
CONCEPT DRIFT ADAPTATION FOR

LEARNING WITH STREAMING

DATA

Anjin Liu

Faculty of Engineering and Information Technology

University of Technology Sydney

A thesis submitted for the Degree of

Doctor of Philosophy

April 2018

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree

nor has it been submitted as part of the requirements for a degree except as fully

acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received

in my research work and the preparation of the thesis itself has been acknowledged.

In addition, I certify that all information sources and literature used are indicated in

the thesis.

Anjin Liu

April 2018

Acknowledgements

This has been a memorial and exciting journey. I would like to extend my warm

gratitude to the people who inspired and helped me in many ways.

I would like to express my earnest thanks to my supervisors, Professor Guangquan

Zhang and Distinguished Professor Jie Lu, for their knowledgeable suggestions and

critical comments. During my doctoral research, their comprehensive guidance al-

ways illuminated the way. My discussions with them greatly improved the scientific

aspect and quality of my research. Their strict academic attitude and respectful

personality benefited my PhD study and will be a great memory throughout my life.

I have learnt so much from them; it has been an honour.

I am honored to have met all the talented researchers of the Decision Systems

& e-Service Intelligence Lab (DeSI). I have greatly enjoyed the pleasurable and

plentiful research opportunities I shared with them. I would like to give my special

thanks to Dr Ning Lu for whom inspired me to concept drift, and Feng Liu, Yiliao

Song and Feng Gu with whom I engaged in concept drift-related research. The

discussions with them were rewarding and fun.

I kindly thank Ms Jemima Moore and Ms Michele Mooney for polishing the

language used in my thesis and publications. I have learnt much about academic

writing from them.

vi

I am grateful to the School of Software in the Faculty of Engineering and

Information Technology at the University of Technology Sydney. This study was

supported by the Australian Postgraduate Award (APA) and the Australian Research

Council (ARC) discovery project.

Finally, I would like to express my heartfelt appreciation and gratitude to my

parents and my wife for their love and support.

Abstract

The term concept drift refers to the change of distribution underlying the data. It is

an inherent property of evolving data streams. Concept drift detection and adaptation

has been considered an important component of learning under evolving data streams

and has attracted increasing attention in recent years.

According to the existing literature, the most commonly used definition of

concept drift is constrained to discrete feature space. The categorization of concept

drift is complicated and has limited contribution to solving concept drift problems.

As a result, there is a gap to uniformly describe concept drift for both discrete and

continuous feature space, and to be a guideline to addressing the root causes of

concept drift.

The objective of existing concept drift handling methods mainly focuses on

identifying when is the best time to intercept training samples from data streams

to construct the cleanest concept. Most only consider concept drift as a time-

related distribution change, and are disinterested in the spatial information related

to the drift. As a result, if a drift detection or adaptation method does not have

spatial information regarding the drift regions, it can only update learning models or

their training dataset in terms of time-related information, which may result in an

incomplete model update or unnecessary training data reduction. In particular, if a

viii

false alarm is raised, updating the entire training set is costly and may degrade the

overall performance of the learners. For the same reason, any regional drifts, before

becoming globally significant, will not trigger the adaptation process and will result

in a delay in the drift detection process. These disadvantages limit the accuracy of

machine learning under evolving data streams.

To better address concept drift problems, this thesis proposes a novel Regional

Drift Adaptation (RDA) framework that introduces spatial-related information into

concept drift detection and adaptation. In other words, RDA-based algorithms

consider both time-related and spatial information for concept drift handling (concept

drift handling includes both drift detection and adaptation).

In this thesis, a formal definition of regional drift is given which has theoreti-

cally proved that any types of concept drift can be represented as a set of regional

drifts. According to these findings, a series of regional drift-oriented drift adaptation

algorithms have been developed, including the Nearest Neighbor-based Density

Variation Identification (NN-DVI) algorithm which focuses on improving concept

drift detection accuracy, the Local Drift Degree-based Density Synchronization Drift

Adaptation (LDD-DSDA) algorithm which focuses on boosting the performance

of learners with concept drift adaptation, and the online Regional Drift Adaptation

(online-RDA) algorithm which incrementally solves concept drift problems quickly

and with limited storage requirements. Finally, an extensive evaluation on various

benchmarks, consisting of both synthetic and real-world data streams, was conducted.

The competitive results underline the effectiveness of RDA in relation to concept

drift handling.

To conclude, this thesis targets an urgent issue in modern machine learning

research. The approach taken in the thesis of building regional concept drift detection

ix

and adaptation system is novel. There has previously been no systematic study on

handling concept drift from spatial prespective. The findings of this thesis contribute

to both scientific research and practical applications.

Table of Contents

CERTIFICATE OF AUTHORSHIP/ORIGINALITY iii

Acknowledgements v

Abstract vii

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Background . 1

1.2 Research Questions and Objectives 4

1.3 Research Contributes . 9

1.4 Research Significance . 10

1.5 Thesis Structure . 11

1.6 Publications Related to this Thesis 14

2 Literature Review 17

2.1 Concept Drift . 17

xii Table of Contents

2.1.1 Definition of concept drift and sources 17

2.1.2 Classification of concept drift 19

2.1.3 Related research topics and applications 21

2.1.3.1 Related research topics 21

2.1.3.2 Related applications 25

2.2 Concept Drift Detection and Adaptation 26

2.2.1 Concept drift detection . 26

2.2.1.1 Drift detection framework 27

2.2.1.2 Concept drift detection algorithms 29

2.2.1.3 A summary of drift detection algorithms 37

2.2.2 Concept drift adaptation 39

2.2.2.1 Single learning model adaptation 39

2.2.2.2 Ensemble learning for concept drift adaptation . . 43

3 The Nature of Regional Drift 47

3.1 Introduction . 47

3.2 Regional Drift and Regional Drift Presented Concept Drift 48

3.3 The Relationship between Regional Drift and Concept Drift 49

3.4 Summary . 52

4 Concept Drift Detection via Accumulating Regional Density Discrepan-

cies 53

4.1 Introduction . 53

4.2 Preliminary . 55

4.3 Nearest Neighbor-based Data Embedding 57

4.3.1 Modelling data as a set of high-resolution partitions 59

Table of Contents xiii

4.3.2 Partition size optimization 67

4.4 Nearest Neighbor-based Density Variation Identification 69

4.4.1 A regional drift-oriented distance function 69

4.4.2 Statistical guarantee . 71

4.4.2.1 Permutation test 71

4.4.2.2 A tailored significant test 74

4.4.3 Implementation of NN-DVI for learning under concept drift 77

4.5 Experiments and Evaluation . 80

4.5.1 Evaluating the effectiveness of dnnps 82

4.5.2 Evaluating the NN-DVI drift detection accuracy 89

4.5.3 Evaluating the NN-DVI on real-world datasets 98

4.5.4 Evaluating the stream learning with NN-DVI with different

parameters . 103

4.6 Summary . 105

5 Concept Drift Adaptation via Reginal Density Synchronization 107

5.1 Introduction . 107

5.2 Local Drift Degree . 110

5.2.1 The definition of LDD . 110

5.2.2 The statistical property of LDD 110

5.3 Drifted Instances Selection and Adaptation 113

5.3.1 Drifted instance selection 113

5.3.2 Density synchronized drift adaptation 115

5.4 Experiment and Evaluation . 118

5.4.1 Evaluation of LDD-DIS 118

xiv Table of Contents

5.4.2 Evaluation of LDD-DSDA 122

5.5 Summary . 125

6 Incremental Regional Drift Adaptation 127

6.1 Introduction . 127

6.2 A Regional Drift Adaptation Framework 129

6.3 Online Regional Drift Adaptation 131

6.3.1 kNN-based dynamic region construction 132

6.3.2 kNN-based regional drift detection 134

6.3.3 kNN-based regional drift adaptation 136

6.3.4 The implementation of online-RDA 136

6.4 Experiment and Evaluation . 138

6.4.1 Evaluation of the capabilities of online-RDA on drift detec-

tion and adaptation . 138

6.4.2 Evaluation of online-RDA on synthetic drift datasets 140

6.4.3 Evaluation of online-RDS stream learning on real-world

datasets . 143

6.5 Summary . 149

7 Conclusion and Future Research 155

7.1 Conclusions . 155

7.2 Future Study . 158

Bibliography 161

Appendix 185

List of Figures

1.1 A general framework of concept drift handling 3

1.2 A mapping from trends to challenges and research topics 4

1.3 Thesis structure . 12

2.1 Three sources of concept drift . 19

2.2 A demonstration of concept drift types 20

2.3 A general framework of concept drift detection 27

2.4 Landmark time window for drift detection 30

2.5 Two sliding time windows for drift detection 31

2.6 Two time windows for drift detection with fixed historical window . 33

2.7 Parallel multiple hypothesis test drift detection. 35

2.8 Hierarchical multiple hypothesis test drift detection. 36

3.1 Converting sudden drift and incremental drift to a set of regional drifts 51

4.1 Distribution-based drift detection framework 58

4.2 Conventional space partitioning methodology 60

4.3 Instance-oriented space partitioning 61

4.4 k-nearest neighbor-based instance-oriented space partitioning 62

xvi List of Figures

4.5 Instance particle independence . 68

4.6 A demonstration of accumulated regional density dissimilarity mea-

surement . 72

4.7 The test statistics of two-sample K-S test between normally dis-

tributed data with varying μ . 84

4.8 The selection of k for NN-DVI . 84

4.9 dnnps between normal distributed data (batch size 400) with varying μ 85

4.10 dnnps between normal distributed data (batch size 50) with varying μ 85

4.11 The test statistics for the two-sample K-S test between normal dis-

tributed data with a varying σ . 86

4.12 The dnnps between normally distributed data that varies σ 87

4.13 1-D normal distribution with regional drift detection 88

4.14 NN-DVI classification accuracy of real-world datasets 104

5.1 A demonstration of the importance of considering regional drift . . 109

5.2 An illustration of how LDD works 111

5.3 LDD-DIS on Gaussian distribution with drifted variance 121

5.4 LDD-DIS on Gaussian mixture distribution with drifted Mean . . . 121

6.1 A concept drift adaptation framework based on regional drift 130

6.2 Experiment evaluation of online-RDA on drift detection and adaptation141

6.3 The average buffer size of online-RDA on synthetic datasets 145

6.4 The buffer size of online-RDA on real-world datasets 148

List of Tables

2.1 A summary of drift detection algorithms 38

4.1 NN-DVI drift detection results on M(�) stream 92

4.2 NN-DVI drift detection results on C(�) stream 93

4.3 NN-DVI drift detection results on P(�) stream 95

4.4 NN-DVI drift detection results on HD C(�) streams 97

4.5 NN-DVI average drift detection results 98

4.6 NN-DVI classification accuracy of real-world datasets 102

5.1 Comparison of LDD-DSDA and different data stream classification

algorithms on real-world datasets 124

6.1 Online-RDA evaluation one-dimensional sudden-incremental drift

data generator . 139

6.2 Online-RDA evaluation synthetic data generator 142

6.3 Online-RDS evaluation the accuracy of synthetic datasets 144

6.4 Online-RDA evaluation real-world dataset characteristics 149

6.5 Online-RDA evaluation real-world datasets accuracy (%) 150

6.6 Online-RDA evaluation real-world datasets execution time (ms) . . 151

xviii List of Tables

6.7 Online-RDA evaluation real-world datasets memory cost (GB RAM-

Hours) . 152

Chapter 1

Introduction

1.1 Background

Conventional batch-based machine learning systems assume that learning and predic-

tion environments are stationary. However, in the context of the Internet of Things

(IoT) and Big Data, which consider data as a continuous stream, the traditional

assumptions of data independence and stationary distributions are being confronted

with serious challenges Losing et al. (2016). In machine learning, the term concept

drift refers to a phenomenon in learning models where accuracy continues to de-

crease over time Ditzler et al. (2015). In prediction or classification tasks, such as

user preference prediction or fraud detection, the performance of a static predictor

trained with historical data will inevitably degrade over time because the nature of

personal preferences or fraudulent attacks is always evolving Harel et al. (2014).

As concepts change, new data may no longer conform to the patterns in historical

data Lu et al. (2014), and such conflicts will exert a negative impact on subsequent

data analysis tasks Lu et al. (2016). More importantly, in real-world scenarios, these

2 Introduction

changes may be barely perceptible. For this reason, any effective learning system

must vigilantly monitor concept drift and adapt quickly, rather than assuming the

learning environment is stationary.

Conventional machine learning has two main components: training/learning and

prediction. Research on machine learning under concept drift in streaming data

presents three new components: concept drift detection (whether or not drift occurs),

drift understanding (when it occurs, where it occurs, how significant is the drift)

and drift adaptation (reaction to the existence of drift). The most commonly used

strategies for stream learning with the present of concept drift is illustrated in Figure

1.1.

Various studies in the field of concept drift have been developed over the last ten

years. Recent research targets more challenging problems, i.e., how to accurately

detect concept drift in unstructured and noisy datasets Liu et al. (2018); Lu et al.

(2016, 2014), how to effectively understand concept drift in a way that can be

explained Liu et al. (2017a,b), and how to effectively react to drift by adapting

related knowledge Gama et al. (2014); Gomes et al. (2017a), thereby endowing

prediction and decision-making with the required adaptability in a concept drift

environment. These new results significantly improve research in data science and

artificial intelligence in general, and in pattern recognition and data stream mining

in particular. Also, in a very recent technical report from Berkeley Stoica et al.

(2017), acting in dynamic environments and continual learning has been considered

as one of nine research opportunities which can help address current AI research

challenges. Figure 1.2 shows the mapping from trends to challenges and research

topics summarized by Stoica et al. (2017).

1
.1

B
ack

g
ro

u
n
d

3

Instance selectionInstance selection
Learner-based

Distribution-based

Ensemble learningMulti-hypothesis test

When

Where

How

Drift Understanding Drift AdaptationDrift DetectionPredictionTraining and
Learning

Streaming Data

No

Yes

t+1...

...

Single model updating
Incremental learning

Instance selection
and weighting

The most commonly used
combinations for concept drift

handling in the literature

The difference between conventional data
stream learning and learning with the present

of concept drift

Figure 1.1 A general framework of concept drift handling. Although numerous concept drift detection algorithms can measures the

significance of the drift, namely the severity of the drift, few of them has considered this information for concept drift adaptation.

Therefore, the "How" is highlighted. Similarly, the "Incremental learning" is highlighted because that very few publications have

combined it with a drift detection algorithm, although it has been widely used for drift adaptation.

4 Introduction

Figure 1.2 A mapping from trends to challenges and research topics Stoica et al. (2017).

Concept drift is considered as a sub research topic of R1: Continual learning

1.2 Research Questions and Objectives

This research aims to develop a set of concept drift detection and adaptation algo-

rithms for learning with streaming data and will answer the following four research

questions. The research scope for this study mainly focus on supervised data stream

classification problems.

QUESTION 1. How to uniformly describe different types of concept drift?

In the literature, concept drift has been defined as several types according to

different characteristics. For example, according to how long the drifting period is,

short period drift is defined as sudden/abrupt drift, while long period drift is defined

as incremental drift; and according to whether the drift has a decision boundary

change, decision boundary change is defined as actual drift, while no decision

boundary change is defined as virtual drift. In Minku et al. (2010), the authors

1.2 Research Questions and Objectives 5

discussed the characteristics of concept drift and proposed fourteen types of concept

drifts. However, in most situations, these definitions make no clear contribution

to concept drift detection and adaptation solutions. Therefore, there is a need to

uniformly define concept drift, and utilize it as a guideline for concept drift detection

and adaptation.

QUESTION 2. How can we improve concept drift detection accuracy for stream

learning?

The accuracy of drift detection consists of two major evaluation criteria, the

true positive (TP) rate and the false positive (FP) rate Alippi et al. (2017); Bu et al.

(2016). TP indicates concept drift has been correctly detected; usually this criterion

is evaluated with a delay time, which shows how fast a drift detection algorithm can

realize the changes since the drift occurred. FP indicates that a random noise or a

sampling bias has been incorrectly recognized as concept drift, namely a false alarm.

TP and FP are trade-offs and both are critical to concept drift detection Liu et al.

(2017a,b). Therefore, improving drift detection accuracy is a challenging task in that

the detection algorithms not only need to improve their sensitivity to small changes,

they also have to become more robust against random issues, especially noise data

instances Gama et al. (2014).

QUESTION 3. How to effectively adapt to concept drift for streaming data?

Concept drift adaptation is important to learning with streaming data, which

directly affects the learning performance. Without proper adaptation, no matter

how accurate a drift detection algorithm is, the damage caused by concept drift

will not be repaired. Currently, according to the literature Harel et al. (2014),most

6 Introduction

drift adaptation algorithms suffer from two major problems: a) adaptation delay;

b) unnecessary training dataset shrink. The first problem is caused by the delay of

drift detection, while the second problem is blamed on the adaptation algorithms

themselves. Therefore, improving drift adaptation algorithms with delayed drift

detection results and avoiding unnecessary training dataset shrinkage is an urgent

problem to be solved.

QUESTION 4. How to handle concept drift incrementally with time and storage

constrains?

Stream learning poses additional challenges because of the time and storage

limitations. The trade-off between computational costs and learning accuracy is also

an important aspect which needs to be addressed for real-world applications Bifet

et al. (2015); Gama et al. (2012); Žliobaitė et al. (2015). Since learning accuracy

is not the only evaluation metric to measure the performance of an online learning

model, an algorithm that can handle concept drift in a fast and low computational

resource environment is highly desired.

This research aims to achieve the following objectives, which are expected to

answer the above research questions:

OBJECTIVE 1. To give a uniform definition of concept drift so that it can explain

different types of concept drift, and act as a guideline for concept drift detection and

adaptation.

This objective corresponds to research question 1. Currently, the most commonly

mentioned concept drift types are sudden/abrupt drift, gradual drift, incremental

drift, and reoccurring drift, which are defined according to how the data distribution

1.2 Research Questions and Objectives 7

changes with time Minku et al. (2010); Sarnelle et al. (2015); Sun et al. (2016).

Accordingly, many concept drift handling studies have been conducted in terms

of these definitions, and most of them address different types of drift individually

Losing et al. (2016). However, as pointed out by Losing et al. (2016), in real-world

applications, these types of drifts can occur simultaneously. Therefore, there is a

need to discover the common characteristics of these types of drifts and propose a

novel definition to include them. This study describes concept drift from a novel

perspective and is able to summarize the most commonly mentioned drift types in

one definition. The new proposed definition provides a theoretical guarantee that

addressing the newly defined drift will simultaneously solve the commonly defined

drifts.

OBJECTIVE 2. To develop a novel concept drift detection algorithm which can

address different types of drifts.

This objective corresponds to research question 2. Existing studies consider

that concept drift occurs at the global level, that is, whether the distribution change

is globally significant. In Barddal et al. (2016); Bifet and Gavaldà (2009); Gama

and Castillo (2006); Ikonomovska et al. (2011, 2009), the authors proposed the use

of the tree structure to divide the feature space into a set of tree nodes and then

addresses node drifts separately, which was a good attempt to investigate and solve

local drifts. However, these solutions are based on decision tree models, which may

have constraints on constructing the tree nodes, and the highlighted regions can

only be hyper-rectangle and may suffer from the curse of high dimensionality. For

example, Concept-adapting Very Fast Decision Tree (CVFDT) normally requires

observations of 200 data instances before attempting to split the nodes Hulten et al.

8 Introduction

(2001). If a local drift occurs within 200 data instances, a tree node will be updated

before splitting, and no regional drifts in that area will be identified. In contrast,

this study proposes a novel local region construction methodology that can handle

arbitrary shapes and be high-dimensionality friendly. The newly developed algorithm

is sensitive to local drifts as well as global drifts without sacrificing the false alarm

rate.

OBJECTIVE 3. To develop a novel concept drift adaptation algorithm which can

address different types of drifts.

This objective corresponds to research question 3. At present, most concept

drift detection and handling methods focus on time-related drift, namely when a

concept drift occurs. They consider that a drift could occur suddenly at a time point,

incrementally, or gradually in a time period Harel et al. (2014). As a result, their

solutions search for the best time to split the old and new concepts. The data received

before the drift time point is considered to be an old concept, while the data received

after the drift time point is considered to be a new concept. Accordingly, the old

concept data is discarded, while the new concept data is used for updating or training

new learners, which can be seen as a time-oriented “one-cut” process. This strategy

may be suitable for sudden/abrupt drifts, but will result in unnecessary training data

shrink for other types of drifts Liu et al. (2017a). Therefore, this study proposes a

novel solution to overcome this problem, which means the developed drift adaptation

algorithm should be selective in its action. The new solution is able to reduce the risk

of unnecessary training data shrink, and should achieve at least the same accuracy

result as the "one-cut" strategy.

1.3 Research Contributes 9

OBJECTIVE 4. To develop an incremental drift handling framework that can

address different types of drifts with time and storage constraints.

This objective corresponds to research question 4. Since the trade-off between

computational costs and learning accuracy is an important aspect for real-world

applications Bifet et al. (2015); Gama et al. (2012); Žliobaitė et al. (2015), the drift

detection and adaptation algorithms are implemented in an online manner. This

study develops an online regional drift detection and adaptation algorithm to improve

computational efficiency. The proposed algorithm requests no prior knowledge on

the window size, and has low computational cost and is able to be executed on

distributed systems so that the time and storage limitation poses no challenges for

the proposed algorithm.

1.3 Research Contributes

The main contributions of this research are summarised as follows:

• A novel definition of concept drift, namely regional drift, is proposed to elabo-

rate how the data distribution changes from both time and spatial perspectives

and to uniformly describe different types of concept drift. This study also

theoretically proves that addressing regional drift will guarantee other types of

drift are solved simultaneously (Chapter 3).

• According to the proposed definition, a novel regional drift detection algorithm

is developed, named NN-DVI. Compared to the other algorithms, NN-DVI is

more sensitive to regional drift, and its drifting bond is theoretically proved.

10 Introduction

The evaluation results show thatNN-DVI can improve drift detection accuracy

without increasing the false alarm rates (Chapter 4).

• Similarly, a novel regional drift adaptation algorithm is proposed to handle the

drift detection results, called LDD-DSDA. Compared to the other algorithms,

LDD-DSDA addresses drift via density synchronization rather than replacing

training data. The evaluation results demonstrate that LDD-DSDA accurately

identifies drifted regions and synchronizes the data distribution automatically

(Chapter 5).

• This study also proposed a novel incremental concept drift handling algo-

rithm, called online regional drift adaptation online-RDA. Considering stream

learning is an online incremental learning process, concept drift detection and

adaptation should also be operated in an online manner which has limited time

and storage constraints (Chapter 6).

1.4 Research Significance

The theoretical and practical significance of this research is summarized as follows:

Theoretical significance: This study investigates the nature properties of con-

cept drift and proposes to divide and conquer the concept drift problem as a set of

regional drift problems by theoretically proving that any type of concept drift can be

represented as a set of regional drifts. In other words, if regional drift exists, then a

concept drift must exist, and if all regional drifts have been solved, then the concept

drift problem is solved. This thesis introduces spatial information for concept drift

detection and adaptation with a proof of the effectiveness.

1.5 Thesis Structure 11

Practical significance: This study develops a regional drift detection and adap-

tion framework, and proposes a series of algorithms to improve drift detection and

adaptation accuracy. The first algorithm is a regional drift detection algorithm which

can also be used as a dissimilarity measurement and multivariate two-sample test.

The second algorithm is a regional density synchronization algorithm which can also

be used for transfer learning, or data re-sampling. The third algorithm is an ensemble

incremental drift handling algorithm which contributes to revealing the drift patterns

of real-world datasets with higher accuracy but less computational cost.

1.5 Thesis Structure

The logical structure of this thesis (the chapters and the corresponding research

questions) and the relationship between the chapters are shown in Figure 1.3. The

main contents of each chapter are summarised as follows:

CHAPTER 2 studies the literature and discovers common patterns of concept

drift detection and adaptation algorithms, thereby revealing the current research gap.

In this chapter, the basic components of concept drift detection and adaptation are

introduced, after which a categorization of the existing algorithms based on their

implementations details are given. At last, the limitations of the reviewed algorithms

are discussed, which inspires the following chapters and solutions.

CHAPTER 3 analyses the inherent properties of different types of concept drift

and extracts the common features of the three most mentioned types of drift. Based

on these findings, this chapter proposes a novel definition, namely regional drift,

that can be used to explain and describe all three types of drifts. In addition, few

theorems have been developed to address drift detection and adaptation problems.

12 Introduction

window based,
require prior knowledge of

window size

incremental learning,
require no prior knowledge of

window size

CHAPTER 1.
Introduction

CHAPTER 2.
Literature Review

CHAPTER 3.
The Nature of

Concept Drift and a
Novel Definition

CHAPTER 4.
Concept Drift Detection via

Accumulating Regional
Density Discrepancies

asedddd

CHAPTER 5.
Concept Drift Adaptation via

Regional Density
Synchronization

ini crementall llearniing

CHAPTER 6.
Incremental Regional Drift

Adaptation

CHAPTER 7.
Conclusion and Future

Research

RQ2. Improve drift
detection accuracy

RQ4. Incremental
concept drift handling

window ba
require prior kno

window s

window baiii ddd bbb

RQ3. Effective
drift adaptation

RQ1. Uniformly
define concept drift

Figure 1.3 Thesis structure and relationship between chapters

1.5 Thesis Structure 13

This chapter constitutes the theoretical foundation of the next proposed algorithms,

and it addresses RQ1 to achieve Objective 1.

CHAPTER 4 proposes a novel regional drift-oriented drift detection algorithm,

called NN-DVI, based on the theorems developed in Chapter 3. The core idea

is to accumulate the density discrepancies of every region, and then examine if

the accumulated discrepancy is significant enough to trigger a drift alarm. NN-

DVI consists of data distribution dissimilarity measurement dnnps and a tailored

hypothesis test θ nnps used to determine the critical interval. In this chapter, the

properties of dnnps and θ nnps are explored in detail, and their evaluations are given at

the end. This chapter addresses RQ2 to achieve Objective 2.

CHAPTER 5 proposes a novel regional drift-oriented drift adaptation algorithm,

called LDD-DSDA. LDD-DSDA is more focused on drift adaptation compared

to NN-DVI. In fact, LDD-DSDA can be considered as the adaptation process of

NN-DVI, so that the combination of NN-DVI (drift detection) and LDD-DSDA

(drift adaptation) is a set of window-based concept drift handling algorithms. The

core idea of LDD-DSDA is to detect significant regional density discrepancies and

to synchronize these discrepancies based on instance selection. In this chapter, a

regional density discrepancies measurement is defined, called Local Drift Degree

(LDD), and the distribution of LDD is proved. Based on these theorems, an Local

Drift Degree-based Drifted Instance Selection (LDD-DIS) algorithm is proposed

which is an extension of NN-DVI. Lastly, the drift adaptation algorithm LDD-DSDA

is introduced and evaluated. This chapter is aiming to address RQ3 to achieve

Objective 3.

CHAPTER 6 takes advantage of NN-DVI and LDD-DSDA and addresses the

prior knowledge of the window size problem. In this chapter, an incremental drift

14 Introduction

adaptation algorithm, named online-RDA, is proposed. This chapter starts with an

incremental regional drift adaptation framework, called RDA, and then a detailed

algorithm that is based on this framework is presented, namely the online-RDA. The

experimental evaluation demonstrates the effectiveness of online-RDA and shows

several interesting findings, such as a change in the online-RDA buffer size reflects

the drift patterns, which is a noteworthy study for further research. This chapter

addresses RQ4 to achieve Objective 4.

CHAPTER 7 summarises the findings of this thesis and points to directions for

future work.

1.6 Publications Related to this Thesis

Below is a list of the refereed international journal and conference papers during my

PhD research that have been published or currently under review:

Published:

1. A. Liu, J. Lu, F. Liu, and G. Zhang, "Accumulating regional density dissim-

ilarity for concept drift detection in data streams," Pattern Recognition, vol.

76, no. Supplement C, pp. 256-272, 2018/04/01/ 2018. (ERA Rank A*)

2. A. Liu, Y. Song, G. Zhang, and J. Lu, "Regional concept drift detection and

density synchronized drift adaptation," in Proceedings o f the Twenty-sixth

International Joint Con f erence on Arti f icial Intelligence, Melbourne, 2017,

pp. 2280-2286, 2017. (ERA Rank A*)

1.6 Publications Related to this Thesis 15

3. A. Liu, G. Zhang, and J. Lu, "Fuzzy time windowing for gradual concept

drift adaptation," in Proceedings o f the Twenty-sixth IEEE International

Con f erence on Fuzzy Systems, Naples, 2017: IEEE, 2017. (ERA Rank A)

4. A. Liu, G. Zhang, J. Lu, N. Lu, and C.-T. Lin, "An online competence-

based concept drift detection algorithm," in Proceedings o f the Twenty-ninth

Australasian Joint Con f erence on Arti f icial Intelligence, Hobart, 2016, pp.

416-428, Springer, 2016. (ERA Rank B)

5. A. Liu, G.Zhang, and J. Lu, "Concept drift detection based on anomaly

analysis," in Proceedings o f the Twenty- f irst International Con f erence on

Neural In f ormation, Kuching, 2014 pp.263-270, Springer, 2014 (ERA Rank

A)

6. A. Liu, G. Zhang, and J. Lu, "A novel weighting method for online ensemble

learning with the presence of concept drift," in Proceedings o f the Eleventh

International FLINS Con f erence, Decision Making and So f t Computing,

Brazil, 2014 pp. 550-555, World Scientific Publishing Co. Pty. Ltd., 2014.

(ERA Rank B)

Under review:

1. J. Lu, F. Dong, A. Liu, F. Gu, J. Gama, and G. Zhang, "Learning under Concept

Drift: A Review," IEEE Transactions on Knowledge and Data Engineering,

2017 submitted. (ERA Rank A)

2. A. Liu, G. Zhang, and J. Lu, "Online Regional Concept Drift Adaptation

for Learning with Streaming Data," IEEE Transactions on Neural Networks

and Learning Systems, 2017 submitted. (ERA Rank A*)

Chapter 2

Literature Review

2.1 Concept Drift

This section first gives the formal definition and the sources of concept drift in

Section 2.1.1. Then, in Section 2.1.2, the commonly defined types of concept drift

are introduced. At last, other close related research topics and applications are

discussed in Section 2.1.3

2.1.1 Definition of concept drift and sources

Concept drift is a phenomenon in which the statistical properties of a target domain

change over time in an arbitrary way Lu et al. (2014). It was first proposed by

Schlimmer and Granger Jr (1986) who aimed to point out that noise data may turn to

non-noise information at different time. These changes might be caused by changes

in hidden variables which cannot be measured directly Liu et al. (2017a). Formally,

concept drift is defined as follows:

18 Literature Review

Given a time period [0, t], a set of samples, denoted as S0,t = {d0, . . . ,dt}, where

di = (Xi,yi) is one observation (or a data instance), Xi is the feature vector, yi is

the label, and S0,t follows a certain distribution F0,t(X ,y). Concept drift occurs

at timestamp t + 1, if there is a statistically significant change in the distribution

F0,t(X ,y) that has F0,t(X ,y) �= Ft+1,∞(X ,y), denoted as ∃t : Pt(X ,y) �= Pt+1(X ,y)

Gama et al. (2014); Losing et al. (2016); Lu et al. (2016).

Concept drift has also been defined by various authors using alternative names,

such as dataset shift Storkey (2009) or concept shift Widmer and Kubat (1996).

Other related terminologies were introduced in Moreno-Torres et al. (2012)’s work,

the authors proposed that concept drift or shift is only one subcategory of dataset

shift and the dataset shift consists of covariate shift, prior probability shift and

concept shift. These definitions clearly stated the research scope of each research

topics. However, since concept drift is usually associated with covariate shift and

prior probability shift, and an increasing number of publications Gama et al. (2014);

Losing et al. (2016); Lu et al. (2016) refer to the term "concept drift" as the problem

in which ∃t : Pt(X ,y) �= Pt+1(X ,y). Therefore, the same definition of concept drift

is applied in this thesis. Accordingly, concept drift at time t can be defined as the

change of joint probability of X and y at time t. Since the joint probability Pt(X ,y)

can be decomposed into two parts as Pt(X ,y) = Pt(X)×Pt(y|X), concept drift can

be triggered by three sources:

• Source I: Pt(X) �= Pt+1(X) while Pt(y|X) = Pt+1(y|X), that is, the research

focus is the drift in Pt(X) while Pt(y|X) remains unchanged. Since Pt(X) drift

does not affect the decision boundary, it has also been considered as virtual

drift Ramírez-Gallego et al. (2017).

2.1 Concept Drift 19

Source III:
Pt(X) drift
Pt(y|X) drift

data distribution at time t data distribution at time t+1
x1

x2

x1

x2

Source II:
Pt(y|X) drift
Pt(X) remains

data distribution at time t data distribution at time t+1
x1

x2

x1

x2

Source I:
Pt(X) drift
Pt(y|X) remains

data distribution at time t data distribution at time t+1
x1

x2

x1

x2

Two dimensional data
X={x1, x2} with two
class label y={y0, y1}

label y0 at time t
label y1 at time t
label y0 at time t
label y1 at time t

Figure 2.1 Three sources of concept drift

• Source II: Pt(y|X) �= Pt+1(y|X) while Pt(X) = Pt+1(X) while Pt(X) remains

unchanged. This drift will cause decision boundary change and lead to learning

accuracy decreasing, which is also called actual drift.

