Synthesis and Evaluation of Tri-cyclic Alkaloid-

like Compounds as Anticancer Agents

Xixi Xu

Supervisor: Assoc. Prof. Alison T. Ung

Co-supervisor: Dr. Tristan Rawling

School of Mathematical and Physical Sciences

April 2018

Xi Xi Xu

Declaration / Certificate of authorship and originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all the information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Xixi Xu

April 2018

This research is supported by an Australian Government Research Training Program Scholarship.

Dedication

I dedicate this thesis to my late beautiful Aunty, Wendy Xu, who was battling cancer. Her resilience and courage to fight this disease has set new standards for me and she continues to inspire me every day. Every day I go into the laboratory hoping that one day we can eradicate this disease.

Acknowledgements

It is my pleasure to thank the following people for their contribution and hard work in this thesis. Without their efforts this work would never have been completed. I would like to express my gratitude to my supervisor Assoc. Prof. Alison Ung, thank you for all your help and guidance on this project. To my co-supervisor Dr. Tristan Rawling, thank you for dedicating your time to this project, especially for the biological discussions. Thanks Tristan, and keep rocking that cauliflower shirt!

My sincere thanks go to our level 5 laboratory manager Dr. Ronald Shimmon, scientific officer Verena Taudte, Dr. Linda Xiao, and technical support officer Alexander Angeloski. Nothing has been too much trouble for you guys; you guys were always there helping with NMR, GC/MS, and other technical issues. For that, I am always grateful for your time.

To my family, thank you mum and dad, my two little cousins Caesar and Louis, and my eternal cheerleaders Aunty Wendy and Grandma Lucy. Thank you all for the emotional and financial support throughout my studies, you guys make it possible for me to do what I do. I love you all!

With a special mention to my two office buddies big Matt (aka Doctor in training), and Dr. Steven Williams. We never did get that office puppy, and I will hold it against you guys forever!

I would like to thank my colleagues in the level 5 research labs, thank you, Curtis, for all your encouragement when it came coffee breaks, and little Matt, for eating dumplings with me all the time.

Moreover, last but not least, to the Ung's research group, especially Ariane, it has been a pleasure to work together over the past few years. The people I have worked with comprise the best memories of my studies.

iii

TABLE OF CONTENTS

Declaration / Certificate of authorship and originality	i
Delication	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	viii
List of Schemes	xiii
List of Tables	xv
List of Abbreviations	xvi
Publications from this Thesis	xix
Abstract	XX
Chapter One: Introduction	1
1.1 Alkaloids	1
1.1.1 Natural alkaloid and alkaloid-like compounds	1
1.1.2 Alkaloid compounds targeting cancer	
1.1.2.1 Vinca alkaloids	
1.1.2.2 Taxol alkaloids	6
1.1.2.3 Camptothecin alkaloids	7
1.1.2.4 Pyrrolizine alkaloids	9
1.1.2.5 Berberine alkaloids	13
1.2 Current breast cancer therapies	14
1.2.1 Breast cancer subtypes	14
1.2.1.1 Luminal A and B subtype	15
1.2.1.2 HER-2 subtype	16
1.2.1.3 Basal (triple negative) subtype	16

1.2.2 Current therapeutic challenges	18
1.3 The Ritter reaction	19
1.3.1 The classical Ritter reaction	19
1.3.2 The heterocyclic Ritter reaction	23
1.4 Project's aims	25
1.4.1 Approach and methodology	27
1.4.1.1 Chemistry	27
1.4.1.2 Biological evaluation	
Chapter Two: Synthesis of 3-azatricyclo[5.3.1.0 ^{4,9}]undec-2-ene system using the	he Bridging
Ritter reaction	
2.1 The Bridging Ritter reaction	31
2.1.1 Synthesis of 2,6-dimethylenebicyclo[3.3.1]nonane	
2.1.1.1 Formation of ketone alkene	35
2.1.2 Synthesis of 3-azatricyclo[5.3.1.0 ^{4,9}]undec-2-ene	
2.1.3 Derivatisation of 3-azatricyclo[5.3.1.0 ^{4,9}]undec-2-ene	
2.1.3.1 Cycloaddition of DMAD to 3-azatricyclo[5.3.1.0 ^{4,9}]undec-2-ene	
2.1.3.2 Reductive alkylation, reduction and hydrogenation	42
2.2 Drug-like properties of synthesised compounds	46
2.3 ADMET studies	48
Chapter Three: Synthesis of tricyclic alkaloids using caryophyllene and mono	pepoxy52
3.1 Introduction	
3.1.1 Cyclisation and Wagner-Meerwein Rearrangements	54
3.1.2 Ritter reaction of caryophyllene with various nitriles	
3.1.3 Ritter reaction of caryophyllene monoepoxide with various nitriles	61
3.2 Derivatisation of caryolane and clovane amines	68

