-D3, performs very well in this regard, whereas 

conversely the methods that perform best for enthalpies, revPBEvdW and vdwDF2, 

perform the worst of all van der Waals corrected approaches for geometrical properties.  

This result is consistent with our recent comparison of van der Waals functionals in 

broader contexts [41]. 
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D. Overall	assessment	of	the	computational	methods			

Tables IV and V depict how the 12 computational methods not involving hybrid 

functionals fare in terms of predicting observed properties of CuInP2S6 and CuBiP2Se6 

crystals.  However, not included therein are related properties of crystals containing 

monolayers with internal random or antiferroelectric order, owing to feasibility issues 

associated with the very large size of pertinent samples.  Nevertheless, Tables II and III 

indicate that such neglected considerations are important in assessing the performance of 

different methods.  Hence in Table VI we combine the summary information from Tables 

III-IV, taking computed bilayer properties as being indicative of nanoflakes and bulk 

solids that embody them.  Table VI indicates, for each computational method, whether or 

not a serious failure was identified in Tables IV-V or else implied in Table III.  No such 

serious failures are found for only PBE-D3 and optPBEvdW.  Of particular note is that 

PBE-MBDrsSCS, a method widely noted [24] as performing well for van der Waals 

interactions over a very wide range of properties, including situations in which the van 

der Waals forces cannot be described in terms of (fundamentally) pairwise-additive 

contributions, is the only approach considered that shows significant failures in all 

categories considered herein. 

IV. CONCLUSIONS 

The results presented allow two different types of conclusions to be drawn: 

conclusions pertaining to the fundamental nature of ABP2X6 materials, and those 

pertaining to assessment of the most appropriate computational method for making 

quantitative property predictions.  In the first case, conclusions flow from considering 

both (i), the properties predicted robustly by all van der Waals computational approaches, 

and (ii), the substantial differences that can occur in predicted properties and how these 

differences correlate one to another.  We consider these three aspects separately. 

Recognized earlier [15] is that the van der Waals forces control interlayer ferroelectric 

ordering in nanoflakes and solids of CuInP2S6 and CuBiP2Se6.  This occurs as the inter-

layer van der Waals forces, which are significantly influenced by the embodied Cu-Cu 

interactions, scale non-linearly in magnitude for bilayer junction types in order Aii > F > 

Aoo.  Hence as antiferroelectric crystals involve junctions of both Aoo and Aii types, partial 

cancellation of the van der Waals contributions gives a net bonding effect that can favour 

either the ferroelectric or the antiferroelectric forms, with the magnitude of this effect 

being typically much greater than the electrostatic interactions that favour ferroelectric 
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structures.  The calculated enthalpies for all the variant structures and computational 

methods listed in Table IV embody this qualitative effect, the details of which are 

reflected in the bilayer energy differences listed in Table III.  Hence we see that, while 

different computational methods present significantly different results in terms of relative 

polymorph energies and geometrical properties, the basic qualitative scenario describing 

how ferroelectricity in ABP2X6 monolayers is controlled remains robustly described. 

Substantial differences predicted for the internal structures of isolated ABP2X6 

monolayers indicate that the van der Waal force, and in particular how it merges into 

traditional short-range descriptions of electron correlation forces, as manifested using 

various density functionals, controls internal monolayer structure. These contributions 

overpower those from the traditional forces associated with covalent and/or ionic 

bonding.  This provides another example of the modern realization that van der Waals 

forces can out-compete traditional ones to control chemical bonding [42, 43]. 

Hence two major effects of van der Waals forces in controlling the structure of 

ABP2X6 monolayers, nanoflakes, and materials are identified: one acting within layers, 

the other acting between layers.  The calculations show no correlation between how 

different van der Waals computational methods perceive these two types of effects.  

Traditionally, van der Waals corrections have been optimized for the description of long-

range intermolecular forces, but here we see that how they merge with traditional 

covalent forces at short range can be equally as important. 

Only two computational approaches, PBE-D3 and optPBEvdW, showed no major 

problems identified through quantitative comparison of calculated and observed 

properties.  However, the research strategy used in this work is significantly biased 

against PBE-D3, as this method was used to seek out possibly competitive polymorphs; 

the other methods are therefore only assessed in regard to issues for which PBE-D3 is 

already identified as potentially failing.  Repeating the calculations, searching for specific 

possible weaknesses in the other computational approaches, could therefore reveal 

additional undetected serious problems. 