• Source III: mixture of Source I and Source II, namely Pt(X) �= Pt+1(X) and

Pt(y|X) �=Pt+1(y|X). Concept drift focus on the drift of both Pt(y|X) and Pt(X),

since both changes convey important information about learning environment;

Figure 2.1 demonstrates how these sources differ from each other in a two-

dimensional feature space. Source I is feature space drift, and Source II is decision

boundary drift. In many real-world applications, Source I and Source II occur

together, which creates Source III.

2.1.2 Classification of concept drift

Commonly, concept drift can be distinguished as four types Gama et al. (2014) as

shown in Figure 2.2:

Research into concept drift adaptation in Types 1-3 focuses on how to minimize

the drop in accuracy and achieve the fastest recovery rate during the concept transfor-

20 Literature Review

Sudden
Drift:
A new concept occurs within a short time.s within a short time

D
at
a

di
st
ri
bu
tio
n

Time

Gradual
Drift:
A new concept gradually replaces an old one over a period of time.ll l ld i d f ti

D
at
a

di
st
ri
bu
tio
n

Time

Incremental
Drift:
The old concept incrementally changes to new concept over a period of time.ementally changes to new concept over a period of time

D
at
a

di
st
ri
bu
tio
n

Time

Reoccurring
Concepts:
The old concepts may reoccur after some time.ft ti

D
at
a

di
st
ri
bu
tio
n

Time

Figure 2.2 A demonstration of concept drift types

mation process. In contrast, the study of Type 4 drift emphasizes the use of historical

concepts, that is, how to find the best matched historical concepts with the shortest

time. The new concept may suddenly reoccur, incrementally reoccur, or gradually

reoccur.

To better demonstrate the differences between these types, the term “intermediate

concept” was introduced by Gama et al. (2014) to describe the transformation

between concepts. As mentioned by Liu et al. (2017a), a concept drift may not only

take place at an exact timestamp, but may also last for a long period. As a result,

intermediate concepts may appear during the transformation as one concept (starting

concept) changes to another (ending concept). An intermediate concept can be a

mixture of the starting concept and the ending concept, like the incremental drift, or

one of the starting or ending concept, such as the gradual drift.

2.1 Concept Drift 21

2.1.3 Related research topics and applications

Handling concept drift is not a standalone research subject but has a large number of

indirect usage scenarios. This section adopts this new perspective to review recent

developments in other research areas that benefit from handling the concept drift

problem.

2.1.3.1 Related research topics

i) Class imbalance. Class imbalance is a common problem in streaming data learning

in addition to concept drift Wang et al. (2013, 2018). Research effort has been made

to develop effective learning algorithms to tackle both problems at the same time. In

Ditzler and Polikar (2013), the authors presented two ensemble methods for learning

under concept drift with imbalanced class. The first method, Learn++ for Concept

Drift with SMOTE (Learn++.CDS), is extended from Learn++ for Non-Stationary

Environment (Learn++.NSE) Elwell and Polikar (2011) and combined with the

Synthetic Minority class Oversampling TEchnique (SMOTE). The second algo-

rithm, Learn++ for Non-stationary and Imbalanced Environments (Learn++.NIE),

improves on the previous method by employing a different penalty constraint to

prevent prediction accuracy bias and replacing SMOTE with bagging to avoid

oversampling. Ensemble of Subset Online Sequential Extreme Learning Machine

(ESOS-ELM) Mirza et al. (2015) is another ensemble method which uses Online

Sequential Extreme Learning Machine (OS-ELM) as a basic classifier to improve

performance with class imbalanced data. A concept drift detector is integrated to

retrain the classifier when drift occurs. The author then developed another algorithm

Mirza and Lin (2016), which is able to tackle multi-class imbalanced data with

22 Literature Review

concept drift. Wang et al. (2015) proposed two learning algorithms Oversampling-

based Online Bagging (OOB) and Undersampling-based Online Bagging (UOB),

which build an ensemble model to overcome the class imbalance in real time through

resampling and time-decayed metrics. Arabmakki and Kantardzic (2017) developed

an ensemble method which handles concept drift and class imbalance with additional

true label data limitation.

ii) Big data mining. Data mining in big data environments faces similar chal-

lenges to stream data mining Katal et al. (2013): data is generated at a fast rate

(Velocity) and distribution uncertainty always exists in the data (Variety), which

means that handling concept drift is crucial in big data applications. Additionally,

scalability is an important consideration because in big data environments, a data

stream may come in very large and potentially unpredictable quantities (Volume) and

cannot be processed in a single computer server. An attempt to handle concept drift

in a distributed computing environment was made by Andrzejak and Gomes (2012)

in which an Online Map-Reduce Drift Detection Method (OMR-DDM) was pro-

posed, using the combined online error rate of the parallel classification algorithms

to identify the changes in a big data stream. A recent study Tennant et al. (2017) pro-

posed another scalable stream data mining algorithm, called Micro-Cluster Nearest

Neighbor (MC-NN), based on nearest neighbor classifier. This method extends the

original micro-cluster algorithm Aggarwal et al. (2003) to adapt to concept drift by

monitoring classification error. This micro-cluster algorithm was further extended to

a parallel version using the map-reduce technique in Song et al. (2016) and applied

to solve the label-drift classification problem where class labels are not known in

advance Nguyen et al. (2016). Similar strategy has been applied in Liu et al. (2016a)

to develop an online competence-based concept drift detection algorithm.

2.1 Concept Drift 23

iii) Active learning and semi-supervised learning. Active learning is based on

the assumption that there is a large amount of unlabeled data but only a fraction

of them can be labeled by human effort. This is a common situation in stream

data applications, which are often also subject to the concept drift problem. In

Žliobaitė et al. (2014), the authors presented a general framework that combines

active learning and concept drift adaptation. It first compares different instance-

sampling strategies for labeling to guarantee that the labeling cost will be under

budget, and that distribution bias will be prevented. A drift adaptation mechanism is

then adopted, based on the Drift Detection Method (DDM) Gama et al. (2004). In

Chu et al. (2011), the authors proposed a new active learning algorithm that primarily

aims to avoid bias in the sampling process of choosing instances for labeling. They

also introduced a memory loss factor to the model, enabling it to adapt to concept

drift.

Semi-supervised learning concerns how to use limited true label data more

efficiently by leveraging unsupervised techniques. In this scenario, additional design

effort is required to handle concept drift. For example, in Ditzler and Polikar

(2011), the authors applied a Gaussian Mixture model to both labeled and unlabeled

data, and assigned labels, which has the ability to adapt to gradual drift. Similarly,

Hosseini et al. (2015); Wu et al. (2012); Zhang et al. (2010) are all cluster-based

semi-supervised ensemble methods that aim to adapt to drift with limited true label

data. The latter are also able to recognize recurring concepts. In Chandra et al.

(2016), the author adopted a new perspective on the true label scarcity problem

by considering the true labeled data and unlabeled data as two independent non-

stationary data generating processes. Concept drift is handled asynchronously on

these two streams. The Semi-supervised Adaptive Novel class Detection (SAND)

24 Literature Review

algorithm Haque et al. (2016a,b) is another semi-supervised adaptive method which

detects concept drift on cluster boundaries.

iv) Decision Rules. Data-driven decision support systems need to be able to

adapt to concept drift in order to make accurate decisions and decision rules is the

main technique for this purpose. Kosina and Gama (2015) proposed a decision

rule induction algorithm, Very Fast Decision Rules (VFDR), to effectively process

stream data. An extended version, adaptive VFDR, was developed to handle concept

drift by dynamically adding and removing decision rules according to their error

rate which is monitored by drift detector. Instead of inducing rules from decision

trees, Le et al. (2017) proposed another decision rule algorithm based on PRISM

Cendrowska (1987) to directly induce rules from data. This algorithm is also able

to adapt to drift by monitoring the performance of each rule on a sliding window

of latest data. Pratama et al. (2015) also developed an adaptive decision making

algorithm based on fuzzy rules. The algorithm includes a rule pruning procedure,

which removes obsolete rules to adapt to changes, and a rule recall procedure to

adapt to recurring concepts.

This section by no means attempts to cover every research field in which concept

drift handling is used. There are many other studies that also consider concept drift

as a dual problem. For example, Yeh and Wang (2013) is a dimension reduction

algorithm to separate classes based on Least Squares Linear Discovery Analysis

(LSLDA), which is then extended to adapt to drift; Feature Extraction for explicit

concept Drift Detection (FEDD) Cavalcante et al. (2016) considered the concept drift

problem in time series and developed an online explicit drift detection method by

monitoring time series features; and Pratama et al. (2016) developed an incremental

scaffolding classification algorithm for complex tasks that also involve concept drift.

2.1 Concept Drift 25

2.1.3.2 Related applications

Handling concept drift is important to real-world applications because streaming data

are ubiquitous. Examples include network traffic, telecommunications, and financial

transactions, to name just three. Data mining tasks in these systems will inevitably

encounter the concept drift problem. In some cases, the ability to handle concept

drift becomes the key factor in improving system performance. A comprehensive

review of concept drift industrial applications can be found in Žliobaitė et al. (2016),

in which the authors list many industrial examples of different types of application,

including monitoring and control, information management, analytics and diagnos-

tics. In this section previous studies are summarized from two aspects drift detection

applications and drift adaptation applications, to provide a guide for concept drift

applications from an academic research perspective to real-life applications.

Concept drift detection applications fulfill the industrial requirement of diagnos-

ing significant changes in the internal and external environment of industry trends

or customer preferences: for example, using drift detection technology to diagnose

changes in user preferences on news Harel et al. (2014). Similar tasks include fraud

detection in finance, intrusion detection in computer security, mobile masquerade de-

tection in telecommunications, topic changes in information document organization,

and clinical studies in the biomedical area.

Concept drift adaptation applications concern the maintenance of a continu-

ously effective evaluation and prediction system for industry. These applications

sometimes also involve drift detection technologies for better accuracy. A real case

represented in Sousa et al. (2016) is the design of a credit risk assessment framework

for dynamic credit scoring. Other real-world drift adaptation applications can be

26 Literature Review

found in customer churn prediction in telecommunication, traffic management in

transportation, production and service monitoring, recommendations for customers,

and bankruptcy prediction in finance.

With the rapid development of technology, learning with streaming data are

becoming more highly dimensional with larger sizes and faster speed. The new

challenges presented by big data streams require more advanced concept drift appli-

cations. One concern is how to handle concept drift problems in the IoT Morales

et al. (2016), where the huge quantity of big data streams require deeper insight and

a better understanding of concept drift.

2.2 Concept Drift Detection and Adaptation

This section focuses on summarizing concept drift detection algorithms. A general

drift detection framework is introduced in Section 2.2.1.1. Then, Section 2.2.1.2

systematically reviews and categorizes drift detection algorithms according to their

implementation details for each component in the framework. At last, Section

2.2.1.3 lists the state-of-the-art drift detection algorithms with comparisons of their

implementation details.

2.2.1 Concept drift detection

Drift detection refers to the techniques and mechanisms that characterize and quantify

concept drift via identifying change points or change time intervals Basseville and

Nikiforov (1993). A general framework for drift detection contains four stages, as

shown in Figure 2.3.

2.2 Concept Drift Detection and Adaptation 27

Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10

Historical Data New Data

Stage 1: Data Retrieval

 data stream time line

Abstracted Data
Model (New)

Abstracted Data
Model (Historical)

Stage 2 (optional):
Data Modeling

Historical Data New Data

Dissimilarity
Measurement

Stage 3:
Test Statistics Calculation

Dissimilarity
Significance Test

Stage 4:
Hypothesis Test
(Statistical Bounds)

Figure 2.3 A general framework of concept drift detection

2.2.1.1 Drift detection framework

Stage 1 (Data Retrieval) aims to retrieve data chunks from data streams. Since a

single data instance cannot carry enough information to infer the overall distribution

Lu et al. (2016), knowing how to organize data chunks to form a meaningful pattern

or knowledge is important in data stream analysis tasks Ramírez-Gallego et al.

(2017).

Stage 2 (Data Modeling) aims to abstract the retrieved data and extract the key

features containing sensitive information, that is, the features of the data that most

impact a system if they drift. This stage is optional, because it mainly concerns

28 Literature Review

dimensionality reduction, or sample size reduction, to meet storage and online speed

requirements Liu et al. (2017a).

Stage 3 (Test Statistics Calculation) is the measurement of dissimilarity, or

distance estimation. It quantifies the severity of the drift and forms test statistics for

the hypothesis test. It is considered to be the most challenging aspect of concept

drift detection. The problem of how to define an accurate and robust dissimilarity

measurement is still an open question. A dissimilarity measurement can also be

used in clustering evaluation Silva et al. (2013), and to determine the dissimilarity

between sample sets Dries and Rückert (2009).

Stage 4 (Hypothesis Test) uses a specific hypothesis test to evaluate the sta-

tistical significance of the change observed in Stage 3, or the p-value. They are

used to determine drift detection accuracy by proving the statistical bounds of the

test statistics proposed in Stage 3. Without Stage 4, the test statistics acquired in

Stage 3 are meaningless for drift detection, because they cannot determine the drift

confidence interval, that is, how likely it is that the change is caused by concept drift

and not noise or random sample selection bias Lu et al. (2014). The most commonly

used hypothesis tests are: estimating the distribution of the test statistics Alippi

and Roveri (2008a); Gama et al. (2004), bootstrapping Bu et al. (2016); Dasu et al.

(2006), the permutation test Lu et al. (2014), and Hoeffding’s inequality-based bound

identification Frias-Blanco et al. (2015).

It is also worth to mention that, without Stage 1, the concept drift detection

problem can be considered as a two-sample test problem which examines whether

the population of two given sample sets are from the same distribution Dries and

Rückert (2009). In other words, any multivariate two-sample test is an option that can

be adopted in Stages 2-4 to detect concept drift Dries and Rückert (2009). However,

2.2 Concept Drift Detection and Adaptation 29

in some cases, the distribution drift may not be included in the target features,

therefore the selection of the target feature will affect the overall performance of

a learning system and is a critical problem in concept drift detection Yamada et al.

(2013).

2.2.1.2 Concept drift detection algorithms

A) Learner-based Dri f t Detection: Learner-based drift detection algorithms form

the largest category of algorithms. These algorithms focus on tracking changes

in the online error rate of base classifiers. If an increase or decrease of the error

rate is proven to be statistically significant, an upgrade process (drift alarm) will be

triggered.

One of the most-referenced concept drift detection algorithms is the DDM Gama

et al. (2004). It was the first algorithm to define the warning level and drift level for

concept drift detection. In this algorithm, Stage 1 is implemented by a landmark

time window, as shown in Figure 2.4. When a new data instance become available

for evaluation, DDM detects whether the overall online error rate within the time

window has increased significantly. If the confidence level of the observed error rate

change reaches the warning level, DDM starts to build a new learner while using the

old learner for predictions. If the change reached the drift level, the old learner will

be replaced by the new learner for further prediction tasks. To acquire the online error

rate, DDM needs a classifier to make the predictions. This process converts training

data to a learning model, which is considered as the Stage 2 (Data Modeling). The

test statistics in Stage 3 constitute the online error rate. The hypothesis test, Stage 4,

is conducted by estimating the distribution of the online error rate and calculating

the warning level and drift threshold.

30 Literature Review

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10

Historical Data
New Data

Figure 2.4 Landmark time window for drift detection. The starting point of the window is

fixed, while the end point of the window will be extended after a new data instance has been

received.

Similar implementations have been adopted and applied in the Learning with

Local Drift Detection (LLDD) Gama and Castillo (2006), Early Drift Detection

Method (EDDM) Baena-García et al. (2006), Heoffding’s inequality based Drift

Detection Method (HDDM) Frias-Blanco et al. (2015), Fuzzy Windowing Drift

Detection Method (FW-DDM) Liu et al. (2017b), Dynamic Extreme Learning

Machine (DELM) Xu and Wang (2017). LLDD modifies Stages 3 and 4, dividing the

overall drift detection problem into a set of decision tree node-based drift detection

problems; EDDM improves Stage 3 of DDM using the distance between two correct

classifications to improve the sensitivity of drift detection; HDDM modifies Stage

4 using Hoeffding’s inequality to identify the critical region of a drift; FW-DDM

improves Stage 1 of DDM using a fuzzy time window instead of a conventional

time window to address the gradual drift problem; DELM does not change the

DDM detection algorithm but uses a novel base learner, which is a single hidden

layer feedback neural network called Extreme Learning Machine (ELM) Huang et al.

(2006) to improve the adaptation process after a drift has been confirmed. EWMA for

Concept Drift Detection (ECDD) Ross et al. (2012) takes advantage of the error rate

to detect concept drift. ECDD employs the Exponentially Weighted Moving Average

(EWMA) chart to track changes in the error rate. The implementation of Stages 1-3

of ECDD is the same as for DDM, while Stage 4 is different. ECDD modifies the

2.2 Concept Drift Detection and Adaptation 31

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10

New Data
Historical Data

Figure 2.5 Two time windows for concept drift detection. The New Data window has to be

defined by the user.

conventional EWMA chart using a dynamic mean p̂0,t instead of the conventional

static mean p0, where p̂0,t is the estimated online error rate within time [0, t], and p0

implies the theoretical error rate when the learner was initially built. Accordingly,

the dynamic variance can be calculated by σ2
Zt
= p̂0,t(1− p̂0,t)

√
λ

2−λ (1− (1−λ)2t)

where λ controls how much weight is given to more recent data as opposed to older

data, and λ = 0.2 is recommended by the authors. Also, when the test statistic of

the conventional EWMA chart is Zt > p̂0,t +0.5LσZt , ECDD will report a concept

drift warning; when Zt > p̂0,t +LσZt , ECDD will report a concept drift. The control

limits L is given by the authors through experimental evaluation.

In contrast to DDM and other similar algorithms, Statistical Test of Equal

Proportions Detection (STEPD) Nishida and Yamauchi (2007) detects error rate

change by comparing the most recent time window with the overall time window,

and for each timestamp, there are two time windows in the system, as shown in

Figure 2.5. The size of the new window must be defined by the user. According to

Nishida and Yamauchi (2007), the test statistic θSTEPD conforms to standard normal

distribution, denoted as θSTEPD ∼ N(0,1). The significance level of the warning

level and the drift level were suggested as αw = 0.05 and αd = 0.003 respectively.

As a result, the warning threshold and drift threshold can be easily calculated.

32 Literature Review

Another popular two-time window-based drift detection algorithm is ADaptive

WINdowing (ADWIN) Bifet and Gavaldà (2007). Unlike STEPD, ADWIN does not

require users to define the size of the compared windows in advance; it only needs

to specify the total size n of a "sufficiently large" window W . It then examines all

possible cuts of W and computes optimal sub-window sizes nhist and nnew according

to the rate of change between the two sub-windows whist and wnew. The test statistic

is the difference of the two sample means θADWIN = |μ̂hist − μ̂new|. An optimal

cut is found when the difference exceeds a threshold with a predefined confidence

interval δ . The author proved that both the false positive rate and false negative

rate are bounded by δ . It is worth noting that many concept drift adaptation meth-

ods/algorithms in the literature are derived from or combined with ADWIN, such as

Bifet and Gavaldà (2009); Bifet et al. (2009a,b); Gomes et al. (2017b). Since their

drift detection methods are implemented with almost the same strategy, details will

be discussed further.

B) Distribution-based Dri f t Detection: The second largest category of drift

detection algorithms is data distribution-based drift detection. Algorithms of this

category use a distance function/metric to quantify the dissimilarity between the

distribution of historical data and the new data. If the dissimilarity is proven to be

statistically significantly different, the system will trigger a learning model upgrada-

tion process. These algorithms address concept drift from the root sources, which

is the distribution drift. Not only can they accurately identify the time of drift, they

can also provide location information about the drift. However, these algorithms are

usually reported as incurring higher computational cost than the learner-based drift

detection algorithms mentioned before Lu et al. (2016). In addition, these algorithms

usually require users to predefine the historical time window and new data window.

2.2 Concept Drift Detection and Adaptation 33

Two windows at timestamp: t+6

t+11

Historical Data New Data

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11

Historical Data New Data

Two windows at timestamp: t+7

Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10

Dt Dt+1 Dt+2 Dt+3 Dt+4 Dt+5 Dt+6 Dt+7 Dt+8 Dt+9 Dt+10

Figure 2.6 Two sliding time windows, of fixed size. The Historical Data window will be

fixed while the New Data window will keep moving.

The commonly used strategy is two sliding windows with the historical time window

fixed while sliding the new data window Dasu et al. (2006); Lu et al. (2014); Shao

et al. (2014), as shown in Figure 2.6.

According to the literature, the first formal treatment of change detection in data

streams was proposed by Kifer et al. (2004). In their study, the authors point out that

the most natural notion of distance between distributions is total variation, as defined

by: TV (P1,P2) = 2supE∈ε |P1(E)−P2(E)| or equivalently, when the distribution has

the density functions f1 and f2, distL1 =
∫ | f1(x)− f2(x)|dx. This provides practical

guidance on the design of a distance function for distribution discrepancy analysis.

Accordingly, Kifer et al. (2004) proposed a family of distances, called Relativized

Discrepancy (RD). The authors also present the significance level of the distance

according to the number of data instances. The bounds on the probabilities of missed

detections and false alarms are theoretically proven, using Chernoff bounds and the

Vapnik-Chervonenkis dimension. The authors of Kifer et al. (2004) do not propose

novel high-dimensional friendly data models for Stage 2 (data modeling); instead,

they stress that a suitable model choice is an open question.

34 Literature Review

Another typical density-based drift detection algorithm is the information-theoretic

approach Dasu et al. (2006). The intuitive idea underlying this algorithm is to use

kdqTree to partition the historical and new data (multi-dimensional) into a set of bins,

denoted as A ,and then use Kullback-Leibler divergence to quantify the difference of

the density θITA in each bin. The hypothesis test applied by the information-theoretic

approach is bootstrapping that merging Whist, Wnew as Wall and resampling as W ′
hist,

W ′
new to recompute the θ ∗

ITA. Once the estimated probability P(θ ∗
ITA ≥ θITA)< 1−α ,

concept drift is confirmed, where α is the significant level controlling the sensitivity

of drift detection.

Similar distribution-based drift detection methods/algorithms are: statistical

change detection for multi-dimensional data Song et al. (2007), Competence Model-

based drift detection (CM) Lu et al. (2016), a prototype-based classification model

for evolving data streams called SyncStream Shao et al. (2014), Equal Density

Estimation (EDE) Gu et al. (2016), Least Squares Density Difference-based Change

Detection Test (LSDD-CDT) Bu et al. (2016), an incremental version of LSDD-CDT

(LSDD-INC) Bu et al. (2017) and LDD-DSDA Liu et al. (2017a).

C) Multiple Hypothesis Test Dri f t Detection: Multiple hypothesis test drift

detection algorithms apply similar techniques to those mentioned in the previous two

categories. The novelty of these algorithms is that they use multiple hypothesis tests

to detect concept drift in different ways. These algorithms can be divided into two

groups: 1) parallel multiple hypothesis tests; and 2) hierarchical multiple hypothesis

tests.

The idea of parallel multiple hypothesis drift detection algorithm is demonstrated

in Figure 2.7. According to the literature, Just-In-Time adaptive classifiers Just-In-

Time adaptive classifiers (JIT) Alippi and Roveri (2008a) is the first algorithm that set

2.2 Concept Drift Detection and Adaptation 35

Test Statistic 1 Hypothesis Test H1

Test Statistic 2 Hypothesis Test H2

Test Statistic z Hypothesis Test Hz

... ...

Stage 3 Stage 4

Detection ResultsWhist and Wnew

detect drift based on z hypothesis test

Figure 2.7 Parallel multiple hypothesis test drift detection.

multiple drift detection hypothesis in this way. The core idea of JIT is to extend the

CUmulative SUM (CUSUM) chart, known as the Computational Intelligence-based

CUSUM test (CI-CUSUM), to detect the mean change in the features interested by

learning systems. The authors of Alippi and Roveri (2008a), gave the following

four configurations for the drift detection target. Config1: the features extracted

by principal component analysis (PCA), which removes eigenvalues whose sum is

below a threshold, e.g. 0.001. Config2: PCA extracted features plus one generic

component of the original features xi; Config3: detects the drift in each xi individually.

Config4: detects drift in all possible combinations of the feature space xi. The

authors stated that Config2 is the preferred setting for most situations, according to

their experimentation, and also mentioned that Config1 may have a high missing

rate, Config3 suffers from a high false alarm rate, and Config4 has exponential

computational complexity. The same drift detection strategy has also been applied

in Alippi et al. (2011, 2012, 2013); Alippi and Roveri (2008b) for concept drift

adaptation.

Similar implementations have been applied in Linear Four Rate drift detection

(LFR) Heng and Abraham (2015), which maintains and tracks the changes in true

36 Literature Review

Detection Layer:
Standard Drift Detection Algorithms that have low drift

delay rate and low computational cost

Validation Layer:
Depend on the detection layer

Stage 3 Stage 4

Detection ResultsWhist and Wnew Test Statistic detect Hypothesis Test Hdetect

Test Statistic valid Hypothesis Test Hvalid

Figure 2.8 Hierarchical multiple hypothesis test drift detection.

positive (TP), true negative (TN), false positive (FP) and false negative (FN) in an

online manner. The drift detection process also includes warning and drift levels.

Another parallel multiple hypothesis drift detection algorithm is three-layer

drift detection, based on Information Value and Jaccard similarity (IV-Jac) Zhang

et al. (2017). IV-Jac aims to individually address the label drift Pt(y) Layer I,

feature space drift Pt(X) Layer II, and decision boundary drift Pt(y|X) Layer III.

It extracts the Weight of Evidence (WoE) and Information Value (IV) from the

available data and then detects whether a significant change exists between the

WoE and IV extracted from Whist and Wnew by measuring the contribution to the

label for a feature value. The hypothesis test thresholds are predefined parameters

θPt(y) = θPt(X) = θPt(X |y) = 0.5 by default, which are chosen empirically.

Hierarchical drift detection is an emerging drift detection category that has

a multiple verification schema. The algorithms in this category usually detect

drift using an existing method, called the detection layer, and then apply an extra

hypothesis test, called the validation layer, to obtain a second validation of the

detected drift in a hierarchical way. The overall workflow is shown in Figure 2.8.

2.2 Concept Drift Detection and Adaptation 37

According to the claim made by Alippi et al. (2017), Hierarchical Change-

Detection Tests (HCDTs) is the first attempt to address concept drift using a hierar-

chical architecture. The detection layer can be any existing drift detection method

that has a low drift delay rate and low computational burden. The validation layer

will be activated and deactivated based on the results returned by the detection layer.

The authors recommend two strategies for designing the validation layer: 1) estimat-

ing the distribution of the test statistics by maximizing the likelihood; 2) adapting an

existing hypothesis test, such as the Kolmogorov-Smirnov test or the Cramer-Von

Mises test.

Hierarchical Linear-Four Rate (HLFR) Yu and Abraham (2017) is another re-

cently proposed hierarchical drift detection algorithm. It applies the drift detection

algorithm LFR as the detection layer. Once a drift is confirmed by the detection

layer, the validation layer will be triggered. The validation layer of HLFR is simply

a zero-one loss, denoted as E, over the ordered train-test split. If the estimated

zero-one loss exceeds a predefined threshold, η = 0.01, the validation layer will

confirm the drift and report to the learning system to trigger a model upgradation

process.

Two-Stage Multivariate Shift-Detection based on EWMA (TSMSD-EWMA)

Raza et al. (2015) has a very similar implementation, however, the authors do not

claim that their method is a hierarchy-based algorithm.

2.2.1.3 A summary of drift detection algorithms

Table 2.1 lists the most popular concept drift detection methods/algorithms based on

the general framework summarized in Section 2.2.1.1 (Figure 2.3).

38
L

it
er

at
u
re

R
ev

ie
w

Table 2.1 A summary of drift detection algorithms

Category Algorithms Stage 1 Stage 2 Stage 3 Stage 4

Learner-

based
DDM Landmark Learner Online error rate Distribution estimation

EDDM Landmark Learner Online error rate Distribution estimation

FW-DDM Landmark Learner Online error rate Distribution estimation

DELM Landmark Learner Online error rate Distribution estimation

STEPD Predefined whist, wnew Learner Error rate difference Distribution estimation

ADWIN Auto cut whist, wnew Learner Error rate difference Hoeffding’s Bound

ECDD Landmark Learner Online error rate EWMA Chart

HDDM Landmark Learner Online error rate Hoeffding’s Bound

LLDD Landmark, or sliding whist, wnew Decision trees Tree node error rate Hoeffding’s Bound

Data

distribution-

based

kdqTree Fixed whist, Sliding wnew kdqTree KL divergence Bootstrapping

CM Fixed whist, Sliding wnew Competence model Competence distance Permutation test

RD Fixed whist, Sliding wnew KS structure Relativized Discrepancy VC-Dimension

SCD Fixed whist, Sliding wnew kernel density estimator log-likelihood Distribution estimation

EDE Fixed whist, Sliding wnew Nearest neighbor Density scale Permutation test

SyncStream Fixed whist, Sliding wnew PCA P-Tree Wilcoxon test

LSDD-CDT Fixed whist, Sliding wnew Learner Relative difference Distribution estimation

LSDD-INC Fixed whist, Sliding wnew Learner Relative difference Distribution estimation

LDD-DSDA Fixed whist, Sliding wnew k-nearest neighbor Local drift degree. Distribution estimation

Multiple

Hypothesis

Tests

JIT Landmark Selected features 4 configurations Distribution estimation

LFR Landmark Learner TP, TN, FP, FN Distribution estimation

Three-layer Sliding both whist, wnew Learner P(y), P(X), P(X |y) Test statistic dist. estimation

TSMSD-EWMA Landmark Learner Online error rate EWMA Chart

HCDTs Landmark Depending on layers Depending on layers Depending on layer

HLFR Landmark Learner TP, TN, FP, FN Distribution estimation

2.2 Concept Drift Detection and Adaptation 39

2.2.2 Concept drift adaptation

This section focuses on strategies for updating existing learning models according

to the drift, which is known as drift adaptation or reaction. There are two main

categories of drift adaptation methods, namely single learning model adaptation and

ensemble learning for concept drift adaptation.

2.2.2.1 Single learning model adaptation

Single learning model adaptation strategy only activates one learning model for

classification/prediction tasks at each time point. The detailed implementation

methods can be further divided into three groups. i) select the most relevant data

instances to create new learning models to replace the obsolete one, which is also

called instance selection by Tsymbal (2004). Different weights may assign to the

seletected data instances according to the their arrive time or their competence with

regard to the current concept, or named as instance weighting by Tsymbal (2004);

ii) incrementally adjust the learning models’ parameters to adapt to current concept,

namely incremental learning.

i) Instance selection and weighting. In instance selection algorithms, the aim

is to select the instances relevant to the current concept Tsymbal (2004), and then

retraining a new model with the selected data to replace the obsolete model, which

has been considered as the most intuitive way of reacting to concept drift. An explicit

concept drift detector is required to decide when to retrain the model (see Section

2.2.1.2 for drift detection algorithms). A window strategy is often adopted in this

method to preserve the most recent for retraining. Paired Learners Bach and Maloof

(2008) follows this strategy and uses two learners: the stable learner and the reactive

40 Literature Review

learner. If the stable learner frequently misclassifies instances that the reactive

learner correctly classifies, a new concept is detected and the stable learner will be

replaced with the reactive learner. This method is simple to understand and easy to

implement, and can be applied at any point in the data stream. Similarly strategy

has been applied in Self Adjusting Memory kNN (SAMkNN) Losing et al. (2016),

which weights short term learner, long term learner based on their performance on

the most recent time frame. Instead of directly retraining the model, researchers have

also attempted to integrate the drift detection process with the retraining process

for specific machine learning algorithms. DELM Xu and Wang (2017) extends the

traditional ELM algorithm with the ability to handle concept drift by adaptively

adjusting the number of hidden layer nodes. When the classification error rate

increases, which could indicate the emergence of a concept drift, more nodes are

added to the network layers to improve its approximation capability. Similarly,

Forgetting Parameters Extreme Learning Machine (FP-ELM) Liu et al. (2016b) is

an ELM-extended method that adapts to drift by introducing a forgetting parameter

to the ELM model. A parallel version of ELM-based method Han et al. (2015) has

also been developed for high-speed classification tasks under concept drift. OS-ELM

Soares and Araújo (2016) is another online learning ensemble of repressor models

that integrates ELM using an ordered aggregation technique, which overcomes the

problem of defining the optimal ensemble size.

Instance-based lazy learners for handling concept drift have also been studied

intensively. The Just-in-Time adaptive classifier Alippi and Roveri (2008a,b) is such

a method which follows the "detect and update model" strategy. For drift detection,

it extends the traditional CUSUM test Manly and Mackenzie (2000) to a pdf-free

form. This detection method is then integrated with a k-Nearest Neighbor (kNN)

2.2 Concept Drift Detection and Adaptation 41

classifier Alippi and Roveri (2008b). When a concept drift is detected, old instances

(more than the last T samples) are removed from the case base. In later work, the

authors of Alippi et al. (2013); Silva et al. (2013) extended this algorithm to handle

recurrent concepts by computing and comparing current concept to previously stored

concepts. Noise-Enhanced Fast Context Switch (NEFCS) Lu et al. (2016) is another

kNN-based adaptive model. A competence model-based drift detection algorithm Lu

et al. (2014) was used to locate drift instances in the case base and distinguish them

from noise instances and a redundancy removal algorithm, Stepwise Redundancy

Removal (SRR), was developed to remove redundant instances in a uniform way,

guaranteeing that the reduced case base would still preserve enough information for

future drift detection.

ii) Incremental learning. An alternative to retraining an entire model is to

develop a model that incrementally and adaptively learns from the changing data.