3.2.1 Amide cleavage under mild acidic conditions	8
3.2.2 Reductive alkylation of amides	1
3.3 Drug-like properties of synthesised compounds	7
3.4 ADMET studies	9
Chapter Four: Biological results8	2
4.1 Introduction	2
4.1.1 National Cancer Institute broad screening	2
4.1.2 Antiproliferative activity in breast cancer cell lines	4
4.1.2.1 Antiproliferative activity of 3-azatricyclo[5.3.1.0 ^{4,9}]undec-2-ene system an	d
derivatives in triple negative cell line	4
4.1.2.2 Antiproliferative activity of caryophyllene, monoepoxide and derivatives in tripl	e
negative cell line	8
4.1.2.3 Antiproliferative activity of selective compounds in ER+ cell line	8
4.1.3 Cytotoxicity of active compounds on Vero cells	9
4.1.4 Primary mechanism of action studies	0
4.1.4.1 Cell cycle analysis	0
4.1.4.2 Activation of Apoptosis	4
Chapter Five: Conclusion and future directions9	8
5.1 Conclusion from synthetic studies	8
5.2 Conclusion from biological studies	9
5.3 Future directions	1
Chapter Six: Experimental10	2
6.1 Chemistry	2
6.1.1 Formation of ketone-alkene	2

6.1.2 Bridging Ritter reaction with 2,6-dimethylenebicyclo-[3.3.1]-nonane	and various
nitriles	104
6.1.3 Derivatisation of 3-azatricyclo[5.3.1.0 ^{4,9}]undec-2-ene	106
6.1.4 Ritter Reaction of Caryophyllene with various nitriles	112
6.1.5 Amide cleavage under mild acidic conditions	126
6.1.6 Reductive alkylation of amides	129
6.2 Cell Biology	134
6.2.1 National Cancer Institute Procedure	134
6.2.2 General reagents for cell culture	
6.2.3 Cell culture and viability assays	135
6.2.4 Cell cycle analysis	136
6.2.5 Apoptosis/Necrosis	
6.2.6 Cytotoxicity against Vero cells	137
6.2.7 Statistical analysis	137
Chapter Seven: Appendices	138
7.1 National Cancer Institute table	138
7.2 National Cancer Institute graphs	
7.3 Cytotoxicity of active compounds against Vero cells	139
Chapter Eight: References	140

