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Abstract

Nowadays, data pertaining to clients are generated at such a rapid rate it is

completely beyond the processing ability of a human, which leads to a problem

called information explosion. How to quickly and automatically provide person-

alized choices for someone from a large collection of resources has become a key

factor in determining the success of many commercial activities. In this context,

recommender systems have been developed as a type of software that aims to

predict and suggest items which are relevant to a specific user by analyzing the

user’s previous interaction data with certain items. Recommender systems have a

broad application in our daily life, such as product recommendation in Amazon,

video and movie recommendation in Youtube, music recommendation in Spotify.

A fundamental brick in building most recommender systems is the collaborative

filtering-based model, which has been widely adopted due to its outstanding

performance and flexible deployment. However, this model together and its

variations suffer from the so-called data sparsity problem, which results when

user sonly rate a limited number of items. With the development of the transfer

learning technique in recent years, cross-domain recommendation has emerged as

an effective way to address data sparsity in recommender systems. The principle



of cross-domain recommendation is to exploit knowledge from auxiliary source

domains to assist recommendation making in a sparse target domain.

In the development of cross-domain recommender systems, the most important

step is to build a bridge between the domains in order to transfer knowledge. This

task becomes more challenging in disjoint domains where users and items in both

domains are completely non-overlapping. In this respect, tags are studied and

utilized to establish explicit correspondence between domains. However, how to

effectively exploit tags to increase domain overlap and ultimate recommendation

quality remains as an open challenge which needs to be addressed.

This thesis aims to develop novel tag-based cross-domain recommendation

models in disjoint domains. First, it review the existing state-of-the-art techniques

related to this research. It then provides three solutions by exploiting domain-

specific tags, tag-inferred structural knowledge and tag semantics, respectively.

To evaluate the proposed models, this thesis conducts a series of experiments

on public datasets and compare them with state-of-the-art baseline approaches.

The experimental results show the superior performance achieved by our models

in different recommendation tasks under sparse settings. The findings of this

research not only contribute to the state-of-the-art on cross-domain recommender

systems, but also provide practical guidance for handling unstructured tag data

in recommendation tasks.
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