Such models have the ability to partially update themselves when the underlying

data distribution changes. This approach is arguably more efficient than retraining

when the drift only occurs in local regions. Many methods in this category are based

on the decision tree algorithm because trees have the ability to examine and adapt to

each sub-region separately.

In a foundational work Domingos and Hulten (2000), an online decision tree

algorithm, called Very Fast Decision Tree (VFDT) was proposed, which is especially

tailored for high speed data streams. It uses Hoeffding bound to limit the number of

instances required for node splitting. This method has become very popular because

of its several distinct advantages: 1) it only needs to process each instance once

and does not store instances in memory or disk; 2) the tree itself only consumes a

small amount of space and does not grow with the number of instances it processes

42 Literature Review

unless there is new information in the data; 3) the cost of tree maintenance is very

low. An extended version, called CVFDT Hulten et al. (2001), was later proposed to

handle concept drift. In CVFDT, a sliding window is maintained to hold the latest

data. An alternative sub-tree is trained based on the window and its performance is

monitored. If the alternative sub-tree outperforms its original counterpart, it will be

used for future prediction and the original obsolete sub-tree will be pruned. VFDT

deal with continuous data (VFDTc) Gama et al. (2003) is another attempt to make

improvements to VFDT with several enhancements: the ability to handle numerical

attributes; the application of Naive Bayes classifiers in tree leaves and the ability

to detect and adapt to concept drift. Two node-level drift detection methods were

proposed based on monitoring differences between a node and its sub-nodes. The

first method uses classification error rate and the second directly checks distribution

difference. When a drift is detected on a node, the node becomes a leaf and its

descending sub-tree is removed. Later work Yang and Fong (2012, 2015) further

extended VFDTc using an adaptive leaf strategy that chooses the best classifier from

three options: majority voting, Naive Bayes and weighted Naive Bayes.

Despite the success of VFDT, recent studies Rutkowski et al. (2014, 2013) have

shown that its foundation, the Hoeffding bound, may not be appropriate for the node

splitting calculation because the variables it computes, the information gain, are not

independent. A new online decision tree model Rutkowski et al. (2015) was devel-

oped based on an alternative impurity measure. The paper shows that this measure

also reflects concept drift and can be used as a replacement measure in CVFDT. In

the same spirit, another decision tree algorithm Frías-Blanco et al. (2016) aims to

rectify the use of Hoeffding bound by computing the sum of independent random

2.2 Concept Drift Detection and Adaptation 43

variables, called relative frequencies. The error rate of sub-trees are monitored to

detect drift and are used for tree pruning.

2.2.2.2 Ensemble learning for concept drift adaptation

In contrast to single learning model adaptation, ensemble learning utilize multiple

models to make prediction/classification at each time point. The new learning

models can be created with explicit drift detection, that is, creating new models

for new detected concepts Bifet et al. (2010b); Gomes et al. (2017b), or be created

with predefined time frame Elwell and Polikar (2011), that is, creating new models

regularly for a fixed period.

Preserving and reusing old models can save significant effort to retrain a new

model for recurring concepts, and the old models may also be helpful to partial

current concept. This is the core idea of using ensemble methods to handle concept

drift. Ensemble methods have received much attention in stream data mining research

community in recent years. A survey about this research topic is Krawczyk et al.

(2017) Ensemble methods comprise a set of base classifiers that may have different

types or different parameters. The output of each base classifier is combined using

certain voting rules to predict the newly arrived data. Many adaptive ensemble

methods have been developed that aim to handle concept drift by extending classical

ensemble methods or by creating specific adaptive voting rules.

Bagging, Boosting and Random Forests are classical ensemble methods used

to improve the performance of single classifiers. They have all been extended for

handling streaming data with concept drift. An online version of the bagging method

was first proposed in Oza and Russell (2001) which uses each instance only once

to simulate the batch mode bagging. In a later study Bifet et al. (2010b), this

44 Literature Review

method was combined with the ADWIN drift detection algorithm Bifet and Gavaldà

(2007) to handle concept drift. When a concept drift is reported, the newly proposed

method, called LeVeraGing Bagging (LVGB), trains a new classifier on the latest

data to replace the existing classifier with the worst performance. Similarly, an

adaptive boosting method was developed in Chu and Zaniolo (2004) which handles

concept drift by monitoring prediction accuracy using a hypothesis test, assuming

that classification errors on non-drifting data should follow Gaussian distribution. In

a recent work Gomes et al. (2017b), the Adaptive Random Fores (ARF) algorithm

was proposed, which extends the random forest tree algorithm with a concept drift

detection method, such as ADWIN Bifet and Gavaldà (2007), to decide when to

replace an obsolete tree with a new one. A similar work can be found in Li et al.

(2015), which uses Hoeffding bound to distinguish concept drift from noise within

decision trees.

Besides extending classical methods, many new ensemble methods have been

developed to handle concept drift using novel voting techniques. Dynamic Weighted

Majority (DWM) Kolter and Maloof (2007) is such an ensemble method that is

capable of adapting to drifts with a simple set of weighted voting rules. It manages

base classifiers according to the performance of both the individual classifiers and

the global ensemble. If the ensemble misclassifies an instance, DWM will train

a new base classifier and add it to ensemble. If a base classifier misclassifies an

instance, DWM reduces its weight by a factor. When the weight of a base classifier

drops below a user defined threshold, DWM removes it from the ensemble. The

drawback of this method is that the adding classifier process may be triggered too

frequently, introducing performance issues on some occasions, such as when gradual

drift occurs. A well-known ensemble method, Learn++.NSE Elwell and Polikar

2.2 Concept Drift Detection and Adaptation 45

(2011), mitigates this issue by weighting base classifiers according to their prediction

error rate on the latest batch of data. If the error rate of the youngest classifier

exceeds 50%, a new classifier will be trained based on the latest data. This method

has several other benefits: it can easily adopt almost any base classifier algorithm; it

does not store history data, only the latest batch of data, which it only uses once to

train a new classifier; and it can handle sudden drift, gradual drift, and recurrent drift

because underperforming classifiers can be reactivated or deactivated as needed by

adjusting their weights. Other voting strategies than standard weighted voting have

also been applied to handle concept drift. Examples include hierarchical ensemble

structure Yin et al. (2015); Zhang et al. (2011), short term and long term memory

Losing et al. (2016); Xu et al. (2017) and dynamic ensemble sizes Pietruczuk et al.

(2016); You and Lin (2016).

A number of research efforts have been made that focus on developing ensemble

methods for handling concept drift of certain types. Accuracy Update Ensemble

(AUE) Brzeziński and Stefanowski (2011, 2014) was proposed with an emphasis

on handling both sudden drift and gradual drift equally well. It is a batch mode

weighted voting ensemble method based on incremental base classifiers. By doing

re-weighting, the ensemble is able react quickly to sudden drift. All classifiers are

also incrementally trained with the latest data, which ensures that the ensemble

evolves with gradual drift. The Optimal Weights Adjustment (OWA) method Zhang

et al. (2008) achieves the same goal by building ensembles using both weighted

instances and weighted classifiers for different concept drift types. The authors of

Sun et al. (2016) considered a special case of concept drift — class evolution —

the phenomenon of class emergence and disappearance. Recurring concepts are

handled in Gama and Kosina (2013); Gomes et al. (2014), which monitor concept

46 Literature Review

information to decide when to reactivate previously stored obsolete models. Ahmadi

and Kramer (2017) is another method that handles recurring concepts by refining the

concept pool to avoid redundancy.

Chapter 3

The Nature of Regional Drift

3.1 Introduction

In the literature, concept drift has been defined in many forms. The most referenced

definitions are A) ∃t : Ft(X ,y) �= Ft+1(X ,y) Lu et al. (2014), where Ft(X ,y) is a

function used to describe the distribution of the data received at time t, this function

can be a probability density function (PDF) or a cumulative distribution function

(CDF); and B) ∃t,X : Pt(X ,y) �= Pt+1(X ,y) Gama et al. (2014), where Pt(X ,y) is the

joint probability of X and y at time t. The definition A) only focus on time related

drift, the research scope of the drift detection based on this definition is almost the

same as two-sample test, where the "two samples" are the data received at t and

t +1. This definition contains no location information and is difficult to be compared

directly. In contrast, the definition B) has location information for discrete feature

space. However, it is invalid in continuous feature space. Besides these issues,

another critical problem is that neither definition A) nor B) can describe the types

48 The Nature of Regional Drift

of concept drifts, and both of them have limited contribution to development of the

solution for learning with the presents of concept drift.

This chapter formally defines regional concept drift. The spatial information

associated with concept drift for both discrete and continuous feature space is

introduced in Section 3.2. The connection between regional drift and concept drift is

explored in Section 3.3.

3.2 Regional Drift and Regional Drift Presented

Concept Drift

The definition of concept drift in this study is adopted from ∃t : Pt(X ,y) �= Pt+1(X ,y).

This definition implies a discrete feature space because, in continuous feature space, it

is always true that Pt(X ,y) = Pt+1(X ,y) = 0. To create a unified definition of concept

drift that includes both discrete and continuous feature spaces, a “compromise”

region is introduced, denoted as h. Suppose the entire feature space is a hyper-

rectangle, denoted as T , the region h is a proper subset of T , i.e., h � T . Discrete

space regions are described as a set of data points, while continuous space regions

are described as intervals. The definition of concept drift, in terms of regions, can

then be formulated as follows.

Definition 3.1. Region-based concept drift If ∃t,h : Pt(X ∈ h,y) �= Pt+1(X ∈ h,y),

there is a region drift at time t in region h.

Therefore, a drifted feature space location can be found by identifying the region

h, namely, the spatial information associated with the concept drift. Without consid-

3.3 The Relationship between Regional Drift and Concept Drift 49

ering spatial information, updating a learning model may result in an unnecessary

reduction of training data and a delayed response to incremental drift.

3.3 The Relationship between Regional Drift

and Concept Drift

Given Definition 3.1, concept drift detection and adaptation could be converted into

regional drift detection and adaptation by breaking the concept drift problem down

into a set of regional drift problems. The intuition behind this idea is to divide a

big problem into a set of subproblems that can be conquered more easily if tackled

individually. The relationship between regional drift and concept drift is formally

described by the theorems that follow.

Theorem 3.1. If ∃t,h : Pt(X ∈ h,y) �= Pt+1(X ∈ h,y), then ∃Xi ∈ h : Pt(Xi,y) �=
Pt+1(Xi,y) which represents concept drift in a discrete feature space, and ∃ΔXi ∈
h : Pt(ΔXi,y) �= Pt+1(ΔXi,y) which represents drifts in a continuous feature space,

where ΔXi = {X : ‖X −Xi‖< ε,X ∈ h,ε > 0}.

Proof. In a discrete feature space, the region h is a set of data instances. According

to the probability mass function (PMF), Pt(X ∈ h,y) is equal to ΣXi∈hPt(Xi,y). In

shortened form, this is denoted as Σi∈h pi
t . If ph

t �= ph
t+1, i.e., ph

t − ph
t+1 �= 0, then

Σi∈h(pi
t − pi

t+1) �= 0. Therefore, there must be at least one point pi
t where pi

t − pi
t+1 �=

0, which means that pi
t �= pi

t+1 is true, namely ∃t,Xi ∈ h : Pt(Xi,y) �= Pt+1(Xi,y).

Similarly, we can prove that if ∃t,h : Pt(X ∈ h,y) �= Pt+1(X ∈ h,y), then ∃ΔXi ∈ h :

Pt(ΔXi,y) �= Pt+1(ΔXi,y).

50 The Nature of Regional Drift

Theorem 3.2. If ∀h∈H\T : Pt(X ∈ h,y) =Pt+1(X ∈ h,y), then Pt(X ,y) =Pt+1(X ,y)

indicate no drift in a discrete feature space, and Pt(ΔX ,y) = Pt+1(ΔX ,y) indicate no

drift in a continuous feature space, where H is the power set of the feature space T .

Proof. Given two regions in a discrete feature space where hi = h j ∪ {Xk}, if

Pt(X ∈ hi,y) = Pt+1(X ∈ hi,y) and Pt(X ∈ h j,y) = Pt+1(X ∈ h j,y), then Pt(X =

Xk,y)=Pt+1(X =Xk,y). Therefore, if ∀h∈H\T : Pt(X ∈ h,y)=Pt+1(X ∈ h,y), then

Pt(X ,y) = Pt+1(X ,y). Similarly, we can prove for the continuous feature space

Theorem 3.1 indicates that there must be a concept drift if a regional drift exists.

Therefore, concept drift detection can be simplified into a process that searches

for drifted regions. Theorem 3.2 shows that, if no regional drift exists, no concept

drift exists, which can be used as a guideline for concept drift adaptation, that is,

solving all regional drifts will also solve concept drift. These two theorems form the

foundation of our proposed concept drift adaptation algorithm.

Recall the two major types of concept drift: sudden drift and incremental drift.

Regional drift handles both well, as shown in Figure 3.1. Dividing the entire feature

space into a set of regions not only simplifies concept drift detection problems but

also reveals the spatial information associated with concept drift.

Now suppose, a one-dimensional feature space with two classes, c0 and c1,

suddenly drifts from the right side to the left side, or incrementally drifts from one

side to another. Existing drift detection algorithms focus on differences across the

entire feature domain. Hence, the system may not able to determine whether a change

is significant at the beginning of a slow incremental drift. By contrast, a small change

is significant to a region, and, as a result, regional drift will be discovered earlier.

Similarly, if the system addresses regional drifts individually, non-drifted regions

3
.3

T
h
e

R
elatio

n
sh

ip
b
etw

een
R

eg
io

n
al

D
rift

an
d

C
o
n
cep

t
D

rift
51

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

c0 c1

c0 c1

Decision
Boundary at t

Decision
Boundary at

t+1

drifted regions

Time: t+0

Time: t+1

Time: t+2

Time: t+3

Time: t+0

Time: t+1

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

c0 c1

c0 c1

Decision n
Boundary at t

DDecision D
Boundary atou

t+1

drifted regionsd if d i

Time: t+0

Time: t+1

(a) Sudden Drift

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9

Time: t+0

Time: t+1

Time: t+2

Time: t+3

(b) Incremental Drift

not globally significant,
but regionally significant

start triggering warning level

Figure 3.1 A demonstration of converting sudden drift and incremental drift to a set of regional drifts. Assume two 1D datasets consisting

of two classes c0, c1, one contains a sudden drift at t +1, as shown in (a), where the decision boundary suddenly changes. The other

dataset contains an incremental drift starting at t and ending at t +3, as shown in (b), where the decision boundary changes slightly

in each time step. The vector {h0, . . . ,h9} is a set of regions which constitute the entire feature space. Therefore, the sudden and the

incremental drifts can each be presented as a set of regional drifts. In (a), the drift is in region {h3, . . . ,h6}; in (b), the drift is in {h6}
at time t + 1, or {h4, . . . ,h6} from t to t + 3. Without considering spatial information, for the adaptation of sudden drift in (a), data

d ∈ {h0,h1,h2,h7,h8,h9} will be wasted, and the training set will be shrunk unnecessarily. Similarly, the incremental drift in (b), i.e., the

drifts at t +1, t +2, will be ignored and drift detection will be delayed.

52 The Nature of Regional Drift

remain unchanged, such as the training data in region {h0,h1,h3} and {h7,h8,h9}.

This reduces the risk of unnecessarily shrinking the training data.

According to Theorem 3.1, any concept drift can be detected, regardless of type,

by detecting whether a region in the domain has incurred a statistically significant

change. Similarly, according to Theorem 3.2, a concept drift problem can be ad-

dressed by ensuring there is no significant change in any region of the domain. In

other words, concept drift adaptation problems can be converted into a set of regional

drift problems, and addressing regional drift problems guarantees that concept drift

problems will be solved simultaneously.

3.4 Summary

The main contribution of this chapter is a novel definition of concept drift, namely

regional drift, which is proposed to elaborate the how the data distribution changes

from both time and spatial perspective and to uniformly describe different types of

concept drift. This chapter also theoretically proved that addressing regional drift

will guarantee other types of drift solved simultaneously. The implementation details

of region h are discussed in Chapter 6.

Chapter 4

Concept Drift Detection via

Accumulating Regional Density

Discrepancies

4.1 Introduction

This section focuses on addressing the weaknesses in distribution-based drift detec-

tion algorithms. Since these algorithms directly address the root cause of concept

drift, which is a variation in the data distribution, and are capable of representing

corresponding confidence intervals, they have been reported as the most accurate

drift detection methods Dasu et al. (2006); Kifer et al. (2004); Lu et al. (2016); Shao

et al. (2014). Although this type of drift detection algorithm has made remarkable

achievements, they still face the following bottlenecks:

1) Regional drifts were not taken into consideration, and drift sensitivity was

increased at the cost of increasing false alarms. Existing algorithms detect drifts in

54 Concept Drift Detection via Accumulating Regional Density Discrepancies

terms of the entire sample set but do not consider any regional changes in sub-sample

sets. Consequently, the test statistics of regional drifts may eventually be diluted

by stable regions, which decreases sensitivity Haque et al. (2016b). Even if the

algorithms can successfully capture a distribution drift caused by regional density

inequality, they are not able to distinguish whether this drift is caused by a serious

regional drift or a moderate global drift;

2) Existing distribution-based drift detection methods lack tailored statistical

significance tests. For example, Dasu et al. (2006) used bootstrapping Efron and

Tibshirani (1994) for statistical analysis, and Shao et al. (2014) used the Wilcoxon

test. From their experiments, it can be seen that different significance tests result

in different performance outcomes. Statistical analysis is critical to drift detection

accuracy, and an adequate explanation is indispensable to justify the relationship

between significance tests and test statistics Kifer et al. (2004). Therefore, to improve

the sensitivity of drift detection and to propose a tailored significance test, this paper

proposes a novel concept drift detection algorithm called NN-DVI. NN-DVI requires

no prior knowledge of the data distribution. Instead, it estimates the dissimilarity

between datasets in terms of the instances’ neighbors. Compared to other distribution-

based drift detection algorithms, the proposed NN-DVI method demonstrates the

following advantages:

• It is robust to one-dimensional data, as well as high-dimensional data.

• It is sensitive to concept drift caused by regional density changes and is robust

to noise.

• The distribution of the proposed distance metric is proven theoretically which

provides a statistical bound to guarantee the number of false alarms.

4.2 Preliminary 55

• It can describe detected changes by highlighting suspicious regions, and has

been tested in real-world applications.

This chapter formally presents the proposed drift detection method, NN-DVI,

which consists of three parts. In Section 4.2, the preliminaries are introduced. Then

the first part, which is a data modeling approach that retrieves critical information

and presents datasets as an abstracted model, is explained in details in Section 4.3.

The second part, which is a distance metric that accumulates regional density changes

to quantify the overall discrepancy between data sets, is explained in Section 4.4.1.

The third part, which is a tailored statistical significant test for the distance metric,

is explained in Section 4.4.2. The properties of the distance metric are discussed,

and its distribution has been theoretically proved. Followed by Section 4.4.3 that

provides the implementation details of NN-DVI. Finally, Section 4.5 evaluates the

developed algorithms on both synthetic datasets and real-world applications.

4.2 Preliminary

An important element of this chapter is multiset theory Blizard (1988). In contrast

to classic set theory, multiset theory defines a multiset (or bag) as a collection of

elements in which duplicates of the elements are allowed. The multiplicity of an

element, denoted as m(x), is the number of the element x in a specific multiset.

The cardinality is the total number of elements in a multiset, including repeated

memberships. For example, in the multiset A = {a,a,b,c,c,c}, the multiplicities of

the members a, b and c are respectively 2, 1 and 3, and the cardinality of A is 6. A

multiset can be formally defined as:

56 Concept Drift Detection via Accumulating Regional Density Discrepancies

Definition 4.1. Blizard (1988)(Multiset) A multiset is defined as a 2-tuple (A, m)

where A is a set of elements and m : A → N≥1 is the multiplicity function from A to

the set N≥1 = {1,2,3, . . .}. Formally, a multiset is denoted as

M = {(a,m(a)) : a ∈ A,m : A → N≥1} (4.1)

The multiplicity operations involved in this chapter are listed below.

Definition 4.2. Blizard (1988)(Multiset Indicator Function) Indicator function

IA : X → N, is defined by

IA(x) =

⎧⎪⎪⎨
⎪⎪⎩

m(x), if x ∈ A

0, if x /∈ A
(4.2)

Definition 4.3. Blizard (1988)(Multiset Intersection) Intersection indicator func-

tion of multiset A and B on element x is

IA∩B(x) = min{IA(x),IB(x)} (4.3)

Definition 4.4. Blizard (1988)(Multiset Union) Union indicator function of multiset

A and B on element x is

IA∪B(x) = max{IA(x),IB(x)} (4.4)

4.3 Nearest Neighbor-based Data Embedding 57

Definition 4.5. Blizard (1988)(Multiset Di f f erence) The set difference indicator

function of multiset A to B on element x is

IA\B(x) = max{0,IA(x)− IB(x)} (4.5)

Definition 4.6. Blizard (1988)(Multiset Element Sum) The sum indicator function

of multiset A and B on element x is

IA�B(x) = IA(x)+ IB(x) (4.6)

Definition 4.7. Blizard (1988)(Multiset Cardinality) The cardinality of a multiset

A is the sum of the indicator function values

|A|= ∑
x∈X

IA(x) (4.7)

where X is the set of unique element in A

These multiplicity functions provide the basic set of operators for our algorithm.

4.3 Nearest Neighbor-based Data Embedding

Data distribution-based concept drift detection has been reported as the most sensitive

and convincing detection method Lu et al. (2016, 2014) because it directly addresses

the root causes of concept drift and can represent the corresponding confidence

interval. According to the literature, a typical distribution-based detection method

consists of three components. The first component is a data representation model

through which critical information is retrieved and irrelevant details are discarded.

58 Concept Drift Detection via Accumulating Regional Density Discrepancies

Incoming Data

New Abstracted Data
Model

Historical Abstracted
Data Model

Dissimilarity
Measurement

Dissimilarity
Significant Test

Historical Data

1) Data Modelling

2) Distance Function:
total variation

3) Statistical Significance Test:
permutation test

Incoming Data

New Abstracted Data
Model

Historical Abstracted
Data Model

Dissimilarity
Measurement

Dissimilarity
Significant Test

Historical Data

1) Data Modelling

2) Distance Function:
total variation

3) Statistical Significance Test:
permutation test

Figure 4.1 A general framework for distribution-oriented concept drift detection

The second component is a specific dissimilarity function designed to measure the

discrepancies between the data models. One of the most natural notions for the

distance between distributions is the total variation, or the L1 norm Kawahara and

Sugiyama (2012). The third component is a statistical significance test. Statistical

significance, namely the p-value, is the probability of obtaining the least extreme

result given that a null hypothesis is true. In drift detection, the null hypothesis

is true when the detected discrepancies are not caused by concept drift. As a

non-parametric test, a permutation test is a good option for empirically estimating

statistical significance. An overall framework for distribution-oriented concept drift

detection is summarized in Figure 4.1.

4.3 Nearest Neighbor-based Data Embedding 59

4.3.1 Modelling data as a set of high-resolution partitions

Space partitioning is defined as the process of dividing a feature space into two or

more disjoint subsets. Any data instance in the feature space can then be identified

as residing in exactly one of the subsets. When dealing with discrete datasets, it

is often infeasible to directly estimate the similarity between data instances Dasu

et al. (2006). One of the most popular solutions is to accumulate the differences

of empirical probability density through the divided non-overlapping subsets Dasu

et al. (2006). For example, a histogram is one of the most popular ways to assess

the probability distribution of a given variable by depicting the frequencies of

observations occurring in certain ranges of values (bins), where the bins are the

disjoint subsets. In concept drift problems, if two sample sets are drawn from an

identical distribution, every partition should have a similar number of data points,

namely the empirical probability density (num o f data points in one partition
total num o f data points) in each

partition will be similar. Otherwise, a statistical significant difference between their

empirical probability density will be found.

Currently, in related research, space partitioning methods directly contribute to

the accuracy of drift detection Lu et al. (2016). As shown in Figure 4.2, the similarity

between sample sets will always be zero if a partitioning schema cannot explicitly

map similar items into the same partitions, like the 8×8 partitioning schema in

Figure 4.2(c). As a result, the detected density change will be invalid. By the same

token, if a partitioning schema mistakenly maps non-similar items into the same

partitions, the dissimilarity between testing sample sets will always be zero. A drift

detection algorithm will lose its sensitivity to density drifts, especially when only a

few data instances are available for evaluating the partitioning schema. Optimizing

60 Concept Drift Detection via Accumulating Regional Density Discrepancies

Figure 4.2 Conventional space partitioning schema maps data instances into larger bins,

and uses these bins to measure the similarity between datasets. Different bin sizes will give

different answers. For example, the bin size of Figure 2(c) is too small so that each block

only contains one instance. As a result, the intersection set of green dots and blue dots is

empty. However, in Figure 2(d), the intersection set has 2 elements.

space partitioning methods for concept drift detection is still an open problem Kifer

et al. (2004).

Motivated by this issue, a novel Nearest Neighbor-based Partitioning Schema

(NNPS) is proposed. The fundamental idea behind the NNPS is to find the minimum

shared particles between instances instead of the shared partitions to which instances

belong. Instead of mapping a data instance into a lower granularity presented by

partitions or bins, expanding the data points into a hypersphere can preserve much

more of the instance’s details. For example, as shown in Figure 4.3(b), in terms of a

two-dimensional feature space, the expanded data points are indicated by blue and

green circles. The partitions are the non-overlapping regions, as shown in Figure

4.3(c), {p1, . . . , p15}, and the instance particles are the pixels of the figure. Then, the

probability density discrepancies can be estimated by accumulating the number of

overlapped pixels, namely the overlapping area.

This partitioning schema performs well with two-dimensional data. However,

it becomes increasingly complex as the dimensionality increases. This is because

4
.3

N
earest

N
eig

h
b
o
r-b

ased
D

ata
E

m
b
ed

d
in

g
61

(a) (c)(b)

p1

p2
p3

p4

p5

p9

p15

p14

p6

p13

p12

p10

p7 p11
p8

d1

d2

d3

d4

d5

d6

d7

d1

d2

d3

d4

d5

d6

d7

Figure 4.3 The proposed instance-oriented space partitioning schema aims to find the primary elements that consist of data instances, and

then use these elements to measure the similarity between datasets. In a 2d domain, let us consider each data instance as a circle rather

than a dot and the entire domain is a by n×n pixels square, as shown in Figure 3(b). Then the pixels are the primary elements which

constitute the data instances, and data instances can be represented by a set of pixels located in their circles. Therefore, the similarity

between instances can be simply estimated by counting the shared pixels located in the overlapping regions, such as the similarity

between d1 and d2 can be estimated by
|p2|

|p1|+|p2|+|p3| , where |p1| indicates the number of pixels in region p1 as shown in Figure 3(c)

62 Concept Drift Detection via Accumulating Regional Density Discrepancies

Figure 4.4 Using a k-nearest neighbor data presenting model to replace the hyperspheres

model, the arrow in (b) indicates the relationship of k-nearest neighbors. For example,

d1 → d4 indicates that d4 is a kNN member of d1 while d1 is not a kNN member of d4. As

long as there is a connection between two data instances, they are considered as neighbors.

Then the datasets can be presented as a set of connections, as shown in (c). If each connection

is considered as one component of a data instance, namely a slice of a instance, then the data

instance d1 is a composite of one slice of itself, one slice from d2 and one slice from d4, as

shown in (d). Then, (e) illustrates the difference between conventional partitioning methods

and the NNPS

the intersecting regions between hyperspheres are difficult to explicitly calculate in

high dimensional space. Therefore, to further optimize the partitioning schema, a

k-nearest neighbor model to replace the hyperspheres model is applied.

4.3 Nearest Neighbor-based Data Embedding 63

An intuitive explanation for how a nearest neighbor model describes these in-

stance particles is that close located data instances have hidden connections, and

such connections can be used as the most basic element to constitute data instances.

As shown in Figure 4.4(d), unlike conventional partitioning schemas, which group

instances into different partitions, NNPS slices an instance into several particles, and

uses these particles to constitute instances. An overview of the difference between

the NNPS and conventional partitioning schemas is shown in Figure 4.4(e). To

overcome the bias caused by high granule mapping, NNPS extends instances into a

more detailed granule. This process is also called instance discretization or instance

quantization. Instead of measuring similarities in a conventional space partitioning

schema, applying shared instance particles can pass more instance details to the

sample sets, thereby making similarity measures more sensitive to small changes.

The concept of instance particles is formally defined as follows.

Definition 4.8. (Instance Particle) Given a di ∈ D, if the set Ki contains all neigh-

bors of di, then an instance particle based on di is defined as pdi = (di,Ki).

Example 4.1. Denote the data sample set as D = {d1,d2,d3,d4} and the neighbor

sets are K1 = {d1,d2}, K2 = {d1,d2,d3}, K3 = {d2,d3,d4}, K4 = {d3,d4}. Then

the instance particles are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pd1
= p(d1,K1) = (d1,{d1,d2})

pd2
= p(d2,K2) = (d2,{d1,d2,d3})

pd3
= p(d3,K3) = (d3,{d2,d3,d4})

pd4
= p(d4,K4) = (d4,{d3,d4})

(4.8)

64 Concept Drift Detection via Accumulating Regional Density Discrepancies

The proposed NNPS breaks one data instance into a set of instance particles,

thereby transforming each discrete data instance into a set of shared instance particles.

As a result, the differences between data instances can be preserved for measuring

the distance between sample sets.

Definition 4.9. (Instance Particle Group) Given an instance dk ∈ D, the particle

group of dk is defined as P(dk) = {pdi : if dk ∈ Ki, i = 1,2, . . . , |D|}, where pdi =

(di,Ki).

Example 4.2. Referring to example 4.1, the data instances belonging to D repre-

sented by the instance particles are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(d1) = {pd1
,pd2

}

P(d2) = {pd1
,pd2

,pd3
}

P(d3) = {pd2
,pd3

,pd4
}

P(d4) = {pd3
,pd4

}

(4.9)

Definition 4.10. Given a sample set Sk ⊆ D, the particle group of Sk is defined as

P(Sk) = {⋃di∈Sk
P(di)}, where P(di) is the particle group of di.

Example 4.3. Referring to example 4.1, and given two sample sets S1 = {d1,d2},

S2 = {d3,d4}, then we have

⎧⎪⎪⎨
⎪⎪⎩

P(S1) = P(d1)∪P(d2) = {pd1
,pd2

,pd3
}

P(S2) = P(d3)∪P(d4) = {pd2
,pd3

,pd4
}

(4.10)

4.3 Nearest Neighbor-based Data Embedding 65

Since the data instances can be represented as a set of instance particles, this

offers a higher resolution to calculate the distance between the sample sets. The next

step is to even out the weight of the instance particles and the weight of instances

represented by instance particles. As shown in Example 4.2, the number of particles

in a data instance may differ from instance to instance, |P(d1)| = 2, |P(d2)| = 3,

|P(d3)|= 3, |P(d4)|= 2, resulting in inconsistencies between the instances’ weight.

To even out the weight of instance particles and instances simultaneously, the lowest

common multiple (LCM) is introduced, that is, utilizing LCM({|P(d j)| : ∀d j ∈D}) as

the multiplicity function. Then a uniform weighted data instance can be represented

by a multiset of particles.

Definition 4.11. Given an instance dk ∈ D, a multiset of instance particles of dk in

terms of NNPS is defined as

Mnnps
dk

= {(pdi ,m(pdi)) : pdi ∈ P(dk),m(pdi) =
Q

|P(dk)|} (4.11)

where Q is the lowest common multiple of {|P(d j)| : ∀d j ∈ D}.

Example 4.4. Referring to Example 4.1, multiset represented data instances can be

presented as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mnnps
d1

= {(pd1
,3),(pd2

,3)}

Mnnps
d2

= {(pd1
,2),(pd2

,2),(pd3
,2)}

Mnnps
d3

= {(pd2
,2),(pd3

,2),(pd4
,2)}

Mnnps
d4

= {(pd3
,3),(pd4

,3)}

(4.12)

66 Concept Drift Detection via Accumulating Regional Density Discrepancies

Remark. The multiplicity function can be generalized as LCM({w · |P(d j)| : ∀d j ∈
D}), where w is the weight of instance di and w ∈ �. If a data set is uniformly

weighted, the w will equal to one.

Theorem 4.1. Mnnps
di

= Mnnps
d j

if and only if P(di) = P(d j)

Proof. Obviously

Accordingly, a data sample set S represented by instance particles is a cumulative

multiset sum of Mnnps
dk

that ∀dk ∈ S, namely Mnnps
S = �dk∈SMnnps

dk

Definition 4.12. Given a sample set S ⊆ D, a multiset of instance particles of S in

terms of NNPS is defined as

Mnnps
S = {(pdi ,m(pdi)) : pdi ∈ ∪dk∈SP(dk),m(pdi) = ∑

dk∈S
IMnnps

dk
(pdi)} (4.13)

Example 4.5. Referring to Example 4.1 and 4.3, the multiset represented sample

sets are:

⎧⎪⎪⎨
⎪⎪⎩

Mnnps
S1

= Mnnps
d1

⊎
Mnnps

d2
= {(pd1

,5),(pd2
,5),(pd3

,2)}

Mnnps
S2

= Mnnps
d3

⊎
Mnnps

d4
= {(pd2

,2),(pd3
,5),(pd4

,5)}
(4.14)

Theorem 4.2. Given a data instance di and a data sample set S, if di ∈ S, then

Mnnps
di

⊆ Mnnps
S

Proof. Obviously

Corollary 4.1. Given a sample set Si ⊆ D, then Mnnps
Si

⊆ Mnnps
D

Proof. Obviously

4.3 Nearest Neighbor-based Data Embedding 67

In summary, NNPS aims to extend instances into a lower granularity to provide a

more detailed shared subspace for measuring similarity and dissimilarity. In NNPS,

each data instance is a partition, and the hidden relationships between instances are

the primary elements that lie in the regions. Compared to conventional “bin”-based

partitioning methods, which only consider the similarity between data instances

as 1 (located in the same bin) or 0 (located in different bins), NNPS can preserve

the similarity between data instances, therefore becoming more sensitive to small

discrepancies. In addition, the datasets presented by NNPS are the accumulation

of instance particles from every partition. As a result, the density discrepancies in

partitions will also be accumulated and reflected in the similarity or dissimilarity

measurement.