Mostly, the hybrid density functional methods HSE06 and HSE06-D3 performed 

similarly to their GGA counterparts PBE and PBE-D3.  However, the differences were 

sometimes of the same order as those associated with variations in the van der Waals 

corrections.  Hence it is not clear that GGA methods are in general sufficient for the 

robust treatment of ABP2X6 systems. 
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Considering all of the methods associated with Grimme-type empirical dispersion 

corrections (PBE-D2, PBE-D3, revPBE-D3, and HSE06-D3), for the examined properties 

of each method, at most one serious failure per method is reported in Table VI.   This is in 

contrast to the results found for the Lundqvist family of methods: revPBEvdW, 

optB88vdW, optPBEvdW, and vdWDF2.  As with PBD-D3, Table VI reports no serious 

failure for optPBEvdW, but revPBEvdW shows two out of three instances.  In greater 

detail, the results presented for the Grimme methods have smaller ranges in Figs. 3 and 6 

than those from the Lundqvist set.  Results for the Tkatchenko-Scheffler series of 

methods PBE-TS, PBE-SCSTS, and PBE-MBD@rsSCS show mostly the least variations 

in these figures (except for inter-layer binding energies), but they also show the most 

significant failures as summarized in Table VI. 

The Tkatchenko-Scheffler series present the most successful efforts so far to include 

all commonly recognized important aspects of the dispersion interaction [44].  In terms of 

the fundamental physics included, variations within this set are greater than those within 

the Lundqvist and Grimme sets. Despite the shortcomings revealed herein, these 

approaches depict a significant direction forward for research into accurate modelling of 

the van der Waals force.  In contrast, the Lundqvist family embody considerable effort in 

properly representing many of the long-range aspects of dispersion but fail to deal with 

the issue concerning how this long range part relates to the intrinsic GGA, relying on 

empirical combinations with available GGA variants to deliver useful results.  Grimme’s 

methods are the most empirical but rely on the use of typically realistic expressions for 

the long range part coupled with generally applicable merging strategies with the GGA 

part. 

During the study of ABP2X6 materials, both the long-range and short-range aspects of 

van der Waals corrected density functions become important.  Our results thus imply that 

of the Lundqvist-type methods, optPBEvdW appears the most reasonable empirical 

combination of the dispersion density functional with a GGA functional.  Such a 

conclusion is hazardous, however, as in general this family delivers widely varying and 

unpredictable results when broadly applied [24].  From amongst the Grimme family and 

many other empirical schemes, revPBE-D3 has been identified as one of the best general 

approaches [45], yet for ABP2X6, PBE-D3 appears to be more reliable.  Also, the most 

advanced Tkatchenko-Scheffler-type method considered, PBE-MBD@rsSCS, predicts 

the poorest results.  In any required application, careful choice of van der Waals 

correction remains a critical ongoing issue [24, 46].      
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TABLE I:  The numbered computational methods used in this study, indicating the density functional used and its vdW 

correction. 

# Method functional vdW 

0 PBE PBE - 

1 HSE06 HSE06 - 

2 revPBE-D3 revPBE D3 

3 PBE-D2 PBE D2 

4 PBE-D3 PBE D3 

5 HSE06-D3 HSE06 D3 

6 PBE-dDsC PBE dDsC 

7 PBE-TS PBE TS 

8 PBE-SCSTS PBE PBE-SCSTS 

9 PBE-MBD@rsSCS PBE MBD@rsSCS 

A revPBEvdW revPBE Dion 

B optB88vdW optB88 Dion 

C optPBEvdW optPBE Dion 

D vdWDF2 PW86 Dion-Lee 

 

TABLE II: Calculated properties of CuBiP2Se6 and CuInP2S6 monolayers, including the z coordinate change 

between Cu and In/Bi atoms (Δz, in Å), the z coordinate change between the two Cu atoms in the 

antiferroelectric structure (ΔzCuCu, in Å), the in-plane displacement between Cu and In/Bu (Δx, in Å), and the 

relative energies of other polymorphs with respect to the F polymorph (ΔEF, in meV per cell). 