List of Figures

Figure 1.1 Core structures of heterocyclic alkaloid classes 1
Figure 1.2 Representative structures of Alkaloids isolated in the early 19 th century2
Figure 1.3 Representative of Codeine 14, Vinblastine 15 and galanthamine 16
Figure 1.4 Madagascar periwinkle, <i>Catharanthus roseus G. Don</i> (Apocynaceae)4
Figure 1.5 Vinca alkaloid series derived from <i>Catharanthus roseus</i>
Figure 1.6 Taxus brevifolia (Pacific yew)6
Figure 1.7 Representatives of three taxol alkaloids 22 – 24
Figure 1.8 Camptotheca acuminate, United States Botanic Garden 8
Figure 1.9 Representatives of alkaloids podophyllotoxin, camptothecin and their analogues9
Figure 1.10 Mitomycin C 29, clazamycin A 30 and clazamycin B 3110
Figure 1.11 Analogues of pyrrolizine 32 – 35 10
Figure 1.12 Novel derivatives 37, 38a-f, 39 and 40 of licofelone
Figure 1.13 Methylthio-8 <i>H</i> -thieno[2,3- <i>b</i>]pyrrolizin-8-oximino derivatives 41 and 42 12
Figure 1.14 Thieno[2,3-b]pyrrolizin-8-ones compounds $43 - 45$
Figure 1.15 Berberine 46 and Berberis vulgaris 14
Figure 1.16 (a) The typical morphological features of the triple-negative/basal-like cancer17
Figure 1.16 (b) Extensive areas of necrosis
Figure 1.16 (c) Cells show marked areas of pleomorphism and conspicuous mitotic
activity17
Figure 1.16 (d) Prominent membranous expression of EGFR17
Figure 1.16 (e) CD5
Figure 1.17 Different phases of the eukaryotic cell cycle
Figure 2.1 Proposed side products 80 and 81
Figure 2.2 ¹ H NMR spectrum of compound 82b , showing region $2.1 - 5.3$ ppm

Figure 2.3 Molecular model of compound 84 (Spartan 10, generated structure), showing NOE
correlations between H-12 and H-15, and H-13 and H-2142
Figure 2.4 1D NOESY NMR of compound 90b , showing region 0.00 – 8.00 ppm44
Figure 2.5 Drugs used to treat cardiovascular disease and asthma that violate Lipinski;s rule,
Lipitor 94 , and Singulair 95 respectively
Figure 2.6 ADMET plot of synthesised compounds, as plotted in Discovery Studio51
Figure 3.1 Structures of caryolane-1-ol 107, clov-2-ene 108 and α -neoclovane 10954
Figure 3.2 Structures of 114 , and 115
Figure 3.3 Structures of caryophyllene 96, isocaryophyllene 116, caryophyllene 4 β , 5 α -epoxide
117 , isocaryophyllene and 4β , 5α -epoxide 118
Figure 3.4 ¹ H NMR spectrum of compound 119b , showing region $2.00 - 5.80$ ppm
Figure 3.5 2D HSQC NMR spectrum of compound 119b , showing region 2.10 – 2.50 ppm60
Figure 3.6 (a) ¹ H NMR spectrum of compound 120b , showing region $2.00 - 5.50$ ppm61
Figure 3.6 (b) Expansion of region 4.10 – 4.20 ppm
Figure 3.7 Molecular model of compound 126e (Discovery Studio 4.5), showing no NOE
correlations between H-9 and H-15 protons
Figure 3.8 Molecular model of compound 125a (Discovery Studio 4.5), showing no NOE
correlations between H-9 and H-15 protons
Figure 3.9 (a) ¹ H NMR spectrum of 126d , showing region 2.00 – 5.80 ppm68
Figure 3.9 (b) Expansion of region 4.10 – 4.16 ppm
Figure 3.10 (a) ¹ H NMR spectrum of 128a, showing H-2 splitting at 2.86
ppm70
Figure 3.10 (b) ¹ H NMR spectrum of 120c, showing a characteristic H-2 splitting pattern for
clovane skeleton at 4.13 ppm70

Figure 3.10 (c) ¹ H NMR spectrum of 127a, showing a characteristic h-2 plitting pattern for
caryolane skeleton at 2.26 ppm70
Figure 3.11 ¹ H NMR spectrum of compound 129 , showing region $1.80 - 3.00$ ppm71
Figure 3.12 2D HSQC NMR spectrum of compound 128b, showing region 1.60 – 3.00
ppm74
Figure 3.13 2D HSQC NMR spectrum of compound 127b, showing region 0.09 – 1.90
ppm75
Figure 3.14 ¹ H NMR spectrum of compound 128c, in CDCl ₃ showing region $2.30 - 2.60$
ppm76
Figure 3.15 2D HSQC NMR spectrum of compound 128c, showing region 0.08 – 1.10
ppm77
Figure 3.16 2D ADMET plot of synthesised compounds, as plotted in Discovery Studio81
Figure 4.1 Effects of 3-azatricyclo[5.3.1.0 ^{4,9}]undec-2-ene system and derivatives (25 and 50
μ M) on the proliferation of MDA-MB-231 breast cancer cells
Figure 4.2 (a)Dose-response curve of samples 82c86
Figure 4.2 (b) Dose-response curve of samples 119c. 86
Figure 4.2 (c) Dose-response curve of samples 120c86
Figure 4.2 (d) Dose-response curve of samples 126a. 86
Figure 4.3 Effects of caryophyllene and monoepoxide derivatives (25 and 50 μ M) on the
proliferation of MDA-MB-231 breast cancer cells
Figure 4.4 Effects of compounds 82c, 119c, and 120c on the proliferation of MCF-7 breast
cancer cells (48 hours, 25 and 50 µM)
Figure 4.5 (a) Effect of 82c on the cell cycle progression of MDA-MB-231 cells. Cells were
treated for 24 h with DMSO (control)