4.3.2 Partition size optimization

The selection of the number of nearest neighbors (the k value of knn) is critical to

controlling the resolution and is the only parameter of the NNPS. To select the best

resolution to construct NNPS, a novel discretization controlling method is proposed,

called the instance particle independence coefficient, or simply independence, to

quantify the granule information contained at different granule levels.

In the context of the NNPS, the granule information indicator is defined as how

likely it is that a group of instance particles will appear together, namely the joint

probability of a group of instance particles occurring. Intuitively, in the proposed

data model, the primary element of a data set is the instance particles. The NNPS is

constructed based on these elements. If a group of such elements is always shown

68 Concept Drift Detection via Accumulating Regional Density Discrepancies

Figure 4.5 An example of grouped instance particles. Since p(d2) and p(d3) are always

grouped together, the difference between d2 and d3 is equal to zero. If such a group is large

enough, it will be impossible to identify whether there is a drift within them. Consequently,

the sensitiveness of NNPS on concept drift will decrease.

together, with a joint probability equal to 1, it would be impossible to detect drifts

inside this group, as shown in Figure 4.5.

In other words, the granule information indicator of the proposed data model

describes the average region size assumed to have no concept drift. From a practical

point of view, investigating the joint probability of every combination is neither

computationally-friendly nor storage efficient. Alternatively, such indicators can be

acquired through measuring the independence of every instance particle. The higher

the probability that an instance particle will appear in a certain instance particle

group, the less independence that instance particle has. To estimate the overall

independence of a given instance particle p(di), the indicator of its independence is

defined as the average value of the conditional probability of its connected instance

particles.

4.4 Nearest Neighbor-based Density Variation Identification 69

Definition 4.13. (Independence o f Instance Particle) The independence indicator

of a given instance particle is defined as

independence(pdi) = 1− 1

|P(di)| ∑
pdk∈P(di)

p(pdk ,pdi) (4.15)

where p(pdk ,pdi) is the probability that pdk ∈ P(di) and pdi ∈ P(di)

Definition 4.14. (Independence o f NNPS) The independence of the NNPS is de-

fined as the average value of instance particles’ independence, denoted as:

independence =
1

|D| ∑
pdi∈

⋃
dk∈D P(dk)

independence(pdi) (4.16)

With information granularity metrics, learning models can recognize and exploit

the meaningful pieces of knowledge present in data so that different features and

regularities can be revealed. This provides theoretical guidance for selecting the

k-value, which is max
k

{independence}.

4.4 Nearest Neighbor-based Density Variation Identi-

fication

4.4.1 A regional drift-oriented distance function

Since data instances and datasets are now presented by multisets, the distance

between them can be quantified by set-related metrics in terms of Definitions 4.1-

4.7. The metrics applied in this paper are the number of different instance particles

between two given multisets, denoted as dnnps.

70 Concept Drift Detection via Accumulating Regional Density Discrepancies

Definition 4.15. NNPS dissimilarity measurement Given two sample sets A,B ⊆ D,

the NNPS-based distance between them is calculated by accumulating the differences

in the number of instance particles, and it can be normalized by dividing the number

of unique instance particles, denoted as

dnnps(Mnnps
A ,Mnnps

B)

=
1

|P(A)∪P(B)| ∑
pdi∈P(A)∪P(B)

|IMnnps
A

(pdi)− IMnnps
B

(pdi)|
IMnnps

A
(pdi)+ IMnnps

B
(pdi)

(4.17)

Example 4.6. Referring to Example 4.5, the similarity is calculated as:

dnnps(Mnnps
S1

,Mnnps
S2

)

=
1

|P(S1)∪P(S2)| ·
(|IMnnps

S1

(pd1
)− IMnnps

S2

(pd1
)|

IMnnps
S1

(pd1
)+ IMnnps

S2

(pd1
)

+
|IMnnps

S1

(pd2
)− IMnnps

S2

(pd2
)|

IMnnps
S1

(pd2
)+ IMnnps

S2

(pd2
)

+
|IMnnps

S1

(pd3
)− IMnnps

S2

(pd3
)|

IMnnps
S1

(pd3
)+ IMnnps

S2

(pd3
)

+
|IMnnps

S1

(pd4
)− IMnnps

S2

(pd4
)|

IMnnps
S1

(pd4
)+ IMnnps

S2

(pd4
)

)

=
1

4
(
|5−0|

5
+

|5−2|
7

+
|2−5|

7
+

|0−5|
5

)

=
5

7
≈ 0.71

(4.18)

similarly, if S1 = {d1,d3} and S2 = {d2,d4} we have

dnnps(Mnnps
S1

,Mnnps
S2

)≈ 0.31 (4.19)

4.4 Nearest Neighbor-based Density Variation Identification 71

else if S1 = {d1,d4} and S2 = {d2,d3} we have

dnnps(Mnnps
S1

,Mnnps
S2

)≈ 0.17 (4.20)

an illustration to demonstrate how dnnps reflects the density dissimilarity between

data sets is shown in Figure 4.6.

4.4.2 Statistical guarantee

Measuring the difference between two sample sets is only one aspect of detecting

concept drift. Another aspect is to provide adequate evidence to determine how likely

it is that there will be such a difference if the given sample sets are drawn from an

identical distribution. Null hypothesis testing, or the so-called p-value approach, is

widely used to address similar problems. In our case, the null hypothesis H0 is: “It is

very likely to observe such a dnnps, if two given sample sets are independently drawn

from the same distribution”. The smaller the probability (the p-value), the stronger

the evidence against H0. This section explains in details how the drift critical interval

is determined.

4.4.2.1 Permutation test

The most intuitive and simple way to achieve this goal is to carry out a Monte Carlo

permutation test Dwass (1957). Suppose two sample sets A and B with means of

μA and μB, and the objective is to determine whether μA = μB at a 95% confidence

level. Shuffling A and B for N times, and recording the shuffled means μ ′
A and μ ′

B

is an intuitive method to estimate the likelihood that μA = μB. By observing the

72
C

o
n
ce

p
t

D
ri

ft
D

et
ec

ti
o
n

v
ia

A
cc

u
m

u
la

ti
n
g

R
eg

io
n
al

D
en

si
ty

D
is

cr
ep

an
ci

es

d1

d2

d4

d3

S1

S2

d nnps 0.17

(c)

d1

d2

d4

d3

S1
S2

d nnps 0.31

(b)

d1

d2

d4

d3

S1 S2

d nnps 0.71

(a)

S1

S2

d nnps 0.17

(f)

S1
S2S2S

d nnps 0.31

(e)

S1 S2

d nnps 0.71

(d)

indicate neighbors

S1S S2S

Figure 4.6 Demonstration of applying dnnps for measuring density dissimilarity. In combination Equation 4.18, S1 and S2 only have

edge points (d2 ←→ d3) connected, their dissimilarity is very high, as shown in (a), (d); in combination Equation 4.19, S1 and S2 are

intersected, their density dissimilarity is lower; in combination Equation 4.20, S2 is included by S2, therefore, this combination has the

lowest dissimilarity.

4.4 Nearest Neighbor-based Density Variation Identification 73

probability that occurrence(|μ ′
A − μ ′

B| ≥ |μA − μB|)/N, it can be used to estimate

how likely μA = μB. If the likelihood of occurrence(|μ ′
A − μ ′

B| ≥ |μA − μB|)/N is

less than 5%, then the model would have 95% confidence to conclude that μA �= μB,

otherwise μA = μB. The permutation test is designed to determine whether the

observed difference between the sample means is large enough to reject the null

hypothesis H0.

Let us denote the test statistic of the permutation test as θ̂ , which is the dnnps

between two given sample sets Si and S j, in our case. The achieved significance

level achieved significance level (ASL), also known as the p-value, can be attained

by counting the random variable θ̂ ∗ greater or equal to the observed θ̂ , denoted as

ASLperm ≈ ˆASLperm =
occurrence(θ̂ ∗ ≥ θ̂)

N
(4.21)

where N is the total number of tests, the random variable θ̂ ∗ is acquired by measure

the dnnps between shuffled S
′
i and S

′
j. The shuffled process ensures that S

′
i and S

′
j are

i.i.d.

In real-world applications, obtaining the exact ASL for a permutation test via

full enumeration becomes infeasible as the permutation sample size increases. This

raises the question of how many permutation replications (N) are required. As

illustrated by Efron and Tibshirani (1994) and Opdyke (2003), N × Â follows a

binomial distribution of Bi(N,A), where Â = ˆASLperm and A = ASLperm. Using the

normal approximation to Bi(N,A), the 95% confidence interval of Â is approximated

by A± (1.96×σ), where σ = [A(1−A)/N]
1
2 is the standard deviation of Â. If the

system want to control the Monte Carlo error lower than 30% (σ/A ≤ 0.3), that

gives N ≥ 100 when A = 0.1. The precision can be improved with a larger N.

74 Concept Drift Detection via Accumulating Regional Density Discrepancies

4.4.2.2 A tailored significant test

Alternatively, if a given test statistics fit a known distribution, then the decision

regions (to accept/reject the null hypothesis) can be obtained explicitly from its

distribution function. In this research, according to Definition 4.15, it can be proved

that the dnnps of two i.i.d. sample sets fits a normal distribution. As a result, max

likelihood can be applied to estimate the mean and variance of its distribution and

determine the critical region with less Monte Carlo error.

Lemma 1. ∀A and B ⊆ D, if pdi ∈ P(A)∪P(B), then the random variable IMnnps
A

(pdi)

∼ N(μi,σ2
i) if the following conditions can be satisfied:

1. |D| → ∞;

2. there is no elements dk0
∈D, such that IMnnps

dk0

(pdi)� IMnnps
dk

(pdi),k= 1, . . . ,k0−
1,k0 +1, . . . , |D|, where A∪B = D and A∩B = /0.

Proof. Because IMnnps
dk

(pdi) is unchangeable no matter what A is selected (k =

1. . . . , |D|), IMnnps
A

(pdi) = ∑dk∈A IMnnps
dk

(pdi) is only related to elements in A. Con-

sidering a random variable Ik, expressed as follows,

Ik =

⎧⎪⎪⎨
⎪⎪⎩

IMnnps
dk

(pdi), if dk ∈ A

0, otherwise.

,k = 1, . . . , |D|

so we have IMnnps
A

(pdi) = ∑|D|
k=1 Ik and all of Ik(k = 1, . . . , |D|) are independent. For

each Ik we can express its distribution as follows:

Ik IMnnps
dk

(pdi) 0

p pdi∈A pdi∈B

4.4 Nearest Neighbor-based Density Variation Identification 75

where pdi∈A is the probability that data instance di belongs to sample set A. Because

A∪B=D and A∩B= /0, we have pdi∈A+ pdi∈B = 1. Thus, E(Ik) = IMnnps
dk

(pdi) · pdi∈A

and Var(ik) = I2
Mnnps

dk
(pdi) · [pdi∈A · (1− pdi∈A)

2 + pdi∈B · p2
di∈A]. Because Condition

2 can be satisfied and L2 norm is grater than L3 norm when |D| → ∞, meaning that

lim
|D|→∞

∑|D|
k=1 E

((
Ik −E(Ik)

)3
)

s3
|D|

= 0, s2
|D| =

|D|
∑
k=1

Var(Ik)

based on Lyapunov central limit theorems, when |D| → ∞, we have

1

s|D|

|D|
∑
k=1

(Ik −E(Ik))→ N(0,1)

so, IMnnps
A

(pdi) = ∑|D|
k=1 Ik ∼ N(μi,σ2

i).

Theorem 4.3. ∀A and B ⊆ D, if pdi ∈ P(A)∪ P(B), then the random variable

(IMnnps
A (pdi)

− IMnnps
B (pdi)

)∼ N(μi,σ2
i) if following conditions can be satisfied:

1. |D| → ∞;

2. there is no elements dk0
∈D, such that IMnnps

dk0

(pdi)� IMnnps
dk

(pdi),k= 1, . . . ,k0−
1,k0 +1, . . . , |D|, where A∪B = D and A∩B = /0.

Proof. Based on Lemma 1, IMnnps
A

(pdi) and IMnnps
B

(pdi) satisfy normal distributions,

therefore (IMnnps
A

(pdi)− IMnnps
B

(pdi))∼ N(μi,σ2
i).

Theorem 4.4. ∀A and B ⊆ D, if pdi ∈ P(A)∪P(B), then dnnps(Mnnps
A ,Mnnps

B) ∼
N(μ,σ2) if following conditions can be satisfied

1. |D| → ∞;

76 Concept Drift Detection via Accumulating Regional Density Discrepancies

2. there is no elements dk0
∈D, such that IMnnps

dk0

(pdi)� IMnnps
dk

(pdi),k= 1, . . . ,k0−
1,k0 +1, . . . , |D|, where A∪B = D and A∩B = /0.

Proof. Based on the definition of dnnps(Mnnps
A ,Mnnps

B), Definition 4.15, and Theo-

rem 4.3, we know dnnps(Mnnps
A ,Mnnps

B) is the sum of |D| independent half-normal

distributions. Thus, we need to verfy whether the sum half-normal distributions

can satisfy the Lyapunov condition. We denote σi as the parameter of the ith half-

normal distribution and ri = |IMnnps
A

(pdi)− IMnnps
B

(pdi)−μi| ∼ Hal f N(0,σ2
i) as the

ith random variable. We have

E(r3
i) =

+∞∫
0

√
2

σi
√

π
· e−

r2
i

2σ2
i · r3

i dri =

√
2

σi
√

π

+∞∫
0

e
− r2

i
2σ2

i · r3
i dri

using integration by parts, we arrive at the following equations

E(r3
i)=

σi
√

2√
π

+∞∫
0

e
− r2

i
2σ2

i ·
(
− r1

i

σ2
i

)
·(−r2

i) dri =
σi
√

2√
π

(
e
− r2

i
2σ2

i

∣∣∣∣∣
+∞

0

+2

+∞∫
0

e
− r2

i
2σ2

i ·ri dri

)

thus,

E(r3
i) =

σi2
√

2√
π

(−σ2
i) · e

− r2
i

2σ2
i

∣∣∣∣∣
+∞

0

=
2
√

2√
π

σ3
i

Because L2 norm is greater than L3 norma when |D| → ∞,

lim
|D|→∞

∑|D|
i=1 E(r3

i)

s3
|D|

= 0, s2
|D| =

|D|
∑
i=1

σ2
i

Hence ∑|D|
i=1 ri satisfies the Lyapunov condition, meaning dnnps(Mnnps

A ,Mnnps
B) ∼

N(μ,σ2).

4.4 Nearest Neighbor-based Density Variation Identification 77

4.4.3 Implementation of NN-DVI for learning under concept drift

This section explains the implementation of NN-DVI from the computer logic per-

spective. The overall stream learning algorithm is given in Algorithm 4.1 and

illustrates how NN-DVI is integrated with online learning models. Then, the imple-

mentation of the NN-DVI and the calculation of dnnps are given in Algorithm 4.2

and Algorithm 4.3, respectively.

The proposed algorithm considers data stream learning as two scenarios. One

is concept drift in which a drift adaptation process has to be initialized to correct

the entire system. The other is static online learning which requires no intervention

from an extra process. In the first scenario, the proposed algorithm applies a sliding

windowing strategy to detect concept drift. The sliding window is initialized with

training data or the first wmin elements in the data stream, where wmin is an input

parameter used to decide the minimum drift detection window size. This process is

implemented in Algorithm 4.1, lines 5-13, where the win f ix is the fixed time window

while winslide is the sliding time window. If a concept drift is detected, the current

time window, namely winslide will become the representation of current concept, and

the training buffer (bu f ftrain) will be the rest, as shown in lines 14-17. In contrast,

lines 18-23 are the implementation of the second scenario. If no concept drift is

detected, the newly arrived data will be kept in the training buffer. Once the training

buffer has reached the maximum allowed buffer size, which is an input parameter

denoted as wmax, the oldest training instance will be removed.

According to Theorem 4.4, the core idea of nndviDri f tDetection is to estimate

the mean (μ) and variance (σ2) of dnnps of the normal distribution, then use the

cumulative distribution function to compute the drift threshold θdri f t with a certain

78 Concept Drift Detection via Accumulating Regional Density Discrepancies

Algorithm 4.1: Stream Learning with NN-DVI

input : training data, Dtrain
data stream, D = {d0, . . . ,dn}
min drift detection window size, wmin (default wmin = 100)

drift significance level, α (default α = 0.01)

base learner, L (default L is set as Naive Bayes Classifier)

output :classification results Ŷ = {ŷ0, . . . , ŷn}
1 Initial win f ix = Dtrain, winslide = null, bu f ftrain = Dtrain;

2 Initial buildLearner(L, bu f ftrain);

3 while not end of stream, dt ∈ D do
4 Ŷ = Ŷ ∪{classify(L, dt)};

5 if size(win f ix < winmin) then
6 insert dt at the end of win f ix;

7 add dt into bu f ftrain;

8 else
9 if winslide = null then

10 winslide = win f ix;

11 end
12 insert dt at the end of winslide;

13 remove the first element of winslide;

14 if nndviDri f tDetection(win f ix,winslide) is true then
15 win f ix = winslide;

16 bu f ftrain = win f ix;

17 winslide = null;
18 else
19 add dt into bu f ftrain;

20 if size(bu f ftrain > wmax) then
21 remove the first size(bu f ftrain)−wmax elements form

bu f ftrain;

22 end
23 end
24 end
25 updateLearner(L, bu f ftrain);

26 end
27 return Ŷ

4.4 Nearest Neighbor-based Density Variation Identification 79

Algorithm 4.2: Nearest Neighbor based Density Variation Identification NN-

DVI (nndviDri f tDetection)

input : two data sample sets S1 and S2

distance function, (default dist(di,d j) is set as Euclidean distance)

k value for k-nearest neighbor, (default k = 30, an optimization of k
has been discussed in Section 4.3.2)

sampling times, (default s = 500)

drift significant level, (default α = 0.01)

output :drift detection results {True | False}
1 merge sample sets, D = S1 ∪S2, and save the indices of S1,S2 as VS1

,VS2
;

2 constructing adjacent matrix, Mad j
D = nearestNeighbors(dist(di,d j),k,D);

3 constructing particle matrix, Pnnps
D = Mad j

D + I|D|×|D|;
4 constructing NNPS matrix Mnnps

D by normalizing Pnnps
D according to instances

weights;

5 compute actual NNPS distance dact = distancennps(Mnnps
D ,VS1

,VS2
);

6 for i = 1 : s do
7 V ′

S1
,V ′

S2
= shu f f le(VS1

,VS2
);

8 compute shuffled NNPS distance dshu f f le
i = distancennps(Mnnps

D ,V ′
S1
,V ′

S2
);

9 end
10 estimate the distribution of dshu f f le ∼ N(μ,σ2);

11 compute the drift threshold θdri f t according to N(μ,σ2) with significant level

α;

12 if dact > θdri f t then
13 return True;

14 end
15 return False;

80 Concept Drift Detection via Accumulating Regional Density Discrepancies

Algorithm 4.3: NNPS distance measurement (distancennps)

input :NNPS matrix of samples D = S1 ∪S2, denoted as Mnnps
D

indices vectors of sample sets S1 S2, denoted as VS1
,VS2

output :dnnps

1 Initial initial dnnps = 0;

2 Mnnps
S1

=VS1
·Mnnps

D ;

3 Mnnps
S2

=VS2
·Mnnps

D ;

4 for di ∈ |D| do
5 dnnps = dnnps + |IMnnps

S1

(pdi)− IMnnps
S2

(pdi)|;
6 end
7 return dnnps = dnnps/|P(S1)∪P(S2)|

confidence level, namely the significant level α . Algorithm 4.2 lines 1-4 are the

construction of NNPS, where I|D|×|D| is a |D| by |D| Identity Matrix. Line 5 computes

the actual distance between sample sets S1 and S2. From line 6 to line 9, S1 and S2

are shuffled to create two new sample sets. The shuffling process will ensure the new

sample sets are i.i.d. Finally, in lines 10 to 12, the actual NNPS distance is compared

with the drift threshold and a determination is made if the observed discrepancy is

statistically significant.

Algorithm 4.3 is the pseudo-code of Definition 4.15. Lines 2 and 3 transform the

NNPS matrix to sample sets presented by normalized multiset. Then the discrepan-

cies are accumulated as shown in Line 4-6.

4.5 Experiments and Evaluation

The evaluation of NN-DVI for concept drift detection consists of four sections and

twelve experiments.

4.5 Experiments and Evaluation 81

Section 4.5.1 Evaluating the effectiveness of dnnps. To achieve this goal, three

synthetic drifting data streams are generated and used to evaluate the performance

of dnnps compared with the test statistics of two-sample Kolmogorov-Smirnov test

(KS).

1. Experiment 4.1: Sudden drift streams by varying the data mean

2. Experiment 4.2: Gradual drift streams by varying the data variance

3. Experiment 4.3: Regional drift streams by varying the regional data mean

Section 4.5.2 Comparing NN-DVI with other distribution-oriented drift de-

tection algorithms. To evaluate the performance of NN-DVI, it has been compared

with kdqTree Dasu et al. (2006) and CM Lu et al. (2014). Since it is important to

know the drift severity in advance, 10 synthetic datasets with different predefined

drift margins are generated.

1. Experiment 4.4: Drift streams with normal distributions

2. Experiment 4.5: Drift streams with Poisson distributions

3. Experiment 4.6: Drift streams with higher dimensional distributions

Section 4.5.3 Evaluation of NN-DVI in terms of real-world datasets. NN-

DVI is applied on four real-world applications consisting of five datasets and is

compared with the results of nine state-of-the-art concept drift adaptation algorithms.

The selected algorithms include two distribution-based, four learner output-based

drift detection algorithms, one ensemble-based drift adaptation algorithm, one de-

cision tree-based drift adaptation algorithm, and one drift adaptation algorithm

considered past concepts.

82 Concept Drift Detection via Accumulating Regional Density Discrepancies

1. Experiment 4.7: Electricity price prediction Frias-Blanco et al. (2015); Losing

et al. (2016)

2. Experiment 4.8: Weather prediction Elwell and Polikar (2011); Losing et al.

(2016); Lu et al. (2016)

3. Experiment 4.9: Spam filtering with concept drift Frias-Blanco et al. (2015);

Katakis et al. (2009)

4. Experiment 4.10: UCI Twenty Newsgroups datasets Frias-Blanco et al. (2015);

Katakis et al. (2008)

Section 4.5.4 Evaluating the performance of NN-DVI with different param-

eters This section selected different parameters within NN-DVI and evaluated their

sensitivity.

1. Experiment 4.11: Evaluating the performance of NN-DVI with different

window sizes

2. Experiment 4.12: Evaluating the performance of NN-DVI with different

distance functions

4.5.1 Evaluating the effectiveness of dnnps

This sub-section tests and verifies whether the proposed dnnps can reflect the dissimi-

larity between sample sets. The experiments aim to: 1) establish how dnnps varies

according to changes between two distributions; 2) investigate the impact of the

selection of k on dnnps; and 3) evaluate the sensitivity of dnnps on regional drifts.

We ran three experiments with generated artificial datasets following 1D normal

4.5 Experiments and Evaluation 83

distributions and compared the results with the test statistics of the two-sample K-S

test. All the results were calculated as the mean of 100 independent tests.

Experiment 4.1. (Varying the mean μ) This experiment compared the test statistics

acquired by dnnps with different k values. The experimental setting were as follows:

a series of instances was generated from a synthetic data stream with 22 timestamps

from 11 consecutive 1-D normal distributed data with a batch size of 400 at each

timestamp and with 22×400= 8800 data instances in total. Each normal distribution
had a fixed standard deviation of σ = 0.2 and a moving mean of μ = 0.2+0.06×(i−
1), where i denotes the ith distribution. As a result, when time step t = 2× i−1, two
samples that were both drawn from the ith distribution were compared. When time

step t = 2× i, two samples drawn from the ith distribution and (i+1)th distribution

were compared. The two-sample K-S test were run on 100 synthetic datasets with

the same setup, then plotted the average test statistics in Figure 4.7. The results

demonstrate how the two-sample K-S test statistics change as the distributions vary.

Because the difference only depends on the mean values, it shows a similar height

for all peaks and valleys in each series. Thus, it should be able to construct a similar

graph for any valid distance measurement.

As outlined in Section 4.3.2, the following k values were chosen for the dis-

tance measurement. The selections of k were: 39 (independence = 0.46), 100

(independence = 0.45) and 400 (independence = 0.3), as shown in Figure 4.8. The

independence value reached its max at k = 39, while k = 100 and k = 400 are found

in the independence decreasing stage, which means that the sensitivity of the dis-

tance is decreasing (Figure 4.8). The corresponding test statistics are outlined in

Figure 4.9.

84 Concept Drift Detection via Accumulating Regional Density Discrepancies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
timestep

0

0.05

0.1

0.15

0.2

te
st

 s
ta

tis
tic

Two Sample K-S Test

Figure 4.7 The test statistics of two-sample K-S test between normal distributed data with
varying μ . We compared two i.i.d. sample sets for each odd time step, and two sample sets
with a drifted mean (μ +0.06) for each even time step. All the test statistics were computed
based on the average of 100 runs.

0 100 200 300 400 500 600 700 800
Selection of k

0

0.2

0.4

0.6

0.8

1

in
de

pe
nd

en
ce

k=39 k=100

k=400

Figure 4.8 The relationship between independence and the selection of k

4.5 Experiments and Evaluation 85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
timestep

0

0.05

0.1

0.15

0.2

0.25
te

st
 s

ta
tis

tic

Two Sample K-S Test dnnps k=39 dnnps k=100 dnnps k=400

Figure 4.9 The dnnps between normal distributed data (400 instances each time step) with

varying μ . We compared two i.i.d. sample sets for each odd timestep and two sample sets
with a drifted mean (μ + 0.06) for each even timestep. All the statistics were computed
based on the average of 100 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
timestep

0.1

0.15

0.2

0.25

te
st

 s
ta

tis
tic

Two Sample K-S Test dnnps k=17

Figure 4.10 The dnnps between normal distributed data (50 instances each time step) with

varying μ .

The dnnps has the same pattern as the two-sample K-S test. The test statistic

values are smaller for larger k values (shown in blue). This is because larger k

values have a larger number of instance particles. Therefore, the ratio between the

intersection set and union set will decrease. Even though the test statistic means are

different, this will not affect the discrepancy measurement as long as the peak-valley

difference between the data structures is correctly reflected.

86 Concept Drift Detection via Accumulating Regional Density Discrepancies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
timestep

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

te
st

 s
ta

tis
tic

Two Sample K-S Test

Figure 4.11 The test statistics for the two-sample K-S test between normal distributed data
with a varying σ . We compared two i.i.d. sample sets for each odd timestep and two sample
sets with a drifted standard deviation (σ +0.02) for each even timestep. All the statistics
were computed based on the average of 100 runs.

By the same token, the batch size were reduced to 50 at each time step and

selected the k with the highest independence value. The corresponding test statistics

are plotted in Figure 4.10. The red lines with red triangles are the dnnps with k = 17,

the black lines with black dots represents the two-sample K-S test. This experiment

illustrates that dnnps can perform well with an extremely small sample size.

Experiment 4.2. (Varying the standard deviation σ). This experiment fixed the

mean μ = 0.5, but varied the standard deviation σ = 0.1+0.02× (i−1) for the ith

distribution, i = 1,2, . . . ,11. Again, when time step t = 2× i−1, two samples drawn
from the ith distribution were compared; when time step t = 2× i, two samples drawn

from the ith and (i+1)th distribution were compared. The batch size was set as 1000.

The two-sample K-S test statistics are shown in Figure 4.11. In this figure,

the valley values are similar, while the peak values gradually decrease. Since the

valley values are determined by two identical distributions, they are steady and

smooth. The peak values, by contrast, are calculated by two distributions with an

4.5 Experiments and Evaluation 87

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
timestep

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
te

st
 s

ta
tis

tic

Two Sample K-S Test dnnps k=50 dnnps k=100 dnnps k=400

Figure 4.12 The dnnps between normally distributed data that varies σ .

increasing σ . As a result, the difference between these distributions will shrink as σ

increases. Intuitively, this is because the distribution becomes less concentrated, thus

the relative test statistic is smaller. The test statistics for dnnps are shown in Figure

4.12, where it can be seen that dnnps has the same pattern as the two-sample K-S test,

indicating that dnnps is capable of precisely representing differences in distribution.

Experiment 4.3. (Varying the regional mean μ j). This experiment compared the

distances between two data samples that comprise 30 independent 1-D normal

distributed data groups. In the first data group, the normal distribution was set as

μ = 0.2, σ = 0.2. The normal distribution was set as μ = 0.2+ j×(20×σ), σ = 0.2

for j = 2,3, . . . ,30 for the remaining 29 data groups. A (20×σ) gap between each

group was intentionally kept to ensure that a change occurring in one group would

not affect the others. Each group contained 100 data instances, equating to 3000

instances for each time step. In the first time step, two data sample sets without any

drift were compared . Later, the mean of each data group was manually changed by

μ j +0.06 successively for each time step to create 30 minor regional drifts.

88 Concept Drift Detection via Accumulating Regional Density Discrepancies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
timestep

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

te
st

 s
ta

tis
tic

Two Sample K-S Test dnnps k=35

pValue = 0.9999

pValue = 0.024pValue = 0.232

Figure 4.13 1-D normal distribution with regional drift detection. At each timestep, the
mean (μ +0.06) of a group of data instances was changed, and the dnnps between the current

timestep and last timestep was plotted. The proposed dnnps reported a significant difference

at after 19 groups drifted, whereas the K-S test cannot detect such a difference.

Figure 4.13 shows the test statistics for the two-sample K-S test and the dnnps

at different time steps. At t = 1, 30 data groups with another 30 groups that were

generated by the same distribution were compared . At t = 2, the algorithm compared

30 data groups with another 29+ 1 groups where the mean μ1 of group 1 was

changed to μ1+ 0.06, and so on until t = 31. It can clearly be seen that dnnps

increased after each local drift occurred. In fact, the K-S test statistics also slightly

increased. However, the trend cannot be observed in this figure as the value of the

test statistic is too small. In addition, the algorithm also applied the corresponding

significance test to compare the test statistics and examine whether the drifts were

statistically significant. The p-value of the two-sample K-S test was above 95% the

entire time, while the p-value of dnnps dropped below 5% after time step 19, which

means that dnnps can detect simulated drifts after 19/30 local drifts. This experiment

demonstrates that the proposed dnnps is sensitive to regional drifts.

4.5 Experiments and Evaluation 89

4.5.2 Evaluating the NN-DVI drift detection accuracy

In the above experiment, it has shown how dnnps varies as the underlying distribution

changes. To determine whether a given measurement is a statistically significant drift,

the ASL as described in Section 4.4.2 was computed. Given a desired significance

level α , the system would say there is a concept drift when the ASL< α . In the

following experiments, NN-DVI was compared with Dasu et al. (2006) and Lu et al.

(2014) in terms of drift detection accuracy on ten synthetic data streams. The reason

these two algorithms were chosen for comparison is that all three methods, including

NN-DVI, detect concept drift based on the estimated data distribution without holding

any assumptions about those distributions. Additionally, one of the most popular

two-sample tests for multivariate data as a baseline – Maximum Mean Discrepancy

(MMD) Gretton et al. (2012) was also compared. NN-DVI(permutation) denotes

the use of a permutation test to estimate the ASL of NN-DVI, and NN-DVI(normal)

denotes the use of the tailored significance test that has been proven following normal

distribution to calculate the ASL of NN-DVI.

For fair comparison, the same experimental configurations and evaluation criteria

were used as introduced in Dasu et al. (2006) and Lu et al. (2014). The evaluation

criteria are: detected, late, f alse, and missed. A concept exists for a period of time

[t +1, t + z], where z is the length of the concept. In this experiment, the distribution

parameters were updated at t + 1 and t + z+ 1, that is, a new concept starts from

t + 1 and ends at t + z. Each time step involves three processes: three processes:

updating distribution parameters if new concept starts, generating data, and detecting

drift. Detected indicates the number of times the drift detection algorithm reports a

drift at t +1. Late indicates the number of times a drift is reported at t +2 or t +3.

90 Concept Drift Detection via Accumulating Regional Density Discrepancies

False accumulates the number of false alarms that multiple drifts are reported in

[t +1, t + z]. A missed detection is counted if no drift is reported within [t +1, t +3].

A detected drift within [t + 4, t + z] is marked as missed because such a detection

is considered to be too late to be useful Lu et al. (2014). Dasu et al.’s algorithm is

denoted as KL (Kullback-Leibler distance) and Lu et al.’s work is denoted as CM

(competence model). With regard to the data source, the same synthetic datasets

introduced by Dasu et al. (2006) and adopted by Lu et al. (2014) were implemented.