Method CuBiP2Se6  CuInP2S6 

 Δza ΔzCuCu Δxb  ΔEF  Δza ΔzCuCu Δxb  ΔEF 

 F A Ps Pl 
 Ps Pl A 

 F A Ps Pl 
 Ps Pl A 

PBE 1.71 1.84 3.03 4.18  60 121 -42  1.70 3.09 2.82 3.73  250 291 -32 
HSE06 1.60 2.57 3.16 4.19  56 129 23  1.65 2.96 2.91 3.71  232 233 -34 

revPBE-D3 1.27 1.44 3.14 4.21  24 56 -49  1.41 2.55 2.93 3.70  188 212 -6 
PBE-D2 1.40 1.58 3.07 4.19  54 80 -70  1.44 2.59 2.98 3.62  225 209 -25 
PBE-D3 1.57 2.67 3.04 4.09  84 148 27  1.64 2.93 2.83 3.64  269 311 -17 

HSE06-D3 1.62 2.64 3.16 4.07  78 111 30  1.65 2.96 2.85 3.79  257 253 -33 
PBE-dDsC 1.59 1.72 3.03 4.11  19 74 -53  1.63 2.92 2.84 3.69  214 245 -19 

PBE-TS 1.59 1.68 3.04 4.14  10 65 -59  1.63 2.91 2.84 3.70  183 212 -19 
PBE-SCSTS 1.72 2.98 3.02 4.21  71 136 15  1.75 3.15 2.80 3.73  237 310 -46 

PBE-MBD@rsSCS 1.72 2.96 3.05 3.91  113 166 31  1.75 3.13 2.84 3.80  315 351 -20 
revPBEvdW 1.83 2.97 3.08 4.17  113 162 15  1.78 3.22 2.91 3.66  264 283 -22 
optB88vdW 1.58 1.69 3.02 4.33  -4 51 -62  1.63 2.90 2.84 3.62  171 194 -15 
optPBEvdW 1.71 1.81 3.05 4.17  60 112 -35  1.69 3.10 2.88 3.66  225 246 -17 

vdWDF2 1.97 3.39 3.11 4.15  219 270 22  1.89 3.43 2.99 3.59  371 377 -10 
a: zero as a result of C2 symmetry in paraelectric structures 
b: values resulting from the hexagonal symmetry of F structures: 3.783 Å for CuBiP2Se6, 3.515 Å for CuInP2S6. 
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TABLE III.  Energy of alternate structures with respect to the ferroelectric one, in meV, for bilayers of 
CuBiP2Se6 and CuInP2S6. 

 
method 

CuBiP2Se6  CuInP2S6 Nber.a 
< -30 

ΔEAii ΔEAoo ΔEMA 
ΔEMA - 

(ΔEAii+ΔEAoo)/2 
 

 
ΔEAii ΔEAoo ΔEMA 

PBE -1 2 -80 -81  5 7 -78 2 

HSE06 -5 6 48 48  -11 0 -73 1 

revPBE-D3 -63 56 -18 -15  -81 73 8 0 

PBE-D2 -42 35 -69 -66  -42 41 -38 2 

PBE-D3 -86 61 30 43  -92 88 -22 0 

HSE06-D3 -64 32 69 85  -59 65 -57 1 

PBE-dDsC -36 6 -74 -59  -33 44 -36 2 

PBE-TS -45 29 -75 -67  -43 46 -22 0 

PBE-SCSTS -76 43 52 69  -100 101 -79 1 

PBE-MBD@rsSCS -87 51 77 95  -83 73 -26 1 

revPBEvdW -26 5 54 65  -22 29 -33 1 

optB88vdW -40 17 -65 -54  -40 42 -13 1 

optPBEvdW -31 12 -22 -13  -30 38 -22 0 

vdWDF2 -23 -7 64 79  -26 36 -4 0 
a: number of entries in the CuBiP2Se6 ΔEMA - (ΔEAii+ΔEAoo)/2 and CuInP2S6 ΔEMA columns < - 30 meV, 

suggesting that antiferroelectric monolayers should dominate structures instead of the observed structures. 