Figure 4.5 (b) Effect of 82c on the cell cycle progression of MDA-MB-231 cells. Cells were
treated for 24 h with 82c (20 µM)91
Figure 4.5 (c) Percentage change from control 91
Figure 4.6 (a) Effect of 126a on the cell cycle progression of MDA-MB-231 cells. Cells were
treated for 24 h with DMSO (control)92
Figure 4.6 (b) Effect of 126a on the cell cycle progression of MDA-MB-231 cells. Cells were
treated for 24 h with 126a (40 µM)92
Figure 4.6 (c) Percentage change from control
Figure 4.7 (a) Effect of 119c on the cell cycle progression of MDA-MB-231 cells. Cells were
treated for 24 h with DMSO (control)93
Figure 4.7 (b) Effect of 119c on the cell cycle progression of MDA-MB-231 cells. Cells were
treated for 24 h with 119c (20 µM)93
Figure 4.7 (c) Percentage change from control
Figure 4.8 (a) Effect of 120c on the cell cycle progression of MDA-MB-231 cells. Cells were
treated for 24 h with DMSO (control)94
Figure 4.8 (b) Effect of 120c on the cell cycle progression of MDA-MB-231 cells. Cells were
treated for 24 h with 120c (9 μM)94
Figure 4.8 (c) Percentage change from control94
Figure 4.9 Effect of compound 82c on the induction of apoptosis in MDA-MB-231 cells. Cells
were treated with 20 and 40 μ M concentrations of 82c for 48 h, stained with Annexin V-FITC
and PI, and the apoptotic effect was assessed by flow cytometry. Representative results are
shown, with quadrants indicating the proportion of cells that are necrotic: Q1, late apoptotic:
Q2, early apoptotic: Q3, and viable: Q495
Figure 4.10 Effect of compounds 119c (top), 120c (middle) and 126a (bottom) on the induction
of apoptosis in MDA-MB-231 cells. Cells were treated with varying concentrations of 119c,

List of Schemes

Scheme 1.1 Proposed mechanism of classical Ritter reaction
Scheme 1.2 Ritter reaction using a variety of nitriles
Scheme 1.3 Ritter reaction using alkene 54, oxime 55, ester 56, and <i>N</i> -methylolamide 5723
Scheme 1.4 Representatives of the intramolecular variant of the Ritter reaction by Sasaki <i>et al</i> .
and Meerwein <i>et al</i>
Scheme 1.5 Representatives of both pathways of the intramolecular variant of the Ritter
reaction
Scheme 1.6 Synthesis of Tricyclic alkaloid-like compounds
Scheme 2.1 Bridging Ritter reaction of diaryl subernol 64 resulting in a racemic mixture
65
Scheme 2.2 The typical representative reaction of (R) -(+)-limonene 66 and $(1S)$ -(-)- β -pinene
67 with acetonitrile <i>via</i> the Bridging Ritter reaction
Scheme 2.3 Reduction of the bromonitrile compound to yield compound 7132
Scheme 2.4 Bridging Ritter reaction with 2,6-dimethylenenbicyclo[3.3.1]nonane 72, affording
tricyclic imine product 73
Scheme 2.5 Bridging Ritter reaction with 2,6-dimethylenenicyclo[3.3.1]nonane 72, affording
tricyclic imine product 74
Scheme 2.6 Synthetic pathway of precursor diene 72
Scheme 2.7 Proposed synthetic pathway for the synthesis of cyclic alkene 72 and alkene
alcohol 79
Scheme 2.8 Proposed synthetic pathway for tricyclic imines 82a-c
Scheme 2.9 Proposed mechanism of the Bridging Ritter reaction
Scheme 2.10 DMAD reaction with bridged imine 82a affording the final cyclised product
63 40

