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Abstract

The term concept drift refers to the change of distribution underlying the data. It is

an inherent property of evolving data streams. Concept drift detection and adaptation

has been considered an important component of learning under evolving data streams

and has attracted increasing attention in recent years.

According to the existing literature, the most commonly used definition of

concept drift is constrained to discrete feature space. The categorization of concept

drift is complicated and has limited contribution to solving concept drift problems.

As a result, there is a gap to uniformly describe concept drift for both discrete and

continuous feature space, and to be a guideline to addressing the root causes of

concept drift.

The objective of existing concept drift handling methods mainly focuses on

identifying when is the best time to intercept training samples from data streams

to construct the cleanest concept. Most only consider concept drift as a time-

related distribution change, and are disinterested in the spatial information related

to the drift. As a result, if a drift detection or adaptation method does not have

spatial information regarding the drift regions, it can only update learning models or

their training dataset in terms of time-related information, which may result in an

incomplete model update or unnecessary training data reduction. In particular, if a
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false alarm is raised, updating the entire training set is costly and may degrade the

overall performance of the learners. For the same reason, any regional drifts, before

becoming globally significant, will not trigger the adaptation process and will result

in a delay in the drift detection process. These disadvantages limit the accuracy of

machine learning under evolving data streams.

To better address concept drift problems, this thesis proposes a novel Regional

Drift Adaptation (RDA) framework that introduces spatial-related information into

concept drift detection and adaptation. In other words, RDA-based algorithms

consider both time-related and spatial information for concept drift handling (concept

drift handling includes both drift detection and adaptation).

In this thesis, a formal definition of regional drift is given which has theoreti-

cally proved that any types of concept drift can be represented as a set of regional

drifts. According to these findings, a series of regional drift-oriented drift adaptation

algorithms have been developed, including the Nearest Neighbor-based Density

Variation Identification (NN-DVI) algorithm which focuses on improving concept

drift detection accuracy, the Local Drift Degree-based Density Synchronization Drift

Adaptation (LDD-DSDA) algorithm which focuses on boosting the performance

of learners with concept drift adaptation, and the online Regional Drift Adaptation

(online-RDA) algorithm which incrementally solves concept drift problems quickly

and with limited storage requirements. Finally, an extensive evaluation on various

benchmarks, consisting of both synthetic and real-world data streams, was conducted.

The competitive results underline the effectiveness of RDA in relation to concept

drift handling.

To conclude, this thesis targets an urgent issue in modern machine learning

research. The approach taken in the thesis of building regional concept drift detection
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and adaptation system is novel. There has previously been no systematic study on

handling concept drift from spatial prespective. The findings of this thesis contribute

to both scientific research and practical applications.
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