5 million data instances for each data stream were generated, and for every 50,000

instances, the parameters of the corresponding distribution were varied randomly

within a certain interval. These variations produced 99 controllable drifts for each

data stream. For ease of comparison, all the parameters were kept the same for both

the bootstrapping test and the permutation test, including the desired significance

level of α = 1%, and the size of bootstrapping and permutation N = 500. KL and

CM’s parameters were set as per their papers. Euclidean distance is used as the

distance function in this section as this is the distance measure used in Dasu et al.

(2006); Lu et al. (2014). Because the permutation test does not hold any assumptions

and can be applied to KL without modification, KL with a permutation test was

also included for comparison. To avoid any bias in NN-DVI caused by parameter

selection, we first conducted an experiment with a k-value that was chosen based

on the average number of instances within the same partitioning size as KL and

CM. Then, we ran our algorithm with a dynamic k-value that was selected based

on max
k

{independence} and applied the normal distribution estimation described in
Section 4.4.2.2 as the significance test.

4.5 Experiments and Evaluation 91

Experiment 4.4. (Normal distributions). In this experiment, KL, CM, and NN-DVI

were compared using five bivariate normal distributed data streams, denoted as

M(�) and C(�) streams. Drift severity was controlled by a predefined drift margin

�. In the M(�) streams, the features x1 and x2 followed an independent normal

distribution, with the means μ1 and μ2 moving within [0.2,0.8]. For every 50,000

instances, μ1 and μ2 were randomly updated with a step size [−�,−�/2∪ [�/2,�].

In theC(�) streams, the two features have a moving correlation ρ , which started at

0 and was then randomly walked within [−1,1], with a step size chosen randomly
from [−�,−�/2]∪ [�/2,�]. To investigate the impact of the window size on drift

detection accuracy, the experiment was conducted on theC(0.15) stream with two

different window sizes. All the results are summarized in Tables 4.1 and 4.2.

The results demonstrate that our method outperformed the others in most cases.

In terms of the false and missed rates, only bootstrapped KL on theC(0.2) stream

was slightly better than ours. With regard to the other streams, our results were

much better. When considering drift detection based on permutation tests, no other

tested methods can surpass ours. The results show that the excellent performance

of KL with bootstrap is most likely attributed to the bootstrap test rather than to

their drift detection model. Nevertheless, Dasu et al. Dasu et al. (2006) did not

give any explanation for their selection of the significance test, rather they only

suggest researchers investigate the pros and cons in other publications. It is also

noteworthy that all the detection algorithms achieved high detection rates onM(0.05)

and C(0.2). According to the data generation settings, M(0.05) and C(0.2) have

relatively large drift margins. This would make the drifts easier to detect, and the

drift detection results may be very similar as long as the drift margins exceed the

sensitivity thresholds of the tested algorithms. For example, in this experiment,

92
C
o
n
ce
p
t
D
ri
ft
D
et
ec
ti
o
n
v
ia
A
cc
u
m
u
la
ti
n
g
R
eg
io
n
al
D
en
si
ty
D
is
cr
ep
an
ci
es

Table 4.1 NN-DVI drift detection results on M(�) stream

Data Stream Drift Detection Method Parameters Window Size Detected Late False Missed

M(0.02) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 76 13 2 10

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 68 14 3 17

CM (permutation) dε : 0.05 10000 87 5 12 7

NN-DVI (permutation) k : 185 10000 90 8 9 1

NN-DVI normal) k : max{independence} 10000 91 6 6 2

MMD RBF kernel, σ = 0.23 10000 99 0 3 0

M(0.05) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 99 0 9 0

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 99 0 3 0

CM (permutation) dε : 0.05 10000 99 0 2 0

NN-DVI (permutation) k : 185 10000 99 0 5 0

NN-DVI (normal) k : max{independence} 10000 99 0 5 0

MMD RBF kernel, σ = 0.23 10000 99 0 3 0

4
.5
E
x
p
erim

en
ts
an
d
E
v
alu
atio

n
93

Table 4.2 NN-DVI drift detection results onC(�) stream

Data Stream Drift Detection Method Parameters Window Size Detected Late FALSE Missed

C (0.1) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 33 18 4 48

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 30 16 1 53

CM (permutation) dε : 0.05 10000 33 19 2 47

NN-DVI (permutation) k : 160 10000 41 19 0 39

NN-DVI (normal) k : max{independence} 10000 54 12 3 33

MMD RBF kernel, σ = 0.23 10000 34 19 1 46

C (0.15 KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 85 8 9 6

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 77 13 4 9

CM (permutation) dε : 0.05 10000 81 10 7 8

NN-DVI (permutation) k : 160 10000 87 10 7 2

NN-DVI (normal) k : max{independence} 10000 89 9 4 1

MMD RBF kernel, σ = 0.23 10000 81 13 3 5

C (0.15) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 5000 79 7 15 13

KL (permutation) δ : 2−10,τ : 100,γ : 5% 5000 63 14 6 22

CM (permutation) dε : 0.05 5000 55 21 14 23

NN-DVI (permutation) k : 80 5000 67 19 13 13

NN-DVI (normal) k : max{independence} 5000 70 19 5 10

MMD RBF kernel, σ = 0.23 5000 31 6 1 62

C (0.2) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 5000 96 2 11 1

KL (permutation) δ : 2−10,τ : 100,γ : 5% 5000 89 6 10 4

CM (permutation) dε : 0.05 5000 82 9 8 8

NN-DVI (permutation) k : 80 5000 93 3 13 3

NN-DVI (normal) k : max{independence} 5000 93 3 10 3

MMD RBF kernel, σ = 0.23 5000 44 5 2 50

94 Concept Drift Detection via Accumulating Regional Density Discrepancies

the drift margins for M(0.05) exceeded the sensitivity threshold of all the tested

algorithms. Therefore, all the results were very close (the missed rates were all zero,

and the f alse rates were all low). We infer that the C(0.2) reached a sensitivity

threshold of both KL with bootstrap and NN-DVI. Unlike the M(0.05) andC(0.2)

streams, the rest of the streams had smaller drift margins. The high detection rates

on those streams prove that NN-DVI is more sensitive to small concept drifts.

Experiment 4.5. (Poisson distributions). In P(�) streams, the two features follow

a Poisson distribution Poisson(500(1−ρ),500(1−ρ),500ρ), where ρ starts at 0.5

and then performs a random walk between 0 and 1 with step size�= 0.2,0.1. The

evaluation results are shown in Table 4.3.

Table 4.3 shows that KL using a bootstrap test suffers a manifest failure on

Poisson distributions. On the one hand, KL using a permutation test detected most

drifts correctly on P(0.2). It is evident that the P(0.2) drift margin was larger than

the KL sensitivity threshold. On the other hand, KL suffered high f alse rate on

P(0.2) when combined with the bootstrap test. This paradox indicates how a null

hypothesis test could affect the sensitivity of a drift detection algorithm, and the

bootstrap test may not be suitable for the KL algorithm in all circumstances. In

general, according to the results in Table 4.3, NN-DVI clearly outperformed the

others.

Experiment 4.6. (Higher dimensional distributions). To test the scalability and

performance of NN-DVI in high-dimension space, the C(0.2) stream is extended to

d-4, d-6 and d-10 multivariate normal distributed streams as per Dasu et al. (2006);

Lu et al. (2014). Only the first two dimensions had a correlation value equal to ρ ; the

remaining (d-2) dimensions were configured with correlation values equal to zero.

4
.5
E
x
p
erim

en
ts
an
d
E
v
alu
atio

n
95

Table 4.3 NN-DVI drift detection results on P(�) stream

Data Stream Drift Detection Method Parameters Window Size Detected Late False Missed

P(0.1) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 64 7 1 28

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 66 8 4 25

CM (permutation) dε : 10 10000 63 8 1 28

NN-DVI (permutation) k : 545 10000 81 7 7 11

NN-DVI (normal) k : max{independence} 10000 81 9 5 9

MMD RBF kernel, σ = 0.23 10000 61 8 2 30

P(0.2) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 95 1 11 3

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 98 0 1 1

CM (permutation) dε : 10 10000 99 0 5 0

NN-DVI (permutation) k : 545 10000 99 0 6 0

NN-DVI (normal) k : max{independence} 10000 99 0 6 0

MMD RBF kernel, σ = 0.23 10000 98 1 10 0

96 Concept Drift Detection via Accumulating Regional Density Discrepancies

Additionally, the standard deviation of all the added dimensions was configured to

be the same as theC(�) streams. These settings were managed to retain the same

marginal distribution of all dimensions, so that the overall distance between the

instances contributed by each dimension was equally important Dasu et al. (2006);

Lu et al. (2014). Thus, it was easier to calculate the distance between instances, and

the drift detection results were not affected by the selection of the distance functions

used to compare the data instances.

The experimental results for different dimensions are listed in Table 4.4. As

expected, as more stationary dimensions were added, the missed rates of all detection

algorithms increased, implying that such a change makes drift detection more difficult.

However, NN-DVI preserves much of its power as the number of dimension increases.

It is very likely that this can be attributed to the k-nearest neighbor-based model

defined in Section 4.3.2.

To summarize, we calculated the average detected, late, f alse and missed rates

of all synthetic streams, as shown in Table 4.5. The results show that the proposed

NN-DVI makes a notable improvement to drift detection in various situations. Al-

though the f alse rate of NN-DVI was slightly higher than the existing methods

with the permutation test, the missed rate was almost halved. The performance of

NN-DVI with a normal distribution as the significance test is even better. It shows a

higher detected rate with a lower f alse rate, which indicates the tailored significance

test introduced in Section 4.4.2.2 is more reliable. In addition, the complexity of

the model construction can be reduced to O(knlog(n)) with a kd-Tree data structure,

while CM is O(n2log(n)) Lu et al. (2014), KL is O(dnlog(1/δ)) where the d is the

4
.5
E
x
p
erim

en
ts
an
d
E
v
alu
atio

n
97

Table 4.4 NN-DVI drift detection results on HDC(�) streams

Data Stream Drift Detection Method Parameters Window Size Detected Late False Missed

4D C(0.2) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 91 5 5 3

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 87 8 5 4

CM (permutation) dε : 0.15 10000 89 3 8 7

NN-DVI (permutation) k : 95 10000 94 5 5 0

NN-DVI (normal) k : max{independence} 10000 95 4 6 0

MMD RBF kernel, σ = 0.23 10000 83 10 2 6

6D C(0.2) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 84 5 6 10

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 65 11 3 23

CM (permutation) dε : 0.3 10000 91 4 7 4

NN-DVI (permutation) k : 200 10000 97 2 6 0

NN-DVI (normal) k : max{independence} 10000 95 4 6 0

MMD RBF kernel, σ = 0.23 10000 69 12 7 18

10D C(0.2) KL (bootstrap) δ : 2−10,τ : 100,γ : 5% 10000 81 7 4 11

KL (permutation) δ : 2−10,τ : 100,γ : 5% 10000 68 13 5 18

CM (permutation) dε : 0.5 10000 78 10 4 11

NN-DVI (permutation) k : 220 10000 89 5 3 5

NN-DVI (normal) k : max{independence} 10000 88 6 5 5

MMD RBF kernel, σ = 0.23 10000 26 18 0 55

98 Concept Drift Detection via Accumulating Regional Density Discrepancies

Table 4.5 NN-DVI average drift detection results

Drift Detection Method Detected Late FALSE Missed

KL (bootstrap) 80.27 6.64 7 12.09

KL (permutation) 73.64 9.36 4.09 16

CM (permutation) 77.91 8.09 6.36 13

NN-DVI (permutation) 85.18 7.09 6.73 6.73

NN-DVI (normal) 86.73 6.55 5.82 5.73
MMD 65.91 8.36 3.09 24.73

number of data dimensions and δ is the given parameter of KL Dasu et al. (2006),

and MMD is O(n2) Gretton et al. (2012).

4.5.3 Evaluating the NN-DVI on real-world datasets

To demonstrate how our drift detection algorithm improves the performance of

learning models in real-world scenarios, we again compared our detection method

with KL Dasu et al. (2006) and CM Lu et al. (2014)), this time, on five benchmark

real-world concept drift datasets. These datasets are the top referenced benchmark

datasets and include both low- and high-dimensionality data. Additionally, we also

compared NN-DVI with four state-of-the-art drift adaptation algorithms that address

concept drift using different strategies. These algorithms are: SAMkNN Losing

et al. (2016), which keeps past concepts in memory and considers all buffered con-

cepts to make a final prediction; AUE2 Brzeziński and Stefanowski (2014), which

uses ensemble methods to handle concept drift; HDDM family tests (HDDM-A,

HDDM-W) Frias-Blanco et al. (2015), which detects drift by monitoring learner

outputs; and ADWIN-Volatility (ADW-Vol) Huang et al. (2015) which first intro-

duced volatility shift into concept drift detection. Lastly, we selected HAT Bifet and

Gavaldà (2009) and ADWIN Bifet and Gavaldà (2007) as baselines. The algorithms

4.5 Experiments and Evaluation 99

were implemented using the authors’ recommended settings. The selection of the

base learners for the HDDM family tests, KL, CM, and NN-DVI is independent

of the drift detection algorithm. Therefore, we implemented these algorithms with

Naïve Bayes, Hoeffding Tree, and IBk classifiers. Because the SAMkNN is only

compatible with IBk, and AUE2 is only compatible with Hoeffding Tree, these two

algorithms were only compared with their own base learners. All algorithms were

implemented based on the MOA platform Bifet et al. (2010a), which is written in

Java. The parameters for IBk were set as k = 5, and instances weighting method was

uni f ormly weighted. All the distance functions used in this section are Euclidean.

The Heoffding Tree parameters were set as recommended by AUE2. Table 4.6

summarizes the classification accuracy and gives the overall rank of the different

algorithms. The average processing time in seconds and the average memory usage

(RAM-Hour in Gigabyte) are also listed since computational resources management

is an important issue in data stream learning Bifet et al. (2010c).

Experiment 4.7. (Electricity Price Prediction) The electricity dataset contains

45,312 instances, collected every 30 minutes from the Australian New South Wales

Electricity Market between 7 May 1996 and 5 Dec 1998. In this market, prices are

not fixed but are affected by supply and demand. This dataset contains eight features

and two classes (up, down) and has been widely used for concept drift adaptation

evaluation Frias-Blanco et al. (2015); Losing et al. (2016). The dataset is available

from MOA’s website Bifet et al. (2010a)

Experiment 4.8. (Spam Filtering)This dataset is a collection of 9324 email mes-

sages derived from the Spam Assassin collection, available online1. The original

1http://spamassassin.apache.org/

100 Concept Drift Detection via Accumulating Regional Density Discrepancies

dataset contains 39,916 features and 9324 emails (around 20% spam emails and 80%

legitimate emails). It is commonly considered to be a typical gradual drift dataset

Katakis et al. (2009). Katakis Katakis et al. (2009) retrieved 500 attributes, using the

Chi-square feature selection approach.

Experiment 4.9. (Weather Prediction) The Nebraska weather prediction dataset was

compiled by the US National Oceanic and Atmospheric Administration. It contains

8 features and 18,159 instances with 31% positive (rain) classes, and 69% negative

(no-rain) classes. This dataset is summarized in Elwell and Polikar (2011) and is

available online2

Experiment 4.10. (Usenet1 and Usenet2) The Usenet datasets were first introduced

by Katakis et al. (2008) and were used to evaluate HDDM family algorithms Frias-

Blanco et al. (2015). They are two subsets of the Twenty Newsgroups collection,

which is owned by the UCI Machine Learning Repository. Each dataset consists

of 1500 instances and 99 features. In these datasets, each instance is a message

from different newsgroups that are sequentially presented to a user, who then labels

the messages as interesting or not interesting. These messages involve three topics:

medicine, space, and baseball. The user was simulated with a drifted interest every

300 messages. A more detailed explanation of these datasets can be found in Katakis

et al. (2008).

To better demonstrate the improvements NN-DVI can make in tackling real-

world problems, we used a ranking method to summarize its overall performance,

similar to Losing et al. (2016). The average rank shows that NN-DVI achieved the

2http://users.rowan.edu/ polikar/research/NSE

4.5 Experiments and Evaluation 101

best performance with the IBk classifier and had the best final score as an average of

all the base classifier ranks.

The analysis results of Table 4.6 can be summarized as follows:

• The performance of the base learners varied on different datasets. For ex-

ample, under the same drift adaptation algorithm, the IBk classifier always

outperformed the other classifiers on the Weather dataset, and it performed the

worst on the Usenet1 and Usenet2 datasets. In some situations, the selection

of base learners may be more important than the selection of drift detection

methods. This outcome inspired us to reconsider the learning strategy of

using the same base classifier settings after a drift. Instead, changing a base

learner or updating the base learner’s parameters may further improve overall

prediction accuracy.

• The proposed NN-DVI method with IBk, NB, and HTree had the best per-

formance in terms of accuracy. Considering the overall performance, it is

evident that the highlighted results of NN-DVI do not depend on the base

classifiers and that NN-DVI contributes to the learning process in a dynamic

environment.

• Regarding computational complexity, it can be seen that the distribution-

based drift detection algorithms (NN-DVI, CM, and KL) have very similar

computational costs, namely the Time and RAM-Hour, for all the tested

three-base learners. The reason is that these algorithms have to keep the

representative data instances in memory to detect the distribution changes.

This appears to be a common issue for distribution-based drift detection

methods. Nevertheless, they have shown no manifest disadvantages over other

10
2

C
o
n
ce
p
t
D
ri
ft
D
et
ec
ti
o
n
v
ia
A
cc
u
m
u
la
ti
n
g
R
eg
io
n
al
D
en
si
ty
D
is
cr
ep
an
ci
es

Table 4.6 NN-DVI Classification accuracy of real-world datasets. The rank of each algorithm is shown in brackets. The final score is the
average rank of that algorithm combined with different base learners. The time(s) and RAM-Hour (GB) are calculated based on the

average of the five datasets.

Algorithms Learner Elec Spam Weather Usenet1 Usenet2 AVG. Rank Score Time RAM-Hour

NB 84.10 (6) 92.03 (9) 72.50 (12) 68.93 (12) 77.13 (2) 8.2 (2) 190.6 2.85E-05

NN-DVI IBk 87.39 (2) 93.47 (2) 74.63 (7) 66.80 (17) 72.47 (7) 7.0 (1) 2.0 (1) 208.5 2.85E-05

HTree 82.85 (10) 92.06 (8) 71.68 (17) 70.27 (9) 76.73 (4) 9.6 (3) 195.2 2.85E-05

SAMkNN IBk 82.54 (14) 95.67 (1) 78.26 (1) 66.13 (19) 70.33 (17) 10.4 (5) 5.0 (2) 266.5 3.75E-02

NB 84.09 (7) 91.65 (14.5) 72.82 (11) 75.07 (2) 70.93 (16) 10.1 (4) 1.4 4.91E-08

HDDM-W IBk 82.47 (15) 92.93 (3) 75.04 (6) 69.67 (10) 67.93 (22) 11.2 (10) 6.7 (3) 249.9 2.07E-03

HTree 85.06 (4) 91.65 (14.5) 72.41 (13) 74.73 (3) 70.00 (18) 10.5 (6) 1.4 7.52E-08

NB 84.92 (5) 90.79 (20) 72.38 (14) 75.20 (1) 71.00 (14.5) 10.9 (8) 1.4 4.97E-08

HDDM-A IBk 82.10 (16) 92.00 (10) 76.13 (4) 69.33 (11) 68.00 (21) 12.4 (11.5) 9.5 (4) 132.2 1.05E-04

HTree 85.71 (3) 91.78 (13) 71.71 (16) 74.60 (4) 68.87 (19.5) 11.1 (9) 1.6 7.55E-08

NB 82.66 (12) 91.10 (19) 71.89 (15) 71.07 (7) 77.20 (1) 10.8 (7) 137.2 4.54E-04

CM IBk 78.98 (23) 89.34 (23) 73.71 (8) 67.47 (14) 71.33 (13) 16.2 (23) 14.7 (5) 133.3 4.54E-04

HTree 81.33 (20) 91.11 (18) 71.23 (20) 71.73 (5) 76.27 (5) 13.6 (14) 144.8 4.54E-04

NB 82.62 (13) 91.19 (16) 71.00 (22) 70.73 (8) 77.06 (3) 12.4 (11.5) 191.7 7.90E-05

KL IBk 78.95 (24) 89.37 (22) 73.68 (9) 67.27 (15) 71.00 (14.5) 16.9 (24) 16.8 (6) 186.7 7.91E-05

HTree 81.34 (19) 91.16 (17) 71.18 (21) 71.33 (6) 76.20 (6) 13.8 (15) 171.7 7.94E-05

NB 80.64 (22) 91.83 (12) 71.40 (18) 68.13 (13) 72.27 (8.5) 14.7 (21) 1.3 5.73E-08

ADW-Vol IBk 81.72 (18) 92.81 (4) 76.20 (2.5) 59.73 (23.5) 67.27 (23.5) 14.3 (17.5) 17.2 (7) 201.5 5.93E-05

HTree 82.84 (11) 92.59 (5) 71.28 (19) 66.67 (18) 72.00 (10.5) 12.7 (13) 1.5 9.28E-08

AUE2 HTree 87.74 (1) 84.29 (24) 75.24 (5) 63.47 (22) 68.87 (19.5) 14.3 (17.5) 17.5 (8) 4.4 5.37E-06

HAT HTree 83.39 (8) 90.69 (21) 73.51 (10) 63.93 (21) 71.87 (12) 14.4 (19) 19.0 (9) 2.0 7.92E-08

NB 81.03 (21) 91.90 (11) 70.31 (24) 67.00 (16) 72.27 (8.5) 16.1 (22) 1.4 5.04E-08

ADWIN IBk 81.76 (17) 92.46 (6) 76.20 (2.5) 59.73 (23.5) 67.27 (23.5) 14.5 (20) 19.3 (10) 200.7 5.63E-05

HTree 83.23 (9) 92.29 (7) 70.88 (23) 64.47 (20) 72.00 (10.5) 13.9 (16) 1.4 7.90E-08

4.5 Experiments and Evaluation 103

drift detection methods using IBk learner. Although error rate-based and

ensemble-based drift adaptation methods can handle concept drift in an online

manner, using IBk as the base learner may slow down their learning speeds.

4.5.4 Evaluating the stream learning with NN-DVI with differ-

ent parameters

Generally, the algorithm for stream learning with NN-DVI has six input parameters:

1) the minimum drift detection window size; 2) the base learner; 3) the distance

function for constructing NNPS; 4) the number of nearest neighbors for NNPS;

5) the sampling time to estimate the σ of dnnps; and 6) the drift significance level.

Parameter 2 is evaluated in Section 4.5.3; parameter 4 is discussed in Section 4.3.2;

parameter 5 is related to the Monte Carlo Error, which has been detailed in Section

5.2 of Lu et al. (2014); and parameter 6 is a drift sensitivity setting chosen by the

user and is highly dependent on system requirements. Therefore, in this section, we

focus on evaluating the impact of parameter 1, the minimum drift detection window

size, and parameter 3, the distance function for constructing NNPS. The rest of the

parameters are fixed at the default values.

Experiment 4.11. (Varying window size) As a critical parameter of time window-

based drift detection algorithms, the window size, or chuck size Shao et al. (2014)

controls the length of the most recent concept, namely the winslide in our algorithm.

If the window size is too small, the most recent concept may be incomplete and a

false alarm will be raised. If the window size is too large, multiple concepts may be

included in one window, which would lead to bad performance. To evaluate how

10
4

C
o
n
ce
p
t
D
ri
ft
D
et
ec
ti
o
n
v
ia
A
cc
u
m
u
la
ti
n
g
R
eg
io
n
al
D
en
si
ty
D
is
cr
ep
an
ci
es

50 100 150 200 250
window size

65

70

75

80

85

90

ac
cu

ra
cy

 (%
)

(a) Elec dataset

Euc Man Che Jac RBF

50 100 150 200 250
window size

75

80

85

90

95

ac
cu

ra
cy

 (%
)

(b) Spam dataset

Euc Man Che Jac RBF

50 100 150 200 250
window size

66

68

70

72

74

76

78

ac
cu

ra
cy

 (%
)

(c) Weather dataset

Euc Man Che Jac RBF

50 100 150 200 250
window size

50

55

60

65

70

ac
cu

ra
cy

 (%
)

(d) Usenet1 dataset

Euc Man Che Jac RBF

50 100 150 200 250
window size

66

67

68

69

70

71

72

73

ac
cu

ra
cy

 (%
)

(e) Usenet2 dataset

Euc Man Che Jac RBF

0 50 75 100 150 250
window size

65

70

75

80

85

ac
cu

ra
cy

 (%
)

(f) Average Accuracy of Five Datasets
Euc Man Che Jac RBF

Figure 4.14 Classification accuracy of real-world datasets with different window size and different distance functions. Each line
represents a distance function. A marker on a line represents the classification accuracy of NN-DVI with a given distance function and

on the window size. (f) shows the average accuracy of the tested five datasets for each distance function with different window size.

4.6 Summary 105

window size affects NN-DVI, we set winmin =50, 75, 100, 150, 200, and plotted the

classification accuracy of the five real-world datasets, as shown in Figure 4.14.

Experiment 4.12. (Changing distance functions) To evaluate how different distance

functions for constructing NNPS affects NN-DVI on real-world datasets, we choose

another four most commonly used distance functions to replace Euclidean distance,

namely: Manhattan distance, Chebyshev distance, Jaccard distance, and Radial basis

function kernel distance. The overall classification accuracy of these distances with

different window size is plotted in Figure 4.14.

It can be seen in Figure 4.14 that an increase in window size correlates with a

decrease in average accuracy, especially for dataset Usenet1. This could be caused by

mixed concepts in time windows. The Spam and Weather dataset accuracies slightly

increased in line with window size, leading us to query if NN-DVI inappropriately

overly triggered false alarms because of the small window size of these datasets.

Increasing the window size should reduce the overall rate of false alarms and, hence,

increase the accuracy. The Euclidean and Manhattan distance functions performed

very similarly and were the top two functions for the evaluated datasets, while

Jaccard’s distance consistently performed the worst. Therefore, we recommend

Euclidean or Manhattan distances for most situations.

4.6 Summary

This chapter analyzed distribution-based drift detection algorithms and summarized

the fundamental components of this type of drift detection method. Under the

guidance of the summarized framework (Figure 4.1), this chapter proposed a novel

106 Concept Drift Detection via Accumulating Regional Density Discrepancies

space partitioning schema, called NNPS, to improve the sensitivity of regional

drift detection. Accordingly, a novel distance dnnps and a nearest neighbor-based

density variation identification (NN-DVI) algorithm were proposed. This research

also defined a k-nearest neighbor-based data discretization controlling method to

represent granular information in data samples. This chapter theoretically proved

the proposed distance measurement dnnps, fits a normal distribution. According to

this finding, an efficient and reliable critical interval identification method has been

integrated. The experimental results show that NN-DVI can detect concept drift

accurately in synthetic datasets and is beneficial for solving real-world concept drift

problems.

The innovation and contributions of this chapter lie in its aim to discover the re-

lationships between distribution drifts and the changes in neighboring data instances.

A regional density-oriented similarity measurement is given that can effectively

detect concept drift caused by either regional or global distribution changes.

Chapter 5

Concept Drift Adaptation via

Reginal Density Synchronization

5.1 Introduction

At present, most concept drift detection and handling methods are focusing on time-

related drift, namely when a concept drift occurs. They consider that a drift could

occur suddenly at a time point, incrementally, or gradually in a time period Harel

et al. (2014). As a result, their solutions are searching the best time to split the old

and new concepts. The data received before the drift time point is considered as old

concept, while the data received after is considered as new concept. Accordingly, the

old concept data is discarded, while new concept data is used for updating or training

new learners, which can be seen as a time-oriented “one-cut” process. However, in

real-world scenarios, this assumption is not always true. A concept drift could only

occur within some specific regions. Such a “one-cut” process does not consider the

non-drifted regions in the old concept. Although some algorithms have introduced a

108 Concept Drift Adaptation via Reginal Density Synchronization

buffer system to keep tracking drifting concepts and can find the best drift time point

to identify concepts, they are not able to retrieve the location information related to

the drifted regions Liu et al. (2017b).

For example, in real-world scenarios, one drift could be a mixture of all three

types of drifts Sarnelle et al. (2015). How to handle the intermediate concepts in

a drift is a challenging problem. So far, most the state-of-the-art drift detection

algorithms only detect when the intermediate concept drift. Very little research has

discussed the intermediate concepts from a spatial perspective, such as research on

where the drifted regions are. Considering both when and where a drift occurs is

beneficial to reduce the risk of overestimating the drift regions, as shown in Figure

5.1.

In one related publication Gama and Castillo (2006), the authors applied a deci-

sion tree model to detect changes in the online error-rate in each internal tree node,

thereby identifying drifted nodes and updating them, respectively. The experimental

results showed a good performance in detecting drift and in adapting the decision

model to the new concept. Similar algorithms are in Ikonomovska et al. (2011,

2015, 2009). However, these algorithms mainly focus on addressing concept drift

on regression problems and they all are based on decision tree models, which have

limited application areas.

To better address concept drift problems, we consider both time-related and

spatial-related drift information. In this paper, we propose a regional density inequal-

ity metric, called local drift degree (LDD), to measure the likelihood of regional

drift in every suspicious region. By analyzing the density increasing or decreasing

in a local region, learning systems are able to highlight dangerous regions and take

relevant actions.

5.1 Introduction 109

decision
boundary (b)

decision
boundary (c)

decision
boundary (a)

decision
boundary (a)

decision
boundary (b)

decision
boundary (c)

(a) decision boundary before concept drift (b) new decision boundary with regional
drift detection

(c) new decision boundary after global drift
detection

(d) overestimated drift regions

over estimated drift
regionsactual drift region

decision
boundary (a)

over estimated drift
regionsactual drift region

decision
boundary (a)

all historical data
received before drift
time step is discarded

data instances with
different labels

data instances arrived
at different time step

only drifted instances
are discarded

Figure 5.1 For any notable concept drift, if the distribution difference is only in a small
region, as shown in (b), discarding the entire historical data and retraining the learner

may result in a overestimation of the drift regions, such as the red shaded regions in (d),

and thereby impairing the overall performance. By contrast, regional drift detection and

adaptation only address targeted regions, and will not over estimate the drifts.

110 Concept Drift Adaptation via Reginal Density Synchronization

5.2 Local Drift Degree

In this section, we formally present the proposed test statistics, LDD. The purpose

of LDD is to quantify regional density discrepancies between two different sample

sets, thereby, identifying density increased, decreased and stable regions.

5.2.1 The definition of LDD

The intuitive idea underlying LDD is that, given two d-dimensions populations

Ad and Bd , if two sample sets, A from Ad and B from Ad , are independent and

identically distributed, their local density discrepancies follow a certain normal

distribution. Denote the feature space as V , for any subspaceW ⊆V , it has an it has

an equality that |AW |/nA �= |BW |/nB in an ideal situation, where |AW |,|BW | represents
the number of data instances inW that belong to A, B, and nA, nB represents the total

number of data instances in A and B separately.

Definition 5.1. (Local Dri f t Degree) The local drift degree of a subspace W is

defined as:

δW =
|BW |/nB

|AW |/nA
−1 (5.1)

LDD is proposed to estimate the empirical density discrepancy. An illustration

of how LDD works is shown in Figure 5.2. In the next section, we introduces how to

select the critical interval of LDD thereby identifying regional drifts.

5.2.2 The statistical property of LDD

Theorem 5.1. Given Ad and Bd have the same distribution, δW ∼ N(0,σ2), where

σ2 is the theoretical variance of δW .

5.2 Local Drift Degree 111

Empirical Theoretical

FA

FB

Region W

Figure 5.2 An illustration of how LDD works. In some cases, the theoretical difference
may be hard to be calculated directly. Instead, LDD applies empirical density estimation to

quantify the density difference of a given regionW

Proof. define Ai as Equation 5.2, and define Bi, Ad
i and Bd

i in the same way.

Ai =

⎧⎪⎪⎨
⎪⎪⎩
1, the ith point locates inW

0, otherwise

(5.2)

then δW can be rewritten as Equation 5.3

δW =
∑n

i=1Bi/n
∑n

i=1Ai/n
−1= B̄

Ā
−1 (5.3)

assuming Ā contains almost all {Ai = 1} in Ad , Ā will be very closed to Ad . There-

fore, δW ≈ B̄/Ad −1. To prove that E(B̄) = Bd , we introduce a random variable Ii,

where

Ii =

⎧⎪⎪⎨
⎪⎪⎩
1, Bd

i ∈ B

0, otherwise

(5.4)

according to the sampling techniques, selecting n units from N, the probability that

each unit will be selected in n draws is
n−1CN−1

nCN
= n

N , where
nCN is the number of n

combination of N, and the probability that two units will be selected in n draws is

112 Concept Drift Adaptation via Reginal Density Synchronization

n(n−1)
N(N−1) . Under this condition, Ii satisfies the following equations:

E(Ii) =
n
N
, i = 1,2, . . . ,N (5.5)

By using Ii, B̄ can be rewritten as

B̄ =
1

n
ΣN

i=1B
d
i Ii (5.6)

and its expectation equals Bd can be acquired by

E(B̄) =
E(ΣN

i=1B
d
i Ii)

n
=

ΣN
i=1B

d
i E(Ii)

n

=
1

n
· n

N
ΣN

i=1B
d
i =

1

N
ΣN

i=1B
d
I

= B̄d

(5.7)

Therefore the expectation of δW can be acquired by Equation 5.8

E(δW) =
E(B̄)
Ad −1= B̄d

Ād
−1 (5.8)

if Ad and Bd have the same distribution, then Ad = Bd and E(δW) = 0. According

to the Central Limit Theorem, it obeys a normal distribution as it is constructed in

terms of the sample average. The variance can be estimated by the Monte Carlo

method.