 

TABLE IV.  Calculated polymorph enthalpies H, in meV per cell, relative to those for the observed crystal 
structures of  CuBiP2Se6 and CuInP2S6 for various considered alternative layer alignments and ferroelectric 
orderings. 

Sample: CuBiP2Se6  CuInP2S6  Nber. resultsa 

Alignment: Obs.b Alt. 1 Alt. 2  Obs. Alt. 1 Alt. 2  < 0 < -10 
Structure: A F A F  A F A F A F    

Symmetry: C3, i C3 C3, i C3  i - i - C3, i C3    
PBE [0]	 -3	 0	 0	 	 10	 [0]	 13	 2	 12	 4	 	 1	 0	

revPBE-D3 [0]	 5	 25	 0	 	 5	 [0]	 -15	 -11	 -14	 -23	 	 4	 4	
PBE-D2 [0]	 2	 35	 -7	 	 11	 [0]	 5	 -3	 6	 -9	 	 3	 0	
PBE-D3 [0]	 7	 28	 2	 	 11	 [0]	 5	 -2	 5	 -6	 	 2	 0	

PBE-dDsC [0]	 8	 27	 4	 	 18	 [0]	 19	 -1	 12	 -1	 	 2	 0	
PBE-TS [0]	 5	 31	 11	 	 13	 [0]	 11	 -1	 12	 -2	 	 2	 0	

PBE-SCSTS [0]	 5	 16	 9	 	 14	 [0]	 1	 -8	 -3	 -17	 	 3	 1	
PBE-MBD@rsSCS [0]	 6	 15	 10	 	 9	 [0]	 -8	 -12	 -13	 -24	 	 4	 3	

revPBEvdW [0]	 4	 7	 8	 	 14	 [0]	 15	 0	 12	 0	 	 0	 0	
optB88vdW [0]	 5	 37	 -5	 	 17	 [0]	 12	 -3	 10	 -6	 	 2	 0	
optPBEvdW [0]	 6	 20	 5	 	 16	 [0]	 15	 -1	 11	 -2	 	 2	 0	

vdWDF2 [0]	 9	 17	 12	 	 15	 [0]	 23	 3	 16	 6	 	 0	 0	
a: To adequately describe the experimental data, all reported numbers should be positive; the number of 
negative results, and also significant results <  -10 meV are noted. 
b: these structures are periodic after 6 layers in the c direction, otherwise they are periodic after 2 
layers. 
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TABLE V.  Differences in calculated properties from the (listed) observed crystal data for CuBiP2Se6 and 
CuInP2S6, in Å. 

 
CuBiP2Se6   CuInP2S6   Nber. resultsa 

a cz dii doo Δzb
  a b cz dio Δz  OK large err. 

obs 6.55 13.25 3.07 3.13 1.48  6.09 6.09 12.97 3.17 1.75    
PBE 0.09 1.70 0.82 0.70 0.21  0.08 0.08 1.59 0.70 -0.05  4 5 

revPBE-D3 0.06 0.12 -0.01 0.06 -0.11  0.04 0.04 0.17 0.03 -0.22  8 0 
PBE-D2 0.01 0.03 -0.04 0.01 -0.03  0.01 0.01 0.20 0.04 -0.22  9 0 
PBE-D3 0.04 0.18 0.02 0.05 0.16  0.02 0.02 0.24 0.05 -0.01  8 0 

PBE-DFTdDsC 0.01 0.25 0.08 0.10 0.12  0.01 0.01 0.25 0.06 -0.01  7 0 
PBE-TS 0.07 0.49 0.20 0.12 0.30  0.05 0.05 0.43 0.14 0.10  4 2 

PBE-SCSTS 0.08 0.57 0.24 0.15 0.29  0.06 0.06 0.26 0.05 0.08  5 0 
PBE-MBDrsSCS 0.03 0.34 0.10 0.13 0.17  0.01 0.01 0.32 0.09 0.01  6 1 

revPBEvdW 0.23 1.15 0.44 0.36 0.29  0.18 0.18 0.89 0.30 0.06  1 4 
optB88vdW 0.04 0.10 -0.01 0.00 0.12  0.03 0.03 0.11 -0.02 0.03  9 0 
optPBEvdW 0.13 0.56 0.19 0.14 0.22  0.10 0.10 0.48 0.13 0.04  3 0 

vdWDF2 0.29 0.98 0.32 0.21 0.38  0.22 0.22 0.74 0.19 0.17  0 4 
a: OK results are taken to be those within ± 0.2 Å for cz and ± 0.1 Å otherwise, whereas those with large errors 
are taken to be those without 0.6 Å for cz and ± 0.3 Å, respectively. 
b: The observed crystal structures are for mixtures of polymorphs and so the observed value is likely to be 
underestimated; this data is not included in the results summary. 
 
 
TABLE VI.  Summary of significant errors identified in calculation predictions (from Tables III-V). 

obs MA suggested Crystal geometries Crystal energetics 
PBE x 	 x 

HSE06 x -	 - 

revPBE-D3  x	  

PBE-D2 x 	  

PBE-D3  	  

HSE06-D3 x -	 - 

PBE-dDsC x 	  

PBE-TS  	 x 

PBE-SCSTS x x	  

PBE-MBD@rsSCS x x	 x 

revPBEvdW x 	 x 

optB88vdW x 	  

optPBEvdW  	  

vdWDF2  	 x 
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FIG. 1.  (Color online) Top and sectioned side views of ABP2X6 monolayers, where A = Cu is in green, B = Bi or In is in 

magenta, X = S or Se is in yellow, and P is in orange, in a hypothetical high symmetry structure (O) and that after in-plane 

distortions of the Cu atom to make paraelectric (Ps, Pl) structures or else out-of-plane distortions to make polarized structures 

with internal long-range ferroelectric (F) or antiferroelectric (A) order.  Highlighted are in-plane axes of local C2 symmetry 

and normal axes of either S6 or C3 symmetry about the Cu atoms, as well as the normal (Δz) and in-plane (Δx) displacements 

of the Cu atom with respect to the Bi or In atom, in Å.  The shown structures and energies per cell were optimized using 

PBE-D3 for CuBiP2Se6, with, in (), analogous energies for CuInP2S6. 
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FIG. 2. Schematic representation of the possible ferroelectric (F), antiferroelectric (A), random (R), and 

paraelectric (P) dipole polarizations in single cells, monolayers, and bilayers of ABP2X6 compounds; structure MA 

is a bilayer with inversion symmetry made from antiferroelectric monolayers.  The arrows indicate the displacement 

direction of the Cu atoms from the octahedral site (O), see Fig. 1 for atomic-scale details. 

 

 

 

FIG. 3.  Comparison of the calculated  Cu to Bi or In distances Δz for ferroelectric monolayers for CuInP2S6 and 

CuBiP2Se6, (a), and these quantities compared to the Cu-Cu vertical distance ΔzCuCu for antiferroelectric 

monolayers, (b)-(c), for  the various computational methods 0-D defined in Table I. 
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FIG. 4.  (Color online) Top and side views of possible structures considered for bilayers of CuBiP2Se6 and 

CuInP2S6, (PBE-D3 optimized structures shown); green- Cu, magenta- Bi or In, orange- P, yellow- S or Se. 
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FIG. 5.  (Color online) Comparison of calculated average bilayer interaction energies ΔE per cell for CuInP2S6 

versus CuBiP2Se6, for the computational methods 0-D defined in Table I.   
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FIG. 6.   (Color online) Correlations between monolayer and/or bilayer properties of CuBiP2Se6 and CuInP2S6, 

for the computational methods 0-D defined in Table I: Δz- difference in out-of-plane displacement of Cu and 

In/Bi atoms; ΔzCuCu- difference in out-of-plane displacement of the two Cu atoms in monolayer antiferroelectric 

1×√3 double cells;  d- bilayer interlayer spacing; and ΔE- bilayer interaction energy between cells. 
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FIG. 7.  (Color online) Top and side views of PBE-D3 optimized structures for CuBiP2Se6 and CuInP2S6 

crystals, showing the conserved periodicity in the z direction after 6 layers.  green- Cu, magenta- Bi or In, 

orange- P, yellow- S or Se. 

 