Scheme 2.11 Derivatisation of tricyclic imine scaffold 82a41
Scheme 2.12 Delpech and Khong-Huu's synthesis of compound 87 from bridged imine
8542
Scheme 2.13 Stevens and Kenney's approach to (+)-makomakine 88 and (+)-aristoteline
89 43
Scheme 2.14 Subsequent reactions following the Bridging Ritter reaction
Scheme 2.15 Hydrogenation of compound 82c46
Scheme 3.1 Proposed synthesis of caryophyllene (Corey <i>et al</i> . 1964)53
Scheme 3.2 Formation of caryolane 110 and clovane 111 skeletons
Scheme 3.3 General synthesis of 119 (caryolane), and 120 (clovane) from caryophyllene with
varies nitriles
Scheme 3.4 Proposed mechanism of substituted 2-oxazolines from 6,7-epoxide
Scheme 3.5 General synthesis of glycol from caryophyllene
Scheme 3.6 General synthesis of compounds from caryophyllene monoepoxide 117 via the
Ritter reaction
Scheme 3.7 Epoxide ring opening and rearrangement
Scheme 3.8 Amide cleavage under mild acetic conditions, followed by reductive alkylation.
Reaction conditions: (a) thiourea (2-mole equiv.), acetic acid in dry ethanol, reflux
overnight
Scheme 3.9 Derivatisation of tricyclic caryolane and clovane skeleton. Reaction conditions:
(a) aldehyde (5-mole equiv.), NaB(OAc) ₃ H (10-mole equiv.) in dichloromethane, acetic acid,
overnight at room temperature

List of Tables

Table 1.1 Yield of Ritter product using different nitriles.	22
Table 2.1 Drug-likeness and predicted molecular properties of synthesised com	pounds, as
calculated in Discovery Studio	48
Table 2.2 ADMET properties of synthesised compounds, as calculated in	Discovery
Studio	50
Table 3.1 List of tricyclic amides synthesised from caryophyllene 96	58
Table 3.2 Ratio of formation of alcohol-amide and diamide based on the dura	tion of the
reaction	64
Table 3.3 List of tricyclic amide-alcohol, and diamides synthesised from car	yophyllene
monoepoxide 117	65
Table 3.4 List of tricyclic caryolane and clovane skeleton derivatives	72
Table 3.5 Drug-likeness and predicted molecular properties of synthesised com	pounds, as
calculated in Discovery Studio	78
Table 3.6 ADMET properties of synthesised compounds, as calculated in	Discovery
Studio	80
Table 4.1 Cytotoxicity (IC ₅₀) of compounds active against MDA-MB-231 bre	east cancer
cells	

List of Abbreviations

Å	Angstrom
δ	Delta (Chemical shift in parts per million)
μΜ	micro-molar
V _{max}	Maximum absorbance
$[\alpha]_D^T$	Specific rotation for a Na lamp at 589nm
$[M+H]^+$	Protonated molecular ion
CDCl ₃	Deuterated chloroform
CHCl ₃	Chloroform
br s	Broad singlet
d	Doublet
°C	Degrees Celsius
Da	Dalton
DCM	Dichloromethane
dd	Doublet of doublets
ddd	Doublet of doublets
DMAD	Dimethyl acetylenedicarboxylate
DMEM	Dulbecco's modified eagle's medium
DMSO	Dimethyl sulfoxide
dq	Doublet of quartets
dt	Doublet of triplets
EDTA	Ethylenediaminetetra acetic acid
ER	Oestrogen receptor
EtOAc	Ethyl acetate
Equiv.	Equivalents