5.3 Drifted Instances Selection and Adaptation 113

5.3 Drifted Instances Selection and Adaptation

In this section, the algorithms of drifted instances selection and the corresponding

density synchronized drift adaptation are formally represented.

5.3.1 Drifted instance selection

The LDD-based drifted instance selection algorithm (LDD-DIS) is shown in Algo-

rithm 5.1. The core idea of LDD-DIS is to use LDD to identify density decreased

(Ddec), increased (Dinc), and stable (Dsta) instances within two batches of data. The

inputs are the target data batches, D1 D2, the neighbourhood ratio ρ , and the drift

significant level α .

The neighborhood ratio ρ controls the size of the neighbourhood. Instead of

confining the neighbourhood within a certain range, selecting the k-nearest neigh-

bours (kNN) with a certain proportion of a data set as the neighbourhood is more

robust (the k value of kNN is equal to |D| × ρ). The reason is that kNN-based

neighbourhood is independent of the shape of the feature space and is friendly to

high-dimensional domains. With a proper data structure, like a binary tree, the

complexity of the kNN-search can be reduced to O(log(n)), where n is the total

number of data instances in a sample set.

The drift significance level α quantifies the statistical significance of concept

drift. For example, in our case, if an observation is in the left tail, the system will be

(1−α)% confidence that it is a density-decreased region. Similarly, if an observation

is in the right tail, the systemwill be (1−α)% confidence that it is a density-increased

region. Without any specifications, LDD-DIS will be initialized by the default input

values. LDD-DIS consists of two major steps. One is to estimate the distribution

114 Concept Drift Adaptation via Reginal Density Synchronization

Algorithm 5.1: LDD Drifted Instance Selection (LDD-DIS)
input : two batches of data isntances, D1,D2

neighborhood ratio, ρ (default ρ = 0.1)
drift significance level, α (default α = 0.05)

output :drifted data sets, Ddrift = {Ddec
1 ,Dsta

1 ,Dinc
1 ,Ddec

2 ,Dsta
2 ,Dinc

2 }
1 merge D1 and D2 as D;
2 for di in D do
3 retrieve di neighborhood, D1 ∗ knn =findKNN(di,D,|D|×ρ)
4 end
5 shuffle D and resample D′

1, D′
2 without replacement;

6 for di in D do
7 if di ∈ D′

1 then

8 compute the LDD of di by δ ′
i =

|Dknn
i ∩D′

2|
|Dknn

i ∩D′
1|
−1

9 else

10 compute the LDD of di by δ ′
i =

|Dknn
i ∩D′

1|
|Dknn

i ∩D′
2|
−1

11 end
12 end
13 density decrease threshold, θ dec =norminv(α,0,std(δ ′

));

14 density decrease threshold, θ inc =norminv((1−α),0,std(δ ′
));

15 for di in D do
16 if di ∈ D1 then
17 compute the LDD of di by δi =

|Dknn
i ∩D2|

|Dknn
i ∩D1| −1;

18 if δi < θ dec then
19 Ddec

1 = Ddec
1 ∪{di};

20 else if δi > θ inc then
21 Dinc

1 = Dinc
1 ∪{di};

22 else
23 Dsta

1 = Dsta
1 ∪{di};

24 end
25 else
26 compute the LDD of di by δi =

|Dknn
i ∪D1|

|Dknn
i ∪D2| −1;

27 if δi < θ dec then
28 Ddec

2 = Ddec
2 ∪{di};

29 else if δi > θ inc then
30 Dinc

2 = Dinc
2 ∪{di};

31 else
32 Dsta

2 = Dsta
2 ∪{di};

33 end
34 end
35 end
36 return Ddrift = {Ddec

1 ,Dsta
1 ,Dinc

1 ,Ddec
2 ,Dsta

2 ,Dinc
2 };

5.3 Drifted Instances Selection and Adaptation 115

of LDD when no drift occurs, namely δ ′ ∼ N(μ,σ2), lines 1-13. The second is

to compute LDD for each data instance according to the input data batches, and

selects the drifted instances correspondingly, lines 14-31. Lines 1 to 4 computes the

k-nearest neighbor map of the entire data, where findKNN(di,D, |D|×ρ) stands for

finding the (|D|×ρ) nearest neighbor of di in D. Then, at line 5, we shuffle the data

and resample two new batches D′
1, D′

2 with the same size as D1, D2. The resampling

guarantees that D′
1 and D′

2 follow an identical distribution. As per theorem 1,

consequently, the δ ′
follows 0-mean normal distribution, and the density decreasing

and increasing confidence interval can be calculated by the normal inverse cumulative

distribution function, as shown in lines 12, 13, denoted as norminv(α,0,std(δ ′
)),

where α is the significance level, 0 is the mean, and std(δ ′
) is the estimated standard

deviation. Then, we compute the LDD for each data instance according to their

original distributions. For each data instance, if its LDD is less than θ dec, it will be

identified as a density decreasing instance, while if its LDD is greater than θ inc, it

will be identified as density increasing instance, as shown in lines 14 to 31. Also, if

the LDD is between θ dec ≤ δi ≤ θ inc, that instance will be considered as a no drift

instance, or a stable instance.

5.3.2 Density synchronized drift adaptation

In this section, a regional drift adaptation algorithm is developed to synchronize

the density discrepancies based on the identified drifted instances. The set Ddec
1 ,

which returned by LDD-DIS, represents the data instances belonging to D1 and have

decreased density compared to the set D2. Similarly, the set Dinc
2 represents the data

instances belonging to D2 and have increased density compared to data set D1. It is

116 Concept Drift Adaptation via Reginal Density Synchronization

Algorithm 5.2: Density Synchronized Drift Adaptation (LDD-DSDA)
input :data instance arriving at each time step d0, . . . ,dt

minimum data batch size, wmin (default wmin = 100)
base learner, L (default L: Naive Bayes Classifier)

output :prediction results, ŷ0, . . . , ŷt

1 initial Dtrain, L =buildLearner(Dtrain);
2 while stream not end, denote current time as t do
3 ŷt =predict(L,dt);
4 if |Dtrain|< wmin then
5 Dtrain = Dtrain∪{dt};
6 else
7 Dbuffer = Dtrain∪{dt};
8 end
9 if |Dtrain| ≥ wmin and |Dbuffer| ≥ wmin then

10 D =LDD-DIS(Dtrain,Dbuffer);
11 merge the detected drift regions as per Equation 5.9;

12 based on the density of Dbuffer, resample the data as Dtrain, as per
Equation 5.10;

13 build new learner, L =buildLearner(Dtrain);
14 else
15 updateLearner(L,dt);

16 end
17 end
18 return ŷ0, . . . , ŷt ;

obvious that, if the size of D1 and D2 are the same, then the size of Ddec
1 and Dinc

2

will be the same, or is simply denoted as |Ddec
1 |/|D1|= |Dinc

2 |/|D2|. This property
is the foundation of the proposed LDD-based density synchronized drift adaptation

(LDD-DSDA) in Algorithm 5.2.

The intuitive idea of LDD-DSDA is to merge existing dataDtrain with the recently

buffered data Dbuffer and resample a new batch of training data Dtrain so that the new

Dtrain has the same distribution as Dbuffer. To achieve this goal, we present the fol-

lowing data merging rules: 1) if no density discrepancies are detected (which means

5.3 Drifted Instances Selection and Adaptation 117

|Dd
1ec|/|D1|= |Di

2nc|/|D2|= 0) then return Dtrain∪Dbuffer while if the unioned data

set is considered redundant, return Dbuffer instead; 2) if there are regional density

drifts, merging the drifted data instances as per Equation 5.9.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dinc = Dinc
train∪Ddec

buffer

Dsta = Dsta
train∪Dsta

buffer

Ddec = Ddec
train∪Dinc

buffer

(5.9)

Then, to ensure the drifted regions have the same probability density as Dbuffer, a

subset of instances in each drifted region will be resampled, denoted as Dsample,

shown as Equation 5.10. where Dinc
sample are sampled from Ddecin Equation 5.9. and

so on. At last replace Dtrain by Dsample, namely Dtrain = Dsample

|Dinc
sample| : |Dsta

sample| : |Ddec
sample|= |Dinc

buffer| : |Dsta
buffer| : |Ddec

buffer| (5.10)

In Algorithm 5.2, line 1 initializes the base learner L, and line 3 uses the base

learner to predict data instances arriving at the current time, denoted as predict(L,dt).

From lines 4 to 7, the system maintains the data for training and drift detection.

When both training and buffered data sets reach the minimum batch size, LDD-DIS

is triggered, as shown in lines 8, 9. Then the detected drift regions are synchronized,

based on Equations 5.9, 5.9. Otherwise, the system incrementally updates the base

learner, denoted as updateLearner(L,dt), shown in line 14. Finally, in line 16, the

predicted labels are returned for performance analysis.

118 Concept Drift Adaptation via Reginal Density Synchronization

5.4 Experiment and Evaluation

In this section, two groups of experiments are conducted to evaluate the proposed

LDD. The first group evaluates the LDD-DIS algorithm. The second group applies

the LDD-DSDA algorithm to three real-world evolving data streams and compare

the results with other methods. All experiments are conducted on a 2×3.1GHz 8
core CPU 128GB RAM cluster node with unique access.

5.4.1 Evaluation of LDD-DIS

In this section, the LDD-DIS algorithm is evaluated in terms of two 2D synthetic

drifted datasets. For each dataset, 1,000 training cases are drawn from a specific

distribution and 500 testing cases are drawn from a different distribution. The

estimated probability density curve of the selected feature are plotted in subfigure

(a), the entire dataset are in subfigure (b) (blue dots represent the training set and

red crosses represent the testing set), the detected drifted instances are in subfigure

(c) (blue dots represent decreasing density, red dots represent increasing density),

and the value of LDD of the corresponding instances are in subfigure (d) which

demonstrates the relationship between LDD and regional density changes. The

configurations of LDD are set as the default values described in Algorithm 5.1.

Experiment 5.1. (Gaussian data with drifted variance). This data set is generated

from a bivariate Gaussian distribution. The training set has mean μ = [5,5] and the

covariance matrix is

σ =

⎡
⎢⎣1 0

0 1

⎤
⎥⎦

5.4 Experiment and Evaluation 119

The testing set has the same mean vector while its covariance matrix drifts to

σ =

⎡
⎢⎣3 0

0 3

⎤
⎥⎦

This drift forms a ring-shaped drifted region as shown in Figure 5.3(c).

Since the covariance of x1, x2 is 0, the patterns of drifted regions are the same

from only x1 perspective. In Figure 5.3(a), we plot the kernel smoothing estimated

density function of feature x1 for both training set (red line) and testing set (blue

line). If we consider the density drift from the training set perspective, when the blue

line is higher than the red line, this means in that region, the training set density is

decreasing, and vice versa. Accordingly, the instances located in these regions will

be identified as Ddec
train or Dinc

train, as shown in Figure 5.3(c), where the red dots belong

to Dinc
train, and the blue dots belong to Ddec

train. The corresponding LDD value of each

data instance is ploted in Figure 5.3(d). The higher the value of LDD, the higher the

probability that this instance will drift.

Experiment 5.2. (Mixture distribution with drifted mean) To demonstrate how LDD

works in a more general situation, we create a drifting Gaussian mixture data set

and apply LDD to detect the drifted instances. The Gaussian mixture distribution

consists of three bivariate Gaussian distributions. The three distributions for the

testing set are generated based on the paramters given in Equation 5.11, while the

testing set is generated based on the parameters given in Equation 5.12. The results

120 Concept Drift Adaptation via Reginal Density Synchronization

of LDD-DIS are shown in Figure 5.4 with the same interpretation as Figure 5.3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1 = [8,5],σ1 =

⎡
⎢⎢⎣1 0

0 1

⎤
⎥⎥⎦

μ2 = [2,5],σ2 =

⎡
⎢⎢⎣2 0

0 2

⎤
⎥⎥⎦

μ3 = [5,5],σ3 =

⎡
⎢⎢⎣5 0

0 5

⎤
⎥⎥⎦

(5.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1 = [10,5],σ1 =

⎡
⎢⎢⎣1 0

0 1

⎤
⎥⎥⎦

μ2 = [4,5],σ2 =

⎡
⎢⎢⎣2 0

0 2

⎤
⎥⎥⎦

μ3 = [7,5],σ3 =

⎡
⎢⎢⎣5 0

0 5

⎤
⎥⎥⎦

(5.12)

5
.4
E
x
p
erim

en
t
an
d
E
v
alu
atio

n
121

-5 0 5 10 15
x 1

0

0.1

0.2

0.3

0.4

P
(X

)

(a) Train Set & Test Set Distirubtion

0 2 4 6 8 10
x 1

0

2

4

6

8

10

x 2

(b) Train Set & Test Set

0 2 4 6 8 10
x 1

0

2

4

6

8

10

x 2

(c) Drift Instances

2 4 6 8 10
x 1

-1

-0.5

0

0.5

1

1.5

LD
D

(d) LDD

Figure 5.3 LDD-DIS on Gaussian Distribution with Drifted Variance.

-5 0 5 10 15 20
x 1

0

0.05

0.1

0.15

P
(X

)

(a) Train Set & Test Set Distirubtion

-2 0 2 4 6 8 10 12
x 1

-2

0

2

4

6

8

10

12

x 2

(b) Train Set & Test Set

-2 0 2 4 6 8 10 12
x 1

-2

0

2

4

6

8

10

12

x 2

(c) Drift Instances

-5 0 5 10 15
x 1

-5

0

5

10

15

LD
D

(d) LDD

Figure 5.4 LDD-DIS on Gaussian Mixture Distribution with Drifted Mean.

122 Concept Drift Adaptation via Reginal Density Synchronization

5.4.2 Evaluation of LDD-DSDA

In this section, we evaluate LDD-DSDA on three real-world evolving data streams.

We compare its performance to several representatives of data stream classification

paradigms. The selected comparison methods are: Hoeffding Adaptive Tree (HAT)

Bifet and Gavaldà (2009), AUE1 Brzeziński and Stefanowski (2011), SAMkNN

Losing et al. (2016), ECDD Ross et al. (2012), and HDDM family algorithms

Frias-Blanco et al. (2015). All these algorithms were implemented based on the

MOA framework Bifet et al. (2010a), which is a commonly used software for

evolving data stream analysis. To quantitatively evaluate LDD-DSDA, the following

performance metrics are considered: accuracy (Acc.), precision (Pre.), recall (Rec.),

f1-score (F1.) and computation time (Time), where Pre= T P
T P+FP , Rec= T P

T P+FN , and

F1= 2·Pre·Rec
Pre+Rec . The term T P represents the number of true positive predictions, FN

represents the number of false negative predictions. These metrics were evaluated in

a prequential manner. To fairly compare these drift adaptation algorithms, the default

parameters suggested by the authors are used, and the base classification model is

set as Naïve Bayes classifier, except for SAMkNN, which is only designed for IBk

classifier. The parameters for IBk classifier of SAMkNN are k = 10 and weighting

method=uniformly weighted. Because LDD-DSDA involves a random sampling

process, the results may vary at different runs, we run LDD-DSDA 50 times on each

dataset and state the mean and standard deviation of the results. To avoid confusion

on the F1-score metric, we only take the mean of Pre. and Rec. to calculate the F1

for LDD-DSDA. The source code of LDD-DSDA is available online1.

1https://sites.google.com/view/anjin-concept-drift/home

5.4 Experiment and Evaluation 123

Experiment 5.3. (Electricity Price Prediction Dataset) Elec dataset contains 45,312

instances, collected every thirty minutes from the Australian New South Wales

Electricity Market between 7 May 1996 and 5 Dec 1998. In this market, prices are

not fixed and are affected by demand and supply. This dataset contains eight features

and two classes (up, down) and has been widely used for concept drift adaptation

evaluation. We considered the classes as equally important, because both price up

and down in the market is considered critical to users, and the ratio of classes is

balanced, which is 58% down and 42% up. Therefore, we take the average precision

(Pre.) and recall (Rec.) of both classes as the performance evaluation metrics, where

average Pre = (Preclass1+Preclass2)/2, average Rec = (Recclass1+Recclass2)/2.

Experiment 5.4. (Nebraska Weather Prediction Dataset) This dataset was compiled

by the U.S. National Oceanic and Atmospheric Administration. It contains 8 features

and 18,159 instances with 31% positive (rain) class, and 69% negative (no-rain)

class. This dataset was summarized by Polikar and Elwell (2011). In relation to the

performance metrics Pre. Rec. and F1, only the positive class (rain) is considered.

This is because a correct prediction of rain is considered more important than a

correct prediction of no-rain.

Experiment 5.5. (Spam Filtering Dataset) This dataset is a collection of 9,324 email

messages derived from the Spam Assassin collection. The original dataset contains

39,916 features, and 9,324 emails (around 20% spam emails and 80% legitimate

emails). It is commonly considered to be a typical gradual drift dataset Katakis et al.

(2009). According to Katakis et al. (2009), 500 attrib-utes were retrieved using the

chi-square feature selection approach. The correct classification of legitimate emails

is used to evaluate the algorithms Katakis et al. (2009).

12
4

C
o
n
ce
p
t
D
ri
ft
A
d
ap
ta
ti
o
n
v
ia
R
eg
in
al
D
en
si
ty
S
y
n
ch
ro
n
iz
at
io
n

Table 5.1 Comparison of LDD-DSDA and different data stream classification algorithms on real-world datasets.

Data Stream #Insts #Dim #Class Algorithms Acc. Pre. Rec. F1 (rank) Time (ms)

Elec 45,312 8 2 LDD-DSDA 0.8776±6.8E-5 0.875±7.4E-5 0.8743±6.2E-5 0.8747 (1) 1776.4±243.5
HAT 0.8131 0.81 0.8057 0.8078 (5) 2071

AUE 0.7544 0.7514 0.7408 0.7461 (7) 3005

SAMkNN 0.7561 0.7506 0.74835 0.7495 (6) 305082

ECDD 0.8676 0.8643 0.865 0.8646 (2) 1005

HDDM-A-Test 0.8492 0.8462 0.8446 0.8454 (3) 3063

HDDM-W-Test 0.8409 0.8374 0.8367 0.8371 (4) 1004

Weather 18,159 8 2 LDD-DSDA 0.7256±4.7E-4 0.807±4.2E-4 0.7876±7.2E-4 0.7972 (5) 982.4±177.7
HAT 0.7248 0.8039 0.7922 0.7980 (4) 2069

AUE 0.7243 0.7862 0.8217 0.8036 (2) 1006

SAMkNN 0.7486 0.6778 0.3787 0.4859 (7) 121001

ECDD 0.7279 0.796 0.8183 0.8070 (1) 1004

HDDM-A-Test 0.7238 0.8221 0.7626 0.7912 (6) 1063

HDDM-W-Test 0.7282 0.8018 0.8021 0.8019 (3) 1004

Spam 9,324 500 2 LDD-DSDA 0.9412±4.3E-4 0.9503±5.1E-4 0.9719±4.3E-4 0.9610 (1) 9942.3±746.3
HAT 0.8893 0.943 0.906 0.9241 (6) 5067

AUE 0.8406 0.9246 0.8556 0.8888 (7) 7012

SAMkNN 0.9247 0.9227 0.9809 0.9509 (2) 255923

ECDD 0.8884 0.9012 0.9546 0.9271 (5) 2005

HDDM-A-Test 0.9079 0.9341 0.9426 0.9383 (4) 2003

HDDM-W-Test 0.9165 0.9293 0.9608 0.9448 (3) 2003

5.5 Summary 125

As shown in Table 5.1, LDD-DSDA achieve the best performance in most

cases. Although the execution time of LDD is slightly longer than that of the

other algorithms on high-dimensional data (Experiment 5.5), the improvement is

notable. LDD-DSDA addresses a critical problem in data stream mining from a

novel perspective and achieved a competitive result compared to the state-of-the-art

algorithms. LDD-DSDA has the best average rank (2.33) cross-ing the tested data

sets. Compared to the second place, which is ECDD (2.67), LDD-DSDA improves

the average F1 by 0.0114. According to the Friedman Test, the differences between

LDD-DSDA and ECDD on Acc., Pre., Rec. and F1 are significant.

5.5 Summary

The innovation and main contribution of this chapter is summarized as follow.

Through investigating the distribution of data nearest-neighbors, this chapter pro-

posed a novel metric, called LDD, to detect regional concept drift. Accordingly, an

LDD-based density synchronization algorithm was proposed to adapt the density

discrepancies, called LDD-DSDA. Compared to the other algorithms, LDD-DSDA

addresses drift via density synchronization rather than replacing training data. LDD-

DSDA will not distinguish noise and true data. It would only ensure the adapted

distribution has the same noise distribution and true data distribution as the current

concept. The evaluation results demonstrate that LDD-DSDA accurately identifies

drifted regions and synchronizes the data distribution automatically. Since LDD-

DSDA requires predefined window size, for some real-world scenarios, defining a

nature time window is infeasible, a more flexible regional drift adaptation will be

introduced in the next Chapter.

Chapter 6

Incremental Regional Drift

Adaptation

6.1 Introduction

According to the literature, the objective of existing methods mainly focuses on

identifying the best time to intercept training samples from data streams to construct

the cleanest concept Liu et al. (2017a). Most methods consider concept drift as a

time-related distribution change, or change point, and are disinterested in the spatial

information related to the drift. Without considering the spatial information related

to the drift region, a drift adaptation method can only update learning models or

training sets in terms of time-related information. This may result in unnecessary

reducing the training data Harel et al. (2014). This is especially true if a false alarm

is raised, as incorrect updating the entire training set is costly and may degrade

the overall performance of the learner Alippi et al. (2017); Bu et al. (2016). By

addressing drifts locally, the system will only clean a region if a false alarm is raised

128 Incremental Regional Drift Adaptation

based on spatial (location) information, leaving the other regions unharmed. Thus,

the problem of the training set unnecessarily shrinking can be controlled.

By the same reasoning, a regional drift would not trigger the adaptation until it

becomes globally significant, and would then result in a delay in the drift detection

process. These disadvantages limit the accuracy of learning within evolving data

streams. Therefore, observing a statistically significant change in a local region is

more sensitive than observing a change in the entire feature space because the target

population is different. Assuming that the target population is located in the entire

domain, and a drift only happens in a very small region, the conclusion that there

is no drift in this target population is true. However, such a conclusion may mean

that learning models make the incorrect decision not to update, which would slow

the adaptation process. By contrast, if we set the target population as a set of groups

located in different subdomains, a learning model would make the correct decision

to update the corresponding subdomain no matter which subdomain contains the

drift.

To introduce spatial features into concept drift adaptation, this chapter propose

to divide the concept drift problem into a set of regional density drift problems, as

defined in Chapter 3. The intuition behind the solution is to divide the entire feature

space into a set of sub-feature spaces, then track and adapt to the drifts. Given

concept drift, as a set of regional sudden drifts, can also describe most types of

concept drift, such as sudden drifts, or incremental drifts as discussed Section 3.2.

The novelty and main contribution of this chapter is a novel online regional

drift adaptation algorithm, called online-RDA, that considers drift-related spatial

information to address concept drift problems. Compared to other concept drift

adaptation algorithms, online-RDA demonstrates the following advantages: The

6.2 A Regional Drift Adaptation Framework 129

novelty of this paper is presented in a novel online regional drift adaptation algorithm,

called online-RDA, that considers drift-related spatial information to address concept

drift problems. Compared to other concept drift adaptation algorithms, the online-

RDA demonstrates the following advantages :

1. It is sensitive to regional drift and robust to noise, and drift detection accuracy

is guaranteed by a statistical bound.

2. It tackles concept drift problems locally to control the problem of unnecessarily

shrinking the training data.

3. It is sensitive to regional drifts and can quickly respond to different types of

concept drifts, minimizing the impact caused by drift detection delay.

The rest of this chapter is organized as follows. In Section 6.2, the regional

drift-oriented adaptation framework is introduced. Section 6.3 details the online-

RDA algorithm and presents the implementation pseudocode. Section 6.4 evaluates

online-RDA using various benchmarks, including both artificial streams with known

drift characteristics and highly referenced real-world datasets. Finally, Section 6.5

concludes this study with a discussion of future work.

6.2 A Regional Drift Adaptation Framework

In this section, we propose a general framework for concept drift adaptation oriented

toward regional drift that consists of three stages. The first stage defines and con-

structs the regions. The second stage identifies drifted regions. And the last stage

addresses the drifts in drifted regions. These three stages are shown in Figure 6.1.

130 Incremental Regional Drift Adaptation

If hi has drift

Define Region,
h

Convert data sets D
as a set of regions

H={h0, …, ht}

For hi in H

Update hi

true

false

Stage 1. Region
Construction, D)

Stage 2. Regional
Drift Detection,

hi)

Stage 3. Regional
Drift Adaptation,

hi)

If hi has drift

Define Region,
h

Convert data sets D
as a set of regions

H={h0, …, ht}

For hi in H

Update hi

true

false

Stage 1. Region
Construction, D)

Stage 2. Regional
Drift Detection,

hi)

Stage 3. Regional
Drift Adaptation,

hi)
Figure 6.1 A concept drift adaptation framework based on regional drift.

6.3 Online Regional Drift Adaptation 131

Stage 1 is constructing the set of regions. Stage 2 exams and highlights the

regions with statistical significant changes. Stage 3 removes or synchronizes the

drifts for each region individually. These three stages are dynamically linked together.

The construction of region set may affect the sensitiveness and the robustness of drift

detection, adaptation process. For example, if a region is too small to include enough

information to conclude the drift within the desired significance level, the detected

drift may have high false alarm. In contrast, if a region is too large, itself may not

be able to capture the drifts within it. Also, the regional drift detection accuracy

will affect the performance of regional drift adaptation. It is critical to optimize the

relationships between region, region drift detection and adaptation to achieve the

best learning results.

For brevity, Stage 1 is denoted as H = Φ(D). In this stage, the dataset D is

converted into a set of regions H. The regional drift detection in Stage 2 is denoted

as Θ(hi), where hi is a region and hi ∈ H\T . The regional drift adaptation in Stage 3

is denoted as Ψ(hi). Stage 3 is discussed in later sections.

6.3 Online Regional Drift Adaptation

In this section, we formally present our concept drift adaptation algorithm – online

regional drift adaptation (online-RDA). Online-RDA has three components as dis-

cussed in Section 6.2. The region construction methodΦ(D) is introduced in Section

6.3.1. The drift detection method Θ(hi) and adaptation method Ψ(hi) is explained

in Sections 6.3.2 and 6.3.3. Finally, the implementation details of learning with

online-RDA are provided in Section 6.3.4.

132 Incremental Regional Drift Adaptation

6.3.1 kNN-based dynamic region construction

The selection of a region construction process directly affects the overall sensi-

tivity of drift detection and adaptation. Setting a certain distance to construct

unit-hyperspheres is one option. However, using a fixed distance may have fewer

drawbacks when dealing with a high-dimensional feature space, arbitrary shapes, and

distributions that have high-density differences within different regions. For example,

sparse unit-hyperspheres may have no data instances while dense unit-hyperspheres

may have too many data instances, which undermines the advantages of regional drift

detection. Similar problems may occur when applying kernel density estimation.

To overcome these problems, we propose using density clustering methods to

construct the regions. According to Tan (2006), density clustering methods group

data instances based on different density, shapes and can perform well under high

dimensional feature space. One of the most intuitive and simple way to construct

a region is using k-nearest neighbours. Given a data instance di and its k-nearest

neighbours, the empirical density can be easily estimated by (k+1)/|D| , where k is

the number of nearest neighbours and |D| is the number of available data instances.
The density of the region constructed by di and its k-nearest neighbours can be

easily controlled by selecting the k-value. In other words, given an expected region

density Φ, a dataset can be transformed as a set of regions H = {h0, . . . ,h|D|} that
has P̂(X ∈ hi) ≈ φ via k = �φ · |D|− 1�. The interval or the radius of region hi is

determined by the distance between data instance di and its furthest neighbour or the

kth nearest neighbour, denoted as:

ε(hi) = max
k∈Z+,k<|D|·φ

(‖di −dk‖) (6.1)

6.3 Online Regional Drift Adaptation 133

In streaming data, the next incoming n data instances, whether or not they are located

in a given region, can be considered as a binomial trail. The set of data instances that

“hit” the same region h from the next continuously arrived n samples is denoted as:

Dh
ti+1,ti+n = {d j ∈ {dti+1, . . . ,dti+n} : d j ∈ h} (6.2)

If no concept drift occurs during time [0, ti +n], we have

|Dh
ti+1,n| ∼ B(n, φ̂) (6.3)

where φ̂ is estimated by φ̂ = |Dh
0,ti |/|D0,ti | . In effect, this is the probability that

historical data is located in region h. In a stationary environment, the larger D0,ti is

in size, the more accurate φ̂ will be. According to Box et al. (1978), the distributions

of the count |D| and the sample proportion are approximately normal for large
values of n. This result follows the central limit theorem. The mean and variance

for an approximately normal distribution of |D| are np and np(1− p), which are

identical to the mean and variance of a B(n, p) distribution. Similarly, the mean and

variance for the approximately normal distribution of the sample proportion are p

and (p(1− p)/n). However, because a normal approximation is not accurate for

small values of n, a good rule of thumb is to use the normal approximation only if

np > 10 and n(1− p)> 10. In other words, we need to constrain |D0,ti | · φ̂ > 10 and

|D0,ti | · (1− φ̂)> 10 to acquire accurate regions.

To maintain such a region, we only need the center data instance of the region

di, the radius εi, the estimated density φ̂i, and the initialization time ti of the region,

denoted as hi = 〈di,εi, φ̂i, ti〉. However, covering all possible regions or selecting

134 Incremental Regional Drift Adaptation

all possible φ to construct the power region sets H is not practical. Therefore, we

recommend using an ensemble of φ to detect and adapt to concept drifts, namely

allowing φ = {0.05,0.1,0.2}, and using majority voting to finalize the classification,
or prediction results.

6.3.2 kNN-based regional drift detection

Constructing the regions is only the first step of the regional drift adaptation frame-

work. The second step is to detect whether any statistical changes have occurred in

a data stream. Therefore, this section introduces a novel kNN-based regional drift

detection and prediction method.

Given a region hi = 〈di,εi, φ̂i, ti〉, the current time is ti + n. The number of

data instances located in region hi are counted during time period [ti + 1, ti + n],

denoted as ûi = |Dh j
ti+1,ti+n|, where Dh j

ti+1,ti+n = {d j ∈ {dti+1, . . . ,dti+n} : ‖di −d j‖<
εi}. According to Equation 6.3, the probability of observing such a number ûi at

time ti +n can be calculated by

P(|Dh j
ti+1,ti+n|= ûi) = b(ûi, ti +n− ti, φ̂i)

= b(ûi,n, φ̂i)

(6.4)

where b(k,n, p) is the probability mass function of the binomial distribution, that

b(k,n, p) =
(

n
k

)
pk(1− p)n−k (6.5)

6.3 Online Regional Drift Adaptation 135

Similarly, we can compute the probability of how likely it is that less than ûi data

instances are located in region hi, namely the hypothesis test of the regional drift.

P(|Dh j
ti+1,ti+n| ≤ ûi) = F(ûi, ti +n− ti, φ̂)

= F(ûi,n, φ̂i)

(6.6)

where F(k,n, p) is the cumulative distribution function of the binomial distribution,

that

F(k,n, p) = P(X ≤ k) = Σ�k�
i=0

(
n
i

)
pi(1− p)n−i (6.7)

If P(|Dh j
ti+1,ti+n| ≤ ûi)< α , such an observation has a small probability and a regional

drift is considered to occur in region hi at time ti, where α = 1− pValue guarantees

the false-positive rate. Alternatively, the drift threshold udri f t
i can be calculated based

on a binomial inverse cumulative distribution function, that is, if ûi ≤ udri f t
i then a

regional drift has occurred.

To implement this approach incrementally, we focussed on calculating F(ûi =

0,n, ûi), which is the probability that there is no other data instance located in region

hi in the next [ti +1, ti +n] period. The current time is denoted as t, then n = t − ti,

and the online regional drift condition can be rewritten as

F(0, t − ti, φ̂i)< α

⇒ Σ�0�
j=0

(
n
j

)
φ̂ j

i (1− φ̂i)
t−ti− j < α

⇒
(

n
0

)
φ̂0i (1− φ̂i)

t−ti−0 < α

⇒ (1− φ̂i)
t−ti < α

(6.8)

136 Incremental Regional Drift Adaptation

Then, we have Fi+1 = Fi · (1− φ̂i), if ‖di −di+1‖> εi

6.3.3 kNN-based regional drift adaptation

To handle the drifts, the density of drifted regions should be synchronized instead of

being discarded indiscriminately. As explained in the detection method in Section

6.3.2, the probability that a drift has occurred in region hi can be calculated via

F(0, t − ti, φ̂ti), which can be used as a weighting method to update the learning

model.

To ensure hi is updated accurately, the learning model will be reinitialized if it

exits a time t, which satisfies the following conditions

t ∈ Z>ti s.t. ‖di −dt‖ ≤ εi and F(0, t − ti, φ̂i)> α (6.9)

This ensures that the radius εti and the estimated density φ̂ti become more accurate

as the number of available data increases.

6.3.4 The implementation of online-RDA

In this section, we present the implementation details for online-RDA. The pseu-

docode is provided in Algorithm 1.

The core idea behind online-RDA is to use a buffer to store the regions that are

most relevant to the current concept and to update the learning models regularly

according to the center of the data instances in the stored regions. In Algorithm

6.1 Lines 1-4, the system is initialized based on the training data. Line 5 starts

by processing the streaming data. Line 6 conducts the prediction or classification

6.3 Online Regional Drift Adaptation 137

Algorithm 6.1: online regional drift adaptation
input :data instance arriving at each time step d0, . . . ,dt

k-nearest neighbour ratio, φ (default φ = {0.05,0.1,0.2})
base learner, L (default L: IBk Classifier, k = 5, weighting: inverse distance)
max buffer size, wmax (default wmax = 1000)

output :prediction results, ŷ0, . . . , ŷt

1 for φk in φ do
2 construct region sets Hk = Φ(Dtrain,φk),H = H ∪{Hk};
3 Initial learner lk =buildLearner(Hk → Dk), L = L∪{lk};
4 end
5 while stream not end, denote current time as t do
6 ŷt =majorityVote(L,dt);
7 for Hk in H do
8 for hi in Hk do
9 if dt ∈ hi then // Equation 6.9

10 reconstruct region hi;

11 else
12 if F(0, t − ti, φ̂i)< α then // Equation 6.8
13 remove hi from Hk;

14 end
15 end
16 end
17 construct region ht , Hk = Hk ∪{ht};
18 if |Hk|> wmax then
19 Remove hi = min

hi∈Hk
F(0, t − ti, φ̂i) from Hk;

20 end
21 updateLearner(lk,

⋃
hi∈Hk

hi → di);

22 end
23 end
24 return ŷ0, . . . , ŷt

tasks. The results are returned with the largest weight voted by all learners built with

different k-nearest neighbor ratios φk. Lines 7-22 detect regional drifts and update

the region buffer according to Equations 6.8 and 6.9. Line 17 constructs new regions

as new data is available. Lines 18-20, maintain the buffer size by removing the most

likely drifted regions so that the buffer size does not exceed the maximum limitation.

Line 21 retrieves data instances from the regions stored in the buffer and updates

138 Incremental Regional Drift Adaptation

the learning models accordingly. Lines 23 and 24 detect the end of the stream and

output the prediction or classification results.

In terms of computational complexity, the complexity of the k-nearest neighbor

search can be reduced to O(logn) with a proper data structure, such as kdTree. The

regional drift detection cost for each newly arriving data instance is O(δ logδ),

where δ ∈ Z+ is a variable that is equal to the current buffer size, and 10φ ≤ δ ≤ wmax.

In addition, the regionsHk that were constructed based on different φk can be updated

separately in a parallel manner, which further reduces the computation time.

6.4 Experiment and Evaluation

This section presents the evaluations of online-RDA on both synthetic and real-world

datasets. Section 6.4.1 aims to demonstrate how online-RDA incrementally detect

and adapt to concept drifts. Section 6.4.2 presents the evaluations with synthetic

datasets of differing noise ratios, followed by Section 6.4.3 with seven real-world

benchmark datasets. The varying of the buffer sizes for different datasets is also

showed in the results, which can be used to investigate the characteristics of drifts in

these datasets.

6.4.1 Evaluation of the capabilities of online-RDA on

drift detection and adaptation

To begin, how well online-RDA can maintain the buffered data instances is evaluated.

This experiment evaluated whether the buffer size changed along with a concept drift

and whether the reserved data instances conveyed information about the most recent

6.4 Experiment and Evaluation 139

Table 6.1 Online-RDA evaluation one-dimensional sudden-incremental drift data generator

Time Period x1 distribution

[t1, t1500] x1 ∼ N(0,1)
[t1501, t2500] x1 ∼ N(2,1)
[t2501, t3000] x1 ∼ N(2,1−0.0016× (t −2500))
[t3001, t4000] x1 ∼ N(2,0.2)

concept. To illustrate how the online adaptation works in the buffer, we used sliding

windows with the same buffer limitation as a contrast. One of the state-of-the-art

drift detection algorithms, HCDTs proposed by Alippi et al. (2017), is also applied

to illustrate why spatial information is important for drift adaptation.

Experiment 6.1. (1D synthetic data with drifted mean and variance) The datasets

were generated from three one-dimensional Gaussian distributions with different

means and variances. The corresponding distributions are given in Table 6.1. For each

time point, one data instance was generated according to the current distribution. To

simulate sudden and incremental drifts, the data distributions were suddenly changed

at t = 1500 and incrementally changed during t = [2501,3000]. The parameters

for HCDTs were set as ICI-based drift detection with a Lepage validation layer

(H-ICI+Lepage), which are the default settings for their program. To maintain the H-

ICI+Lepage data buffer, we applied the most commonly used drift adaptation strategy

Frias-Blanco et al. (2015); Gama et al. (2004), that is, building a new buffer at a

specified warning level and replacing the old buffer at a specified drifting level. The

warning level was set as αwarn = 0.05 and the drifting level was set to αdri f t = 0.01.

Similar to Alippi et al. (2017), we show the experimental results in Figure 6.2.

In general, both H-ICI+Lepage and online-RDA were able to take corrective actions

no matter what types of drift occurred. However, from the buffer size, we can see

140 Incremental Regional Drift Adaptation

that H-ICI+Lepage with warning and drifting levels discarded all historical data

after confirming a sudden drift, even though some of the data may still be useful.

Whereas, online-RDA is capable of trimming irrelevant information from the buffer

and maintaining the historical data that conforms to the current distribution. In

addition, during the incremental drift, H-ICI+Lepage triggered more than one true

positive alarm, which is correct from a drift detection perspective. However, the

available training data in the buffer was overly reduced, which may not be necessary

for drift adaptation. Compared to the sliding window strategy, as shown in the buffer

snapshot at different time points, online-RDA is more sensitive to drift and can

preserve the data instances that convey the information of the most recent concept.

6.4.2 Evaluation of online-RDA on synthetic drift datasets

Synthetic datasets can be used to generate the desired drifting behaviors Gama

et al. (2012); Žliobaitė et al. (2014). In this experiment, we applied three data

stream generators based on massive online analysis (MOA) Bifet et al. (2010a)

with common parametrization Bu et al. (2016, 2017); Gomes et al. (2017b); Yu and

Abraham (2017) to evaluate online-RDA. Table 6.2 shows the main characteristics

of the datasets. The selected algorithms were ADWIN-ARF Gomes et al. (2017b),

SAMkNN Losing et al. (2016), HDDM Frias-Blanco et al. (2015), AUE2 Brzeziński

and Stefanowski (2014), kNNWA
Bifet et al. (2013), and ECDD Ross et al. (2012).

We ran all experiments using the MOA software framework, which allows for easy

reproducibility. Since different base classifiers may affect the results Liu et al. (2018),

for SAMkNN, HDDM, kNNWA, and ECDD, the base classifiers were set as IBk,

with 1000 window limits, k = 5, and neighbors were weighted by the inverse of their

6.4 Experiment and Evaluation 141

Figure 6.2 Experiment evaluation of online-RDA on drift detection and adaptation. Subfigure
(a-c) show the empirical distributions of the data for three different concepts. Subfigure (d)

presents the data instance arrived at different time for sudden (t = 1500) and incremental
(t = [2500,3000]) drifts. Subfigure (e) demonstrates how the buffer size changed under the
evolving data streams. The ten snapshots show the data instances stored in buffer at different

time for the dataset with sudden and incremental drifts. For time = 800,2400,4000, the
system had already recovered from the drifts, therefore, the data instances are almost the

same as the sliding windows’, while for time = 1600,3200, the system was recovering, so
that the buffer size is reduced, and the data instances stored in buffer are different from the

sliding windows’. It also can be seen that the incremental drift changed slower than sudden

drift, so that the number of removed instances from buffer is less than the sudden drift.

142 Incremental Regional Drift Adaptation

Table 6.2 Online-RDA evaluation synthetic data generator

Dataset Drift Type #Instances #Attributes # Class

SEA concepts sudden 10k 3 2

Rotating hyperplane incremental 10k 10 2

Mixed drift mixed 20k 2 4

distance. ADWIN-ARF and AUE2 are decision tree-based algorithms; therefore,

their configurations were set to default in MOA.

Experiment 6.2. (SEA generator) The SEA generator Street and Kim (2001) pro-

duces data streams with three continuous attributes, X = {x1,x2,x3} and x1,x2,x3 ∈
[0,10]. An inequality determines the label or class of each data instance, x1+x2 ≤ θ ,

where θ is a threshold to control the decision boundary. The entire data stream

was divided into four concepts of equal size, and the corresponding θ are 8, 9, 7,

9.5. This has been widely used for evaluating sudden drift detection and adaptation

Gomes et al. (2017b); Liu et al. (2017b); Xu and Wang (2017); Yu and Abraham

(2017).

Experiment 6.3. (Hyperplane generator) The rotating hyperplane generator Hulten

et al. (2001) produces data streams with ten continuous attributes, X = {x1, . . . ,x10}
and x1, . . . ,x10 ∈ [0,1]. The decision boundary for classification is determined by

Σd
i=1wixi ≥ θ , where d is the dimensionality, and wi are weights that randomly

initialize in the range of [0,1]. Incrementally changing the threshold θ produces a

rotating hyperplane decision boundary, thereby, producing incremental concept drifts.

In this experiment we set d = 2, that is, only the first two features had incremental

drifts.

6.4 Experiment and Evaluation 143

Experiment 6.4. (Mixed sudden and incremental drifts) Based on these data gener-

ators, we generated a concept drift dataset with a mixture of drift types. The dataset

was generated by merging the first two features x1,x2 of the hyperplane dataset with

the first two features of the SEA dataset controlled by a random Boolean selector.

If the selector returned true, one SEA data instance was appended to the dataset,

otherwise, the hyperplane data instance was appended. If there was no more SEA

data, we appended all the remaining Hyperplane data, and vice versa. This process

ensured that incremental drifts would not change the order of the sudden drifts. We

also changed the mean of the hyperplane data by x1 = x1−10 so that the hyperplane
data and SEA data did not overlap.

To evaluate how noisy instances might affect drift adaptation algorithms, we

introduced 0%, 5%, 10%, and 15% noise with reversed class labels into each dataset.

To compare the performance of online-RDA with other state-of-the-art concept

drift adaptation algorithms, we ran the algorithms on 50 datasets with the same

configurations and calculated the mean and variance, shown in Table 6.3. The buffer

size is shown in Figure 6.3, as a demonstration of how the data drifted.

6.4.3 Evaluation of online-RDS stream learning on real-world

datasets

To evaluate the ability of online-RDA in addressing real-world problems, we selected

four state-of-the-art concept drift adaptation algorithms and evaluated them with

seven benchmark real-world datasets. The selected algorithms are the same as in

Section 6.4.2. As discussed in Bifet et al. (2015); Gama et al. (2012); Žliobaitė et al.

(2015), execution time and memory cost are important in streaming data learning;

14
4

In
cr
em
en
ta
l
R
eg
io
n
al
D
ri
ft
A
d
ap
ta
ti
o
n

Table 6.3 The accuracy of online-RDS on synthetic datasets. The final score, in parentheses, was calculated based on the average rank.

Concepts Noise online-RDA SAMkNN ADWIN-RNF AUE2 HDDM-A HDDM-W kNNWA ECDD

SEA 0 97.22±0.13 95.71±0.25 95.44±0.40 91.85±0.14 95.54±0.16 95.08±0.20 94.63±0.28 94.21±0.36
0.05 92.94±0.17 90.78±0.19 89.83±0.39 87.10±0.20 90.52±0.20 90.35±0.19 89.18±0.33 89.08±0.44
0.1 88.91±0.13 85.84±0.20 84.97±0.27 82.89±0.23 85.18±0.19 85.22±0.19 84.00±0.26 83.55±0.42
0.15 85.21±0.18 80.71±0.25 80.21±0.26 78.62±0.23 79.47±0.25 79.49±0.26 78.62±0.29 77.74±0.66

Hyplane 0 92.80±1.66 85.65±2.57 82.06±5.01 86.58±5.21 83.51±2.48 83.64±2.46 80.76±4.35 82.25±2.02
0.05 89.64±1.34 81.46±2.11 77.89±4.90 82.34±4.99 78.78±2.43 79.15±2.23 76.04±4.07 77.58±1.83
0.1 86.75±1.04 76.87±2.40 73.22±4.71 78.24±4.61 74.23±2.11 74.32±2.07 71.54±4.02 72.75±1.35
0.15 84.22±0.74 72.08±1.95 69.18±4.60 74.44±4.02 69.49±2.02 69.63±1.80 67.14±3.70 68.21±1.20

Mix 0 88.62±3.76 82.91±6.58 83.06±6.65 82.32±6.09 82.55±6.62 82.46±6.73 82.58±6.70 80.77±6.56
0.05 85.71±3.17 79.41±5.99 79.61±5.93 79.25±5.45 78.91±5.98 78.78±6.09 79.02±6.02 77.20±5.73
0.1 82.86±2.53 75.81±5.37 75.89±5.26 76.00±4.89 74.98±5.30 74.82±5.37 75.10±5.34 73.19±5.01
0.15 80.22±1.94 72.13±4.80 72.08±4.61 72.72±4.29 70.85±4.57 70.56±4.60 70.96±4.58 69.04±4.25

Average Rank 1 (1) 2.75 (2) 4.42 (3) 4.50 (4) 4.83 (5) 4.92 (6) 6.25 (7) 7.33 (8)

6
.4
E
x
p
erim

en
t
an
d
E
v
alu
atio

n
145

Figure 6.3 The average buffer size of online-RDA on synthetic datasets. The selected knn ratio, namely the φ , are 0.05,0.1 and 0.2. The
period [t1, t2000] is intentionally removed because it contains no special patterns. The first row is the SEA dataset with different noise
ratios. It can be seen that SEA concepts have three noticeable spikes, and the spikes are small, medium, and large, which corresponds to

the drift margin changed from |8−9|, |9−7| and |7−9.5|. Although increasing the noise ratio makes the sequence become fuzzy, the
drift patterns can still be captured by online-RDA. The second row is the hyperplane concepts. Because the hyperplane data generator

has no certain variables to control the drift margins, we can only observe the sequence randomly fluctuate. Similar to the SEA concepts,

noise will make the sequence become fuzzy, but the drifts are still observable. The drifts of the mixed concepts are shown in the third

row. However, it is hard to locate the drift patterns. According to these figures, we can see that higher knn ratios are more sensitive to

drifts and will remove more suspicious data instances.

146 Incremental Regional Drift Adaptation

therefore, this information has been provided along with the experimental results.

Table 6.4 summarize the characteristics of the tested datasets, Table 6.5, 6.6, 6.7

show the performance of the tested algorithms. At last, Figure 6.4 shows the changes

of the buffer size of online-RDA.

Experiment 6.5. (Elec dataset) The electricity dataset (Elec). The electricity dataset

contains 45,312 instances, collected every 30 minutes from the Australian New

South Wales Electricity Market between 7 May 1996 and 5 Dec 1998. In this market,

prices are not fixed, but rather they are affected by supply and demand. This dataset

contains eight features and two classes (up, down) and has been widely used to

evaluate concept drift adaptation. The dataset is available from MOA’s website Bifet

et al. (2010a).

Experiment 6.6. (Weather dataset) Nebraska weather prediction dataset (Weather).

The US National Oceanic and Atmospheric Administration compiled this dataset. It

contains eight features and 18,159 instances with 31% positive (rain) class, and 69%

negative (no rain) class. This dataset is summarized in Elwell and Polikar (2011) and

is available at Polikar and Elwell (2011).

Experiment 6.7. (Spam dataset) The spam filtering dataset (Spam). This dataset is

a collection of 9,324 email messages derived from the Spam Assassin collection and

is available online 1. The original dataset contains 39,916 features and 9,324 emails.

It is commonly considered to be a typical gradual drift dataset Katakis et al. (2009).

According to Katakis’s work Katakis et al. (2009), 500 attributes were retrieved

using the Chi-square feature selection approach.

1http://spamassassin.apache.org/

6.4 Experiment and Evaluation 147

Experiment 6.8. (Usenet dataset) The Usenet1 and Usenet2 datasets (Usenet1,

Usenet2). These two datasets were derived from Usenet posts that exist in the 20

Newsgroup collection. The task is to classify messages as either interesting or junk

as they arrive. The dataset is split into five periods. The data in each time period

have different user interest topics. All data instances were concentrated to simulated

sudden/reoccurring drift.

Experiment 6.9. (Airline dataset) The airline dataset (Airline). This dataset consists

of flight arrival and departure details for all commercial flights within the US, from

October 1987 to April 2008. This dataset was originally proposed for regression

problems at the Data Expo competition, 2009. It was subsequently modified by the

MOA team Bifet et al. (2010a) for prediction analysis. Each data instance has seven

features and two classes with 539,388 records in total.

Experiment 6.10. (Covtype dataset) The forest cover type dataset (Covtype). The

task is to predict the type of forest cover from a given observation as determined by

the US Forest Service (USFS) Region 2 resource information system. Each instance

was derived from data originally obtained from the US Geological Survey (USGS)

and USFS data.

From the accuracy and execution efficiency results in Tables 6.5, 6.6, and 6.7, we

conclude that different drift adaptation algorithms are suited for different applications;

there is no perfect algorithm that can achieve the best performance for all datasets.

While the average ranks provided only demonstrate the effectiveness of the algorithm

on the tested datasets, they do provide strong evidence that regional drift detection

and adaptation performed no worse than others in the tested situations, which proves

14
8

In
cr
em
en
ta
l
R
eg
io
n
al
D
ri
ft
A
d
ap
ta
ti
o
n

1 2 3 4
time 10 4

0

500

1000

E
le

c
bu

ffe
r s

iz
e

5000 10000 15000
time

0

500

1000

W
ea

th
er

 b
uf

fe
r s

iz
e

2000 4000 6000 8000
time

0

500

1000

S
pa

m
 b

uf
fe

r s
iz

e

200 600 1000 1400
time

0

500

1000

U
se

ne
t1

 b
uf

fe
r s

iz
e

200 600 1000 1400
time

0

500

1000
U

se
ne

t2
 b

uf
fe

r s
iz

e

1 2 3 4 5
time 10 5

0

500

1000

A
irl

in
e

bu
ffe

r s
iz

e

1 2 3 4 5
time 10 5

0

500

1000

C
ov

er
ty

pe
 b

uf
fe

r s
iz

e

Figure 6.4 The buffer size of online-RDA on real-world datasets. From the pattern of the buffer size, we conclude that the electricity and
weather datasets triggers drift alarms very often, which implies that high false alarm drift detection algorithms may also achieve good

results. This issue has been discussed in detail in [52]. The Spam, Usenet1, Usenet2, and Covtype datasets seem to have no certain drift

patterns, while the airline dataset seems to have a regularly recurrent drift pattern.

6.5 Summary 149

Table 6.4 Online-RDA evaluation real-world dataset characteristics

Dataset #Instances #Attributes #Class

Elec 45312 8 2 (up, down)

Weather 18159 8 2 (rain, no rain)

Spam 9324 500 2 (spam, legitimate)

Usenet1 1500 99 2 (interested, non-interested)

Usenet2 1500 99 2 (interested, non-interested)

Airline 539383 7 2 (delay, not delay)

Covtype 581012 54 7 multiclass

that regional drift adaptation can be an alternative method for addressing concept

drift detection and adaptation problems.

In terms of the algorithm’s efficiency, online-RDA manifested no drawbacks to

execution time. Memory costs were high because online-RDA uses multi-threading,

which consumes more memory. However, this problem can be easily solved via

distributed computing. In addition, the Covtype dataset has more attributes and

data instances than the Airline dataset; however, the execution time for online-RDA,

ADWIN-RNF, and AUE2 on Covtype was much faster. Overall, we conclude that

the execution time of concept drift adaptation algorithms might be related to the

number of drifts in the datasets. In other words, high drift detection accuracy may

result in high execution time. This phenomenon inspired us to reconsider the balance

between drift detection and execution time.

6.5 Summary

The novelty and main contribution of this chapter lies in its aim to divide conventional

concept drift problems into a set of regional drift problems, which can be solved more

easily as a smaller set of individual regional drifts, with the ultimate goal of achieving

15
0

In
cr
em
en
ta
l
R
eg
io
n
al
D
ri
ft
A
d
ap
ta
ti
o
n

Table 6.5 Online-RDA evaluation real-world datasets accuracy (%)

Dataset online-RDA ADWIN-RNF SAMkNN HDDM-W kNNWA
HDDM-A AUE2 ECDD

Elec 83.08 88.17 82.78 82.47 81.72 82.10 87.74 82.95

Weather 78.21 78.74 77.73 75.04 76.58 76.13 75.24 74.16

Spam 96.30 95.60 95.79 92.93 93.24 92.00 84.29 90.40

Usenet1 68.80 68.40 65.67 69.67 58.33 69.33 63.47 71.60
Usenet2 73.00 71.93 71.00 67.93 67.93 68.00 68.87 67.73

Airline 73.49 65.24 60.35 64.54 66.22 65.73 67.51 63.45

Covtype 91.63 92.11 91.71 92.69 93.49 91.17 90.01 88.94

Average Rank 2.43 (1) 2.86 (2) 4.43 (3) 4.93 (4) 4.93 (4) 5.14 (6) 5.14 (6) 6.14 (8)

6
.5
S
u
m
m
ary

151

Table 6.6 Online-RDA evaluation real-world datasets execution time (ms)

Dataset online-RDA ADWIN_RNF SAMkNN HDDM-W kNNWA
HDDM-A AUE2 ECDD

Elec 10755 11222 7064 39017 108104 56025 5074 6082

Weather 8273 4005 3004 19008 54023 36018 2004 7005

Spam 15731 6006 23009 1161399 1606493 532170 11007 205070

Usenet1 1300 1003 1002 9005 33008 9005 1003 9006

Usenet2 1131 1005 1002 21013 31011 28015 1002 28013

Airline 1867974 355192 40014 428193 1522319 769335 300139 214094

Covtype 324442 123040 196057 3523827 7167952 2579568 156054 230064

Average Rank 4.71 (5) 2.79 (3) 2.21 (2) 5.93 (6) 7.86 (8) 6.36 (7) 1.86 (1) 4.29 (4)

15
2

In
cr
em
en
ta
l
R
eg
io
n
al
D
ri
ft
A
d
ap
ta
ti
o
n

Table 6.7 Online-RDA evaluation real-world datasets memory cost (GB RAM-Hours)

Datasets online-RDA ADWIN-RNF SAMkNN HDDM-W kNNWA
HDDM-A AUE2 ECDD

Elec 3.38E-03 1.19E-05 1.36E-05 7.42E-06 2.77E-05 1.05E-05 7.54E-07 1.39E-07
Weather 1.35E-03 4.54E-06 4.77E-06 9.63E-07 1.61E-05 7.91E-06 2.00E-07 3.56E-07

Spam 6.95E-04 1.11E-05 1.83E-04 1.03E-02 8.63E-03 4.58E-04 2.28E-05 9.52E-05

Usenet1 1.12E-04 1.43E-07 8.14E-07 3.87E-06 4.39E-05 4.04E-06 5.71E-09 4.07E-06

Usenet2 1.12E-04 1.01E-07 9.59E-07 2.94E-05 4.51E-05 4.50E-05 5.85E-09 4.36E-05

Airline 4.02E-02 5.49E-03 8.41E-05 4.89E-05 4.56E-04 1.57E-04 8.49E-03 3.75E-05
Covtype 4.33E-02 1.61E-05 5.64E-04 3.14E-03 8.82E-03 2.31E-03 2.18E-05 1.25E-04

Average Rank 7.71 (8) 3.00 (2) 4.00 (4) 4.29 (5) 6.71 (7) 5.00 (6) 2.29 (1) 3.00 (2)

6.5 Summary 153

a better concept drift adaptation result. To accomplish this aim, a regional drift

adaptation framework is proposed and an online regional drift adaptation algorithm

is developed. The experimental results show that the overall performance of regional

drift adaptation compares to other state-of-the-art algorithms, indicating that regional

drift detection and adaptation has potential as an alternative way of handling concept

drift. In addition, it has been realized that incremental drifts might cause drift

detection algorithms to continually trigger drift alarms, which may be not good for

drift adaptation. Also, the number of drifts in a dataset may contribute to execution

time. Therefore, a compromise may be required to balance execution time with drift

detection and adaptation accuracy.

Chapter 7

Conclusion and Future Research

This chapter concludes the thesis and provides further research directions for this

topic.

7.1 Conclusions

The rapidly changing environment of new products, new markets and new customer

behaviors inevitably results in the appearance of the concept drift problem, which

poses challenges to conventional machine learning assumptions that the training

data and new coming data conform to the same distribution pattern. Stream learning

is the first area to have raised these challenges and now it has spread out to many

other research topics, such as big data mining, active learning, and semi-supervised

learning. Although numerous concept drift detection and adaptation algorithms have

been developed, their research focus is mainly on addressing time-related concept

drift problems. Neither the definition nor the solution has given enough attention to

spatial-related concept drift problems. This thesis theoretically analysed the nature

156 Conclusion and Future Research

of concept drift and proved that concept drift detection and adaptation only based

on time-related information is inadequate and deficient. To improve the accuracy of

drift detection and the effectiveness of drift adaptation, spatial-related information

is introduced to describe concept drift, and a framework to convert conventional

concept drift problems as a set of regional drift problems is developed. The findings

of this study are summarised as follows:

1. The development of a novel regional drift definition to uniformly describe different

types of concept drift, which include both time and spatial information to explain the

nature of concept drift. (To achieve Objective 1)

Regional drift extends the conventional definition of concept drift with drift-

related spatial information. It has been called local drift in other literature, while

no one has given a formal definition to explain the difference and the relationship

between concept drift and local drift. The novelty of regional drift defined in this

study lies in that it uniformly defines concept drift under both discrete and continuous

feature space, as well as describing different types of concept drift as a set of regional

drift. Regional drift provides a theoretical guarantee that addressing the new defined

drift will simultaneously solve the commonly defined drifts.

2. The development of a nearest neighbor-based density variation identification

algorithm (NN-DVI) for regional drift-oriented drift detection. (To achieve Objective

2)

NN-DVI accumulates the density discrepancies of every possible region, and

then examines if the accumulated discrepancy is significant enough to trigger a drift

alarm. NN-DVI consists of data distribution dissimilarity measurement dnnps and a

7.1 Conclusions 157

tailored hypothesis test θ nnps used to determine the critical interval. Compared to

other algorithms, the tailored hypothesis test of NN-DVI proves that dnnps ∼ N(0,σ),

which is the key feature to improve drift detection accuracy while reducing the false

alarm rates. NN-DVI constructs regions based on nearest neighbors which can handle

arbitrary shapes and are friendly to high-dimensionality. NN-DVI demonstrates good

sensitiveness to local drifts as well as to global drifts without sacrificing the false

alarm rate.

3. The development of local drift degree-based density synchronization drift adapta-

tion algorithm (LDD-DSDA) for regional drift-oriented drift adaptation. (To achieve

Objective 3)

The core idea of LDD-DSDA is to detect significant regional density discrepan-

cies and to synchronize these discrepancies based on instance selection. LDD-DSDA

includes a regional density discrepancies measurement, called Local Drift Degree

(LDD), and a drifted data instance selection algorithm, called local drift degree-

based drifted instance selection (LDD-DIS). It is proved that the distribution of LDD

follows a normal distribution. Then, based on these findings, LDD-DIS highlights

suspicious instances, and LDD-DSDA removes or changes the weights of the sus-

picious instance to synchronize the density. LDD-DSDA tries to re-sample useful

data from old concepts, that is, LDD-DSDA is more selective in its action for drift

adaptation, while other drift adaptation algorithms try to remove all data instances

related to old concepts, called the "one-cut" strategy. The experimental results show

that LDD-DSDA can reduce the risk of unnecessary training data shrink, and can

achieve better accuracy than the "one-cut" strategy.

158 Conclusion and Future Research

4. The development of online regional drift adaptation (online-RDA) for incremental

concept drift adaptation. (To achieve Objective 4)

Online-RDA starts with an incremental regional drift adaptation framework

followed by a detailed algorithm that is implemented based on this framework.

The experimental evaluation demonstrates the effectiveness of online-RDA with

limited time and storage constraints and showed several interesting findings, such as

changing of the online-RDA buffer size reflects the drift patterns, which is a note-

worthy study for further research. Online-RDA requests no prior knowledge on the

window size, and has lower computational cost and can be executed on distributed

systems so that the time and storage limitation pose no challenges to the proposed

algorithm.

7.2 Future Study

This thesis identifies the following directions as future work:

• Semi-supervised dri f t detection and adaptation. Current drift detection and

adaptation methods assume that the true label of data instances will be available

after the prediction or classification is made, which implies both the detection

and adaptation process are supervised. However, in real-world scenarios,

the feedback of a prediction or classification, namely the true label, may not

always be available. So, learning how to improve drift detection and adaptation

algorithms for semi or unsupervised circumstances is highly desired.

• Concept-oriented data f iltering. Concept drift problems not only exist in

data stream learning, but are also ubiquitous in train-test batch-based learning,

7.2 Future Study 159

as long as the training and testing data is collected in a time interval rather

than at a time point. For example, in the training and testing data collected in

2017 for customer churn prediction, the available data may include several

concepts. The knowledge patterns may vary in different months or even weeks,

and the most helpful information for customer churn prediction in 2018 may

only be contained in December of 2017. Although the cross-validation strategy

can reduce the overfitting problems of the model build based on the entire

dataset of 2017, it may not be the best solution. Concept drift problems pose

additional challenges to the overfitting and underfitting issues. One possible

solution is concept-oriented data filtering.

• Severity awareness dri f t adaptation. Time and spatial information is im-

portant to identify a drift, which can be considered as two dimensional to

describe concept drift. Another important aspect could be drift severity which

measures and quantifies the significance of a drift. Such information may

further improve the effectiveness of the drift adaptation process for stream

learning.

• Video stream concept dri f t analysis. Since videos are also a type of stream-

ing data, it might possible to apply some of the newly proposed approaches

for video analysis related applications, such as Duan et al. (2012b); Li et al.

(2017a). In addition, the studies related to the connections and the differences

between concept drift adaptation and visual domain adaptation methods Duan

et al. (2012a); Li et al. (2014, 2017b) could also be very useful.

160 Conclusion and Future Research

Handling concept drift is an urgent and important issue. It is a key technique

in achieving adaptive systems. The future research on the adaptivity of machine

learning techniques and systems to concept drift has great prospects.

Bibliography

Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering

evolving data streams. In Proceedings of the Twenty-ninth International Confer-

ence on Very Large Databases, volume 29, pages 81–92. VLDB Endowment.

Ahmadi, Z. and Kramer, S. (2017). Modeling recurring concepts in data streams: a

graph-based framework. Knowledge and Information Systems.

Alippi, C., Boracchi, G., and Roveri, M. (2011). A just-in-time adaptive classification

system based on the intersection of confidence intervals rule. Neural Networks,

24(8):791–800.

Alippi, C., Boracchi, G., and Roveri, M. (2012). Just-in-time ensemble of classifiers.

In Proceedings of rhe 2012 International Joint Conference on Neural Networks,

pages 1–8. IEEE.

Alippi, C., Boracchi, G., and Roveri, M. (2013). Just-in-time classifiers for recur-

rent concepts. IEEE Transactions on Neural Networks and Learning Systems,

162 Bibliography

24(4):620–634.

Alippi, C., Boracchi, G., and Roveri, M. (2017). Hierarchical change-detection tests.

IEEE Transactions on Neural Networks and Learning Systems, 28(2):246–258.

Alippi, C. and Roveri, M. (2008a). Just-in-time adaptive classifiers part i: detecting

nonstationary changes. IEEE Transactions on Neural Networks, 19(7):1145–1153.

Alippi, C. and Roveri, M. (2008b). Just-in-time adaptive classifiers part ii: designing

the classifier. IEEE Transactions on Neural Networks, 19(12):2053–2064.

Andrzejak, A. and Gomes, J. B. (2012). Parallel concept drift detection with online

map-reduce. In Proceedings of the Twelfth IEEE International Conference on

Data Mining Workshops, pages 402–407.

Arabmakki, E. and Kantardzic, M. (2017). Som-based partial labeling of imbalanced

data stream. Neurocomputing, 262:120–133.

Bach, S. H. and Maloof, M. (2008). Paired learners for concept drift. In Proceedings

of the Tenth IEEE International Conference on Data Mining, pages 23–32.

Baena-García, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., and

Morales-Bueno, R. (2006). Early drift detection method. In Proceedings of the

Fourth International Workshop on Knowledge Discovery from Data Streams, pages

Vol. 6, pp. 77–86.

Bibliography 163

Barddal, J. P., Murilo Gomes, H., Enembreck, F., Pfahringer, B., and Bifet, A. (2016).

On dynamic feature weighting for feature drifting data streams. In Frasconi, P.,

Landwehr, N., Manco, G., and Vreeken, J., editors, Proceedings of the Fourteenth

Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 129–144. Springer.

Basseville, M. and Nikiforov, I. V. (1993). Detection of abrupt changes: theory and

application, volume 104. Prentice Hall Englewood Cliffs.

Bifet, A. and Gavaldà, R. (2007). Learning from time-changing data with adaptive

windowing. In Proceedings of the Seventh SIAM International Conference on

Data Mining, volume 7, page 2007. SIAM.

Bifet, A. and Gavaldà, R. (2009). Adaptive learning from evolving data streams. In

Proceedings of the Eighth International Symposium on Intelligent Data Analysis,

pages 249–260. Springer.

Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. (2010a). Moa: massive online

analysis. Journal of Machine Learning Research, 99:1601–1604.

Bifet, A., Holmes, G., and Pfahringer, B. (2010b). Leveraging bagging for evolving

data streams. In Proceedings of the 2010 Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 135–150. Springer.

164 Bibliography

Bifet, A., Holmes, G., Pfahringer, B., and Frank, E. (2010c). Fast perceptron decision

tree learning from evolving data streams. In Zaki, M. J., Yu, J. X., Ravindran,

B., and Pudi, V., editors, Proceedings of the Fourteenth Pacific-Asia Conference

on Knowledge Discovery and Data Mining, pages 299–310. Springer Berlin

Heidelberg.

Bifet, A., Holmes, G., Pfahringer, B., and Gavaldà, R. (2009a). Improving adaptive

bagging methods for evolving data streams. In Zhou, Z.-H. and Washio, T.,

editors, Proceedings of the First Advances in Machine Learning, Lecture Notes in

Computer Science, pages 23–37, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., and Gavaldà, R. (2009b). New

ensemble methods for evolving data streams. In Proceedings of the Fifteenth

ACM International Conference on Knowledge Discovery and Data Mining, pages

139–148. ACM.

Bifet, A., Morales, G. d. F., Read, J., Holmes, G., and Pfahringer, B. (2015). Efficient

online evaluation of big data stream classifiers. In Proceedings of the Twenty-first

ACM International Conference on Knowledge Discovery and Data Mining, pages

59–68. ACM.

Bifet, A., Pfahringer, B., Read, J., and Holmes, G. (2013). Efficient data stream

classification via probabilistic adaptive windows. In Proceedings of the Twenty-

Bibliography 165

eighth ACM Symposium on Applied Computing, pages 801–806. ACM.

Blizard, W. D. (1988). Multiset theory. Notre Dame Journal of Formal Logic,

30(1):36–66.

Box, G. E., Hunter, W. G., and Hunter, J. S. (1978). Statistics for experimenters: an

introduction to design, data analysis, and model building, volume 1. JSTOR.

Brzeziński, D. and Stefanowski, J. (2011). Accuracy updated ensemble for data

streams with concept drift. In Proceedings of the 2011 International Conference

on Hybrid Artificial Intelligence Systems, pages 155–163. Springer.

Brzeziński, D. and Stefanowski, J. (2014). Reacting to different types of concept

drift: the accuracy updated ensemble algorithm. IEEE Transactions on Neural

Networks and Learning Systems, 25(1):81–94.

Bu, L., Alippi, C., and Zhao, D. (2016). A pdf-free change detection test based

on density difference estimation. IEEE Transactions on Neural Networks and

Learning Systems, PP(99):1–11.

Bu, L., Zhao, D., and Alippi, C. (2017). An incremental change detection test

based on density difference estimation. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, PP(99):1–13.

166 Bibliography

Cavalcante, R. C., Minku, L. L., and Oliveira, A. L. I. (2016). Fedd: feature

extraction for explicit concept drift detection in time series. In Proceedings of the

2016 International Joint Conference on Neural Networks, pages 740–747.

Cendrowska, J. (1987). Prism: an algorithm for inducing modular rules. International

Journal of Man-Machine Studies, 27(4):349–370.

Chandra, S., Haque, A., Khan, L., and Aggarwal, C. (2016). An adaptive frame-

work for multistream classification. In Proceedings of the Twenty-fifth ACM

International on Conference on Information and Knowledge Management, pages

1181–1190. ACM.

Chu, F. and Zaniolo, C. (2004). Fast and light boosting for adaptive mining of

data streams. In Proceedings of the Eighth Pacific-Asia Advances in Knowledge

Discovery and Data Mining, pages 282–292. Springer Berlin Heidelberg.

Chu, W., Zinkevich, M., Li, L., Thomas, A., and Tseng, B. (2011). Unbiased

online active learning in data streams. In Proceedings of the Seventeenth ACM

International Conference on Knowledge Discovery and Data Mining, pages 195–

203. ACM.

Dasu, T., Krishnan, S., Venkatasubramanian, S., and Yi, K. (2006). An information-

theoretic approach to detecting changes in multi-dimensional data streams. In

Bibliography 167

Proceedings of the Twenty-eighth Symposium on the Interface of Statistics, Com-

puting Science, and Applications, pages 1–24. Citeseer.

Ditzler, G. and Polikar, R. (2011). Semi-supervised learning in nonstationary envi-

ronments. In Proceedings of the 2011 International Joint Conference on Neural

Networks, pages 2741–2748.

Ditzler, G. and Polikar, R. (2013). Incremental learning of concept drift from stream-

ing imbalanced data. IEEE Transactions on Knowledge and Data Engineering,

25(10):2283–2301.

Ditzler, G., Roveri, M., Alippi, C., and Polikar, R. (2015). Learning in nonstationary

environments: a survey. IEEE Computational Intelligence Magazine, 10(4):12–25.

Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. In Proceedings

of the Sixth ACM International Conference on Knowledge Discovery and Data

Mining, pages 71–80. ACM.

Dries, A. and Rückert, U. (2009). Adaptive concept drift detection. Statistical

Analysis and Data Mining: The ASA Data Science Journal, 2(5-6):311–327.

Duan, L., Tsang, I. W., and Xu, D. (2012a). Domain transfer multiple kernel learning.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):465–479.

168 Bibliography

Duan, L., Xu, D., Tsang, I. W.-H., and Luo, J. (2012b). Visual event recognition in

videos by learning from web data. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 34(9):1667–1680.

Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses. The

Annals of Mathematical Statistics, pages 181–187.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC Press.

Elwell, R. and Polikar, R. (2011). Incremental learning of concept drift in nonsta-

tionary environments. IEEE Transactions on Neural Networks, 22(10):1517–31.

Frías-Blanco, I., Campo-Ávila, J. d., Ramos-Jiménez, G., Carvalho, A. C. P. L. F.,

Ortiz-Díaz, A., and Morales-Bueno, R. (2016). Online adaptive decision trees

based on concentration inequalities. Knowledge-Based Systems, 104:179–194.

Frias-Blanco, I., Campo-Avila, J. d., Ramos-Jimenes, G., Morales-Bueno, R., Ortiz-

Diaz, A., and Caballero-Mota, Y. (2015). Online and non-parametric drift detection

methods based on hoeffding’s bounds. IEEE Transactions on Knowledge and

Data Engineering, 27(3):810–823.

Gama, J. and Castillo, G. (2006). Learning with local drift detection. In Pro-

ceedings of the Second International Conference on Advanced Data Mining and

Applications, pages 42–55. Springer.

Bibliography 169

Gama, J. and Kosina, P. (2013). Recurrent concepts in data streams classification.

Knowledge and Information Systems, 40(3):489–507.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A

survey on concept drift adaptation. ACM Computing Surveys, 46(4):1–37.

Gama, J., Medas, P., Castillo, G., and Rodrigues, P. (2004). Learning with drift

detection. In Proceedings of the Seventeenth Brazilian Symposium on Artificial

Intelligence, volume 3171, pages 286–295. Springer.

Gama, J., Rocha, R., and Medas, P. (2003). Accurate decision trees for mining high-

speed data streams. In Proceedings of the Ninth ACM international conference on

Knowledge discovery and data mining, pages 523–528. ACM.

Gama, J., Sebastião, R., and Rodrigues, P. P. (2012). On evaluating stream learning

algorithms. Machine Learning, 90(3):317–346.

Gomes, H. M., Barddal, J. P., Enembreck, F., and Bifet, A. (2017a). A survey

on ensemble learning for data stream classification. ACM Computing Surveys,

50(2):1–36.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B.,

Holmes, G., and Abdessalem, T. (2017b). Adaptive random forests for evolving

data stream classification. Machine Learning.

170 Bibliography

Gomes, J. B., Gaber, M. M., Sousa, P. A., and Menasalvas, E. (2014). Mining

recurring concepts in a dynamic feature space. IEEE Transactions on Neural

Networks and Learning Systems, 25(1):95–110.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A

kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773.

Gu, F., Zhang, G., Lu, J., and Lin, C.-T. (2016). Concept drift detection based

on equal density estimation. In Proceedings of the 2016 International Joint

Conference on Neural Networks, pages 24–30. IEEE.

Han, D., Giraud-Carrier, C., and Li, S. (2015). Efficient mining of high-speed

uncertain data streams. Applied Intelligence, 43(4):773–785.

Haque, A., Khan, L., and Baron, M. (2016a). Sand: semi-supervised adaptive novel

class detection and classification over data stream. In Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence, pages 1652–1658.

Haque, A., Khan, L., Baron, M., Thuraisingham, B., and Aggarwal, C. (2016b).

Efficient handling of concept drift and concept evolution over stream data. In

Proceedings of the Thirty-second IEEE International Conference on Data Engi-

neering, pages 481–492.

Bibliography 171

Harel, M., Mannor, S., El-Yaniv, R., and Crammer, K. (2014). Concept drift detection

through resampling. In Proceedings of the Thirty-first International Conference

on Machine Learning, pages 1009–1017.

Heng, W. and Abraham, Z. (2015). Concept drift detection for streaming data.

In Proceedings of the 2015 International Joint Conference on Neural Networks,

pages 1–9.

Hosseini, M. J., Gholipour, A., and Beigy, H. (2015). An ensemble of cluster-

based classifiers for semi-supervised classification of non-stationary data streams.

Knowledge and Information Systems, 46(3):567–597.

Huang, D. T. J., Koh, Y. S., Dobbie, G., and Bifet, A. (2015). Drift detection using

stream volatility. In Appice, A., Rodrigues, P. P., Santos Costa, V., Soares, C.,

Gama, J., and Jorge, A., editors, Proceedings of the Joint European Conference

on Machine Learning and Knowledge Discovery in Databases, pages 417–432.

Springer International Publishing.

Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme learning machine:

Theory and applications. Neurocomputing, 70(1-3):489–501.

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-changing data

streams. In Proceedings of the Seventh ACM International Conference on Knowl-

edge Discovery and Data Mining, pages 97–106. ACM.

172 Bibliography

Ikonomovska, E., Gama, J., and Džeroski, S. (2011). Learning model trees from

evolving data streams. Data Mining and Knowledge Discovery, 23(1):128–168.

Ikonomovska, E., Gama, J., and Džeroski, S. (2015). Online tree-based ensembles

and option trees for regression on evolving data streams. Neurocomputing, 150,

Part B(0):458–470.

Ikonomovska, E., Gama, J., Sebastião, R., and Gjorgjevik, D. (2009). Regression

trees from data streams with drift detection. In Gama, J., Costa, V. S., Jorge, A. M.,

and Brazdil, P. B., editors, Proceedings of the Twelfth International Conference

on Discovery Science, pages 121–135, Berlin. Springer.

Katakis, I., Tsoumakas, G., Banos, E., Bassiliades, N., and Vlahavas, I. (2009).

An adaptive personalized news dissemination system. Journal of Intelligent

Information Systems, 32(2):191–212.

Katakis, I., Tsoumakas, G., and Vlahavas, I. P. (2008). An ensemble of classifiers for

coping with recurring contexts in data streams. In Proceedings of the Thirteenth

European Conference on Artificial Intelligence, pages 763–764.

Katal, A., Wazid, M., and Goudar, R. H. (2013). Big data: Issues, challenges, tools

and good practices. In Proceedings of the Sixth International Conference on

Contemporary Computing, pages 404–409.

Bibliography 173

Kawahara, Y. and Sugiyama, M. (2012). Sequential change-point detection based on

direct density-ratio estimation. Statistical Analysis and Data Mining, 5(2):114–

127.

Kifer, D., Ben-David, S., and Gehrke, J. (2004). Detecting change in data streams. In

Proceedings of the Thirtieth International Conference on Very Large Databases,

volume 30, pages 180–191. VLDB Endowment.

Kolter, J. Z. and Maloof, M. A. (2007). Dynamic weighted majority: an ensemble

method for drifting concepts. Journal of Machine Learning Research, 8:2755–

2790.

Kosina, P. and Gama, J. (2015). Very fast decision rules for classification in data

streams. Data Mining and Knowledge Discovery, 29(1):168–202.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., and Woźniak, M. (2017).

Ensemble learning for data stream analysis: a survey. Information Fusion, 37:132–

156.

Le, T., Stahl, F., Gaber, M. M., Gomes, J. B., and Fatta, G. D. (2017). On expres-

siveness and uncertainty awareness in rule-based classification for data streams.

Neurocomputing, 265:127–141.

Li, P., Wu, X., Hu, X., and Wang, H. (2015). Learning concept-drifting data streams

with random ensemble decision trees. Neurocomputing, 166:68–83.

174 Bibliography

Li, W., Chen, L., Xu, D., and Van Gool, L. (2017a). Visual recognition in rgb images

and videos by learning from rgb-d data. IEEE Transactions on Pattern Analysis

and Machine Intelligence.

Li, W., Duan, L., Xu, D., and Tsang, I. W. (2014). Learning with augmented features

for supervised and semi-supervised heterogeneous domain adaptation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 36(6):1134–1148.

Li, W., Xu, Z., Xu, D., Dai, D., and Van Gool, L. (2017b). Domain generalization

and adaptation using low rank exemplar svms. IEEE Transactions on Pattern

Analysis and Machine Intelligence.

Žliobaitė, I., Bifet, A., Pfahringer, B., and Holmes, G. (2014). Active learning with

drifting streaming data. IEEE Transactions on Neural Networks and Learning

Systems, 25(1):27–39.

Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., and Holmes, G. (2015). Evaluation

methods and decision theory for classification of streaming data with temporal

dependence. Machine Learning, 98(3):455–482.

Žliobaitė, I., Pechenizkiy, M., and Gama, J. (2016). An overview of concept drift

applications, book section Chapter 4, pages 91–114. Studies in Big Data. Springer

International Publishing, Cham.

Bibliography 175

Liu, A., Lu, J., Liu, F., and Zhang, G. (2018). Accumulating regional density

dissimilarity for concept drift detection in data streams. Pattern Recognition,

76(Supplement C):256–272.

Liu, A., Song, Y., Zhang, G., and Lu, J. (2017a). Regional concept drift detection

and density synchronized drift adaptation. In Proceedings of the Twenty-sixth In-

ternational Joint Conference on Artificial Intelligence, pages 2280–2286. Accept.

Liu, A., Zhang, G., and Lu, J. (2017b). Fuzzy time windowing for gradual concept

drift adaptation. In Proceedings of the Twenty-sixth IEEE International Conference

on Fuzzy Systems. IEEE.

Liu, A., Zhang, G., Lu, J., Lu, N., and Lin, C.-T. (2016a). An online competence-

based concept drift detection algorithm. In Proceedings of the 2016 Australasian

Joint Conference on Artificial Intelligence, pages 416–428. Springer.

Liu, D., Wu, Y., and Jiang, H. (2016b). Fp-elm: an online sequential learning

algorithm for dealing with concept drift. Neurocomputing, 207:322–334.

Losing, V., Hammer, B., and Wersing, H. (2016). Knn classifier with self adjusting

memory for heterogeneous concept drift. In Proceedings of the Sixteenth IEEE

International Conference on Data Mining, pages 291–300.

Lu, N., Lu, J., Zhang, G., and De Mantaras, R. L. (2016). A concept drift-tolerant

case-base editing technique. Artificial Intelligence, 230:108–133.

176 Bibliography

Lu, N., Zhang, G., and Lu, J. (2014). Concept drift detection via competence models.

Artificial Intelligence, 209:11–28.

Manly, B. F. J. and Mackenzie, D. (2000). A cumulative sum type of method for

environmental monitoring. Environmetrics, 11(2):151–166.

Minku, L. L., White, A. P., and Yao, X. (2010). The impact of diversity on online en-

semble learning in the presence of concept drift. IEEE Transactions on Knowledge

and Data Engineering, 22(5):730–742.

Mirza, B. and Lin, Z. (2016). Meta-cognitive online sequential extreme learning

machine for imbalanced and concept-drifting data classification. Neural Networks,

80:79–94.

Mirza, B., Lin, Z., and Liu, N. (2015). Ensemble of subset online sequential extreme

learning machine for class imbalance and concept drift. Neurocomputing, 149:316–

329.

Morales, G. D. F., Bifet, A., Khan, L., Gama, J., and Fan, W. (2016). Iot big

data stream mining. In Proceedings of the Twenty-second ACM International

Conference on Knowledge Discovery and Data Mining, pages 2119–2120. ACM.

Moreno-Torres, J. G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N. V., and Herrera,

F. (2012). A unifying view on dataset shift in classification. Pattern Recognition,

45(1):521–530.

Bibliography 177

Nguyen, V., Nguyen, T. D., Le, T., Venkatesh, S., and Phung, D. (2016). One-

pass logistic regression for label-drift and large-scale classification on distributed

systems. In Proceedings of the Sixteenth IEEE International Conference on Data

Mining, pages 1113–1118.

Nishida, K. and Yamauchi, K. (2007). Detecting concept drift using statistical

testing. In Corruble, V., Takeda, M., and Suzuki, E., editors, Proceedings of the

Tenth International Conference on Discovery Science, pages 264–269, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Opdyke, J. (2003). Fast permutation tests that maximize power under conventional

monte carlo sampling for pairwise and multiple comparisons. Journal of Modern

Applied Statistical Methods, 2(1):5.

Oza, N. C. and Russell, S. (2001). Experimental comparisons of online and batch

versions of bagging and boosting. In Proceedings of the Seventh ACM Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 359–364,

502565. ACM.

Pietruczuk, L., Rutkowski, L., Jaworski, M., and Duda, P. (2016). A method for

automatic adjustment of ensemble size in stream data mining. In Proceedings of

the 2016 International Joint Conference on Neural Networks, pages 9–15.

178 Bibliography

Polikar, R. and Elwell, R. (2011). Benchmark datasets for evaluating concept drift

nse algorithms. In Editor, editor, Conference Name, volume Volume, page Pages,

[Online] http://users.rowan.edu/ polikar/research/NSE. Publisher.

Pratama, M., Anavatti, S. G., Joo, M., and Lughofer, E. D. (2015). pclass: an

effective classifier for streaming examples. IEEE Transactions on Fuzzy Systems,

23(2):369–386.

Pratama, M., Lu, J., Lughofer, E., Zhang, G., and Anavatti, S. (2016). Scaffolding

type-2 classifier for incremental learning under concept drifts. Neurocomputing,

191:304–329.

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., and Herrera, F. (2017).

A survey on data preprocessing for data stream mining: Current status and future

directions. Neurocomputing, 239:39–57.

Raza, H., Prasad, G., and Li, Y. (2015). Ewma model based shift-detection methods

for detecting covariate shifts in non-stationary environments. Pattern Recognition,

48(3):659–669.

Ross, G. J., Adams, N. M., Tasoulis, D. K., and Hand, D. J. (2012). Exponentially

weighted moving average charts for detecting concept drift. Pattern Recognition

Letters, 33(2):191–198.

Bibliography 179

Rutkowski, L., Jaworski, M., Pietruczuk, L., and Duda, P. (2014). Decision trees for

mining data streams based on the gaussian approximation. IEEE Transactions on

Knowledge and Data Engineering, 26(1):108–119.

Rutkowski, L., Jaworski, M., Pietruczuk, L., and Duda, P. (2015). A new method for

data stream mining based on the misclassification error. IEEE Transactions on

Neural Networks and Learning Systems, 26(5):1048–1059.

Rutkowski, L., Pietruczuk, L., Duda, P., and Jaworski, M. (2013). Decision trees

for mining data streams based on the mcdiarmid’s bound. IEEE Transactions on

Knowledge and Data Engineering, 25(6):1272–1279.

Sarnelle, J., Sanchez, A., Capo, R., Haas, J., and Polikar, R. (2015). Quantifying

the limited and gradual concept drift assumption. In Proceedings of the 2015

International Joint Conference on Neural Networks, pages 1–8.

Schlimmer, J. C. and Granger Jr, R. H. (1986). Incremental learning from noisy data.

Machine Learning, 1(3):317–354.

Shao, J., Ahmadi, Z., and Kramer, S. (2014). Prototype-based learning on concept-

drifting data streams. In Proceedings of the Twentieth ACM International Con-

ference on Knowledge Discovery and Data Mining, pages 412–421, 2623609.

ACM.

180 Bibliography

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., de Carvalho, A. C., and

Gama, J. (2013). Data stream clustering: A survey. ACM Computing Surveys,

46(1):1–31.

Soares, S. G. and Araújo, R. (2016). An adaptive ensemble of on-line extreme

learning machines with variable forgetting factor for dynamic system prediction.

Neurocomputing, 171:693–707.

Song, X., He, H., Niu, S., and Gao, J. (2016). A data streams analysis strategy based

on hoeffding tree with concept drift on hadoop system. In Proceedings of the

Fourth International Conference on Advanced Cloud and Big Data, pages 45–48.

Song, X., Wu, M., Jermaine, C., and Ranka, S. (2007). Statistical change detection

for multi-dimensional data. In Proceedings of the Thirteenth ACM International

Conference on Knowledge Discovery and Data Mining, pages 667–676, 1281264.

ACM.

Sousa, M. R., Gama, J., and Brandão, E. (2016). A new dynamic modeling framework

for credit risk assessment. Expert Systems with Applications, 45:341–351.

Stoica, I., Song, D., Popa, R. A., Patterson, D. A., Mahoney, M. W., Katz, R. H.,

Joseph, A. D., Jordan, M., Hellerstein, J. M., Gonzalez, J., Goldberg, K., Ghodsi,

A., Culler, D. E., and Abbeel, P. (2017). A berkeley view of systems challenges

Bibliography 181

for ai. Report UCB/EECS-2017-159, EECS Department, University of California,

Berkeley.

Storkey, A. (2009). When training and test sets are different: characterizing learning

transfer. Dataset Shift in Machine Learning, pages 3–28.

Street, W. N. and Kim, Y. (2001). A streaming ensemble algorithm (sea) for large-

scale classification. In Proceedings of the Seventh ACM International Conference

on Knowledge Discovery and Data Mining, pages 377–382, 502568. ACM.

Sun, Y., Tang, K., Minku, L. L., Wang, S., and Yao, X. (2016). Online ensemble

learning of data streams with gradually evolved classes. IEEE Transactions on

Knowledge and Data Engineering, 28(6):1532–1545.

Tan, P.-N. (2006). Introduction to data mining. Pearson Education India.

Tennant, M., Stahl, F., Rana, O., and Gomes, J. B. (2017). Scalable real-time

classification of data streams with concept drift. Future Generation Computer

Systems, 75:187–199.

Tsymbal, A. (2004). The problem of concept drift: definitions and related work.

Thesis, School of Computer Science and Statistics, Computer Science Department,

Trinity College Dublin.

182 Bibliography

Wang, S., Minku, L. L., Ghezzi, D., Caltabiano, D., Tino, P., and Yao, X. (2013).

Concept drift detection for online class imbalance learning. In Proceedings of the

2013 International Joint Conference on Neural Networks, pages 1–10.

Wang, S., Minku, L. L., and Yao, X. (2015). Resampling-based ensemble methods

for online class imbalance learning. IEEE Transactions on Knowledge and Data

Engineering, 27(5):1356–1368.

Wang, S., Minku, L. L., and Yao, X. (2018). A systematic study of online class

imbalance learning with concept drift. IEEE Transactions on Neural Networks

and Learning Systems.

Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift and

hidden contexts. Machine Learning, 23(1):69–101.

Wu, X., Li, P., and Hu, X. (2012). Learning from concept drifting data streams with

unlabeled data. Neurocomputing, 92:145–155.

Xu, S. and Wang, J. (2017). Dynamic extreme learning machine for data stream

classification. Neurocomputing, 238:433–449.

Xu, Y., Xu, R., Yan, W., and Ardis, P. (2017). Concept drift learning with alternating

learners. In Proceedings of the 2017 International Joint Conference on Neural

Networks, pages 2104–2111.

Bibliography 183

Yamada, M., Kimura, A., Naya, F., and Sawada, H. (2013). Change-point detection

with feature selection in high-dimensional time-series data. In Proceedings of

the Twenty-Third International Joint Conference on Artificial Intelligence, pages

1827–1833.

Yang, H. and Fong, S. (2012). Incrementally optimized decision tree for noisy big

data. In Proceedings of the First International Workshop on Big Data, Streams

and Heterogeneous Source Mining Algorithms, Systems, Programming Models

and Applications, pages 36–44, 2351322. ACM.

Yang, H. and Fong, S. (2015). Countering the concept-drift problems in big data

by an incrementally optimized stream mining model. Journal of Systems and

Software, 102:158–166.

Yeh, Y.-R. and Wang, Y.-C. F. (2013). A rank-one update method for least squares

linear discriminant analysis with concept drift. Pattern Recognition, 46(5):1267–

1276.

Yin, X.-C., Huang, K., and Hao, H.-W. (2015). De2: dynamic ensemble of ensembles

for learning nonstationary data. Neurocomputing, 165:14–22.

You, S.-C. and Lin, H.-T. (2016). A simple unlearning framework for online learning

under concept drifts. In Proceedings of the Twenty-first Pacific-Asia Conference

on Knowledge Discovery and Data Mining, pages 115–126. Springer.

184 Bibliography

Yu, S. and Abraham, Z. (2017). Concept drift detection with hierarchical hypothesis

testing. In Proceedings of the Seventeenth SIAM International Conference on

Data Mining, pages 768–776. SIAM.

Zhang, P., Li, J., Wang, P., Gao, B. J., Zhu, X., and Guo, L. (2011). Enabling fast

prediction for ensemble models on data streams. In Proceedings of the Seventeenth

ACM International Conference on Knowledge Discovery and Data Mining, pages

177–185. ACM.

Zhang, P., Zhu, X., and Shi, Y. (2008). Categorizing and mining concept drifting

data streams. In Proceedings of the Fourteenth ACM International Conference on

Knowledge Discovery and Data Mining, pages 812–820. ACM.

Zhang, P., Zhu, X., Tan, J., and Guo, L. (2010). Classifier and cluster ensembles

for mining concept drifting data streams. In Proceedings of the Tenth IEEE

International Conference on Data Mining, pages 1175–1180.

Zhang, Y., Chu, G., Li, P., Hu, X., and Wu, X. (2017). Three-layer concept drifting

detection in text data streams. Neurocomputing, 260:393–403.

Appendix

List of Abbreviations

ADWIN ADaptive WINdowing pp. 31, 37, 43

ARF Adaptive Random Fores p. 43

ASL achieved significance level pp. 73, 88

AUE Accuracy Update Ensemble pp. 45, 120

CDF cumulative distribution function p. 47

CI-CUSUM Computational Intelligence-based CUSUM test p. 34

CM CompetenceModel-based drift detection pp. 34, 37, 81, 89

CUSUM CUmulative SUM pp. 34, 40

CVFDT Concept-adapting Very Fast Decision Tree pp. 7, 41, 42

DDM Drift Detection Method pp. 22, 29, 31, 37

DELM Dynamic Extreme Learning Machine pp. 29, 37, 39

DWM Dynamic Weighted Majority p. 44

ECDD EWMA for Concept Drift Detection pp. 29, 37, 120, 123

EDDM Early Drift Detection Method pp. 29, 37

EDE Equal Density Estimation pp. 34, 37

ELM Extreme Learning Machine pp. 29, 39

186 Appendix

ESOS-ELM Ensemble of Subset Online Sequential Extreme Learning

Machine p. 21

EWMA Exponentially Weighted Moving Average p. 29

FEDD Feature Extraction for explicit concept Drift Detection

p. 24

FN false negative p. 35

FP false positive pp. 5, 35

FP-ELM Forgetting Parameters Extreme Learning Machine p. 39

FW-DDM Fuzzy Windowing Drift Detection Method pp. 29, 37

HAT Hoeffding Adaptive Tree p. 120

HCDTs Hierarchical Change-Detection Tests pp. 36, 37

HDDM Heoffding’s inequality based Drift Detection Method

pp. 29, 37, 120

HLFR Hierarchical Linear-Four Rate p. 37

IoT Internet of Things pp. 1, 26

IV Information Value p. 36

IV-Jac Information Value and Jaccard similarity p. 36

JIT Just-In-Time adaptive classifiers pp. 34, 37

kNN k-Nearest Neighbor pp. 40, 113

KS Kolmogorov-Smirnov test p. 80

LCM lowest common multiple p. 64

LDD Local Drift Degree pp. 13, 108, 110, 113, 117, 118, 125

LDD-DIS LocalDriftDegree-basedDrifted Instance Selection pp. 13,

113, 115, 117, 118

List of Abbreviations 187

LDD-DSDA Local Drift Degree-based Density Synchronization Drift

Adaptation pp. viii, 10, 13, 34, 37, 115–117, 120, 123, 125

Learn++.CDS Learn++ for Concept Drift with SMOTE p. 21

Learn++.NIE Learn++ for Non-stationary and Imbalanced

Environments p. 21

Learn++.NSE Learn++ for Non-Stationary Environment pp. 21, 44

LFR Linear Four Rate drift detection pp. 35, 37

LLDD Learning with Local Drift Detection pp. 29, 37

LSDD-CDT Least Squares Density Difference-based Change Detection

Test pp. 34, 37

LSLDA Least Squares Linear Discovery Analysis p. 24

LVGB LeVeraGing Bagging p. 43

MC-NN Micro-Cluster Nearest Neighbor p. 22

MMD Maximum Mean Discrepancy p. 88

NEFCS Noise-Enhanced Fast Context Switch p. 40

NN-DVI Nearest Neighbor-based Density Variation Identification

pp. viii, 9, 13, 54, 55, 76, 81, 82, 88, 89

NNPS Nearest Neighbor-based Partitioning Schema pp. 60, 62,

63, 66, 67, 69, 77

OMR-DDM Online Map-Reduce Drift Detection Method p. 22

online-RDA online Regional Drift Adaptation pp. viii, 10, 13, 129

OOB Oversampling-based Online Bagging p. 21

OS-ELM Online Sequential Extreme Learning Machine pp. 21, 39

OWA Optimal Weights Adjustment p. 45

188 Appendix

PCA principal component analysis p. 34

PDF probability density function p. 47

RD Relativized Discrepancy pp. 33, 37

RDA Regional Drift Adaptation pp. viii, 13

SAMkNN Self Adjusting Memory kNN pp. 39, 120

SAND Semi-supervised Adaptive Novel class Detection p. 23

SMOTE Synthetic Minority class Oversampling TEchnique p. 21

SRR Stepwise Redundancy Removal p. 40

STEPD Statistical Test of Equal Proportions Detection pp. 31, 37

TN true negative p. 35

TP true positive pp. 5, 35

TSMSD-EWMA Two-Stage Multivariate Shift-Detection based on EWMA

p. 37

UOB Undersampling-based Online Bagging p. 21

VFDR Very Fast Decision Rules p. 24

VFDT Very Fast Decision Tree pp. 41, 42

VFDTc VFDT deal with continuous data p. 41

WoE Weight of Evidence p. 36

	Title Page
	Certificate of Authorship/Originality
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Research Questions and Objectives
	1.3 Research Contributes
	1.4 Research Significance
	1.5 Thesis Structure
	1.6 Publications Related to this Thesis

	2 Literature Review
	2.1 Concept Drift
	2.1.1 Definition of concept drift and sources
	2.1.2 Classification of concept drift
	2.1.3 Related research topics and applications
	2.1.3.1 Related research topics
	2.1.3.2 Related applications

	2.2 Concept Drift Detection and Adaptation
	2.2.1 Concept drift detection
	2.2.1.1 Drift detection framework
	2.2.1.2 Concept drift detection algorithms
	2.2.1.3 A summary of drift detection algorithms

	2.2.2 Concept drift adaptation
	2.2.2.1 Single learning model adaptation
	2.2.2.2 Ensemble learning for concept drift adaptation

	3 The Nature of Regional Drift
	3.1 Introduction
	3.2 Regional Drift and Regional Drift Presented Concept Drift
	3.3 The Relationship between Regional Drift and Concept Drift
	3.4 Summary

	4 Concept Drift Detection via Accumulating Regional Density Discrepancies
	4.1 Introduction
	4.2 Preliminary
	4.3 Nearest Neighbor-based Data Embedding
	4.3.1 Modelling data as a set of high-resolution partitions
	4.3.2 Partition size optimization

	4.4 Nearest Neighbor-based Density Variation Identification
	4.4.1 A regional drift-oriented distance function
	4.4.2 Statistical guarantee
	4.4.2.1 Permutation test
	4.4.2.2 A tailored significant test

	4.4.3 Implementation of NN-DVI for learning under concept drift

	4.5 Experiments and Evaluation
	4.5.1 Evaluating the effectiveness of dnnps
	4.5.2 Evaluating the NN-DVI drift detection accuracy
	4.5.3 Evaluating the NN-DVI on real-world datasets
	4.5.4 Evaluating the stream learning with NN-DVI with different parameters

	4.6 Summary

	5 Concept Drift Adaptation via Reginal Density Synchronization
	5.1 Introduction
	5.2 Local Drift Degree
	5.2.1 The definition of LDD
	5.2.2 The statistical property of LDD

	5.3 Drifted Instances Selection and Adaptation
	5.3.1 Drifted instance selection
	5.3.2 Density synchronized drift adaptation

	5.4 Experiment and Evaluation
	5.4.1 Evaluation of LDD-DIS
	5.4.2 Evaluation of LDD-DSDA

	5.5 Summary

	6 Incremental Regional Drift Adaptation
	6.1 Introduction
	6.2 A Regional Drift Adaptation Framework
	6.3 Online Regional Drift Adaptation
	6.3.1 kNN-based dynamic region construction
	6.3.2 kNN-based regional drift detection
	6.3.3 kNN-based regional drift adaptation
	6.3.4 The implementation of online-RDA

	6.4 Experiment and Evaluation
	6.4.1 Evaluation of the capabilities of online-RDA on drift detection and adaptation
	6.4.2 Evaluation of online-RDA on synthetic drift datasets
	6.4.3 Evaluation of online-RDS stream learning on real-world datasets

	6.5 Summary

	7 Conclusion and Future Research
	7.1 Conclusions
	7.2 Future Study

	Bibliography
	Appendix