FTIR	Fourier transform infrared spectroscopy
g	gram
HER2	Human epidermal growth factor receptor 2
HSQC	Heteronuclear single quantum coherence
HRMS	High resolution mass spectrometry
Hz	Hertz
IC ₅₀	The half maximal inhibitory concentration
J	Coupling constant (NMR)
МеОН	Methanol
m	Multiplet
mL	millilitre
mmol	milli mole
m.p	Melting point
MS	Mass spectrometry
NaBH ₄	Sodium borohydride
NaHCO ₃	Sodium hydrogen carbonate
NaOH	Sodium hydroxide
Na(OAc) ₃ BH	Sodium triacetoxyborohydride
¹ H NMR	Proton nuclear magnetic resonance
¹³ C NMR	Carbon nuclear magnetic resonance
NOE	Nuclear overhauser effect
NOESY	Nuclear overhauser effect spectroscopy
PBS	Phosphate buffered saline
PI	Propidium iodide
ppm	Parts per million

PR	Progesterone receptor
PSA	Polar surface area
q	Quartet
R _f	Retention factor
RPMI	Roswell park memorial institute medium
r.t.	Room temperature
S	Singlet
t	Triplet
td	Triplet of doublet
TLC	Thin layer chromatography

Publications from this Thesis

X. Xu, T. Rawling, A. Roseblade, R. Bishop and A. T. Ung, Med. Chem. Commun.

Published on 25 October 2017.

Abstract

As part of our ongoing research for anticancer agents, the synthesis of a library of tricyclic compounds using the Bridging Ritter reaction has been described in Chapter 2. Tricyclic imines **82a-c** and amines (**90a-b**, **91a-b**) were synthesised in good yields (> 70%). Eleven alkaloid-like compounds were successfully synthesised.

Encouraged by the synthetic success described in Chapter 2, preparation of tricyclic caryophyllene derived alkaloid-like compounds was undertaken to provide new leads as described in Chapter 3. The synthesis focused on the use of β -caryophyllene 96 and caryophyllene monoepoxide 117 as key starting materials in the Ritter reaction. Treating 96 and 117 with various nitriles under strong acidic conditions afforded optically active tricyclic amides of caryolane 119a-i and clovane 120a-d skeletons. The formation of these skeletons proceeded *via* the acid catalysed Wagner-Meerwein rearrangement. The rations of the two structures depended on the reactivity of the nitriles that led to the more kinetically stable of the two skeletons. Caryolane 119c and clovane 120c and 126c were further used to generate complex alkaloid-like compounds through sequential amide cleavage and reductive alkylation. A total of 30 caryophyllene derived alkaloid-like compounds were successfully obtained and subjected to antiproliferative assays.

Chapter 4 describes the biological activities of the synthesised compounds described in Chapter 2 and 3. In-house *in vitro* biological assays were used to assess the cytotoxicities of the synthesised compounds on breast cancer cell lines MCF-7 (ER+) as well as MDA-MB-231 (triple negative). Compound **63** was selected by the US National Cancer Institute (NCI) for their standard cytotoxicity screening program. It was shown to have significant anti-cancer activities with IC_{50} in the μ M range, across seven cancer types. The anti-cancer activities of **82c** were found to be selective towards the aggressive and more challenging to treat triple negative (MDA-MB-231) cell line while exhibiting no antiproliferative activities towards the

MCF-7 cells at the highest concentration tested (50 μ M). The IC₅₀ of compound **82c** was determined to be 7.9 μ M for the MDA-MB-231 cell line. Furthermore, **82c** arrested cell cycle at the G₂/M phase and induced apoptosis in a dose-dependent manner. Cytotoxicities of compounds **63** and **82c** were tested against noncancerous mammalian cells (Vero cell line) and found to be approximately eight folds more selective towards MDA-MB-231 than the Vero cell line.

From caryophyllene-derived compounds, eight compounds effectively decreased the proliferation and viability of MDA-MB-231, with observed IC₅₀ values ranging from 3.0 - 55.3 μ M. Amongst the eight, **119c**, **120c**, and **126a** were most active and selective towards the more aggressive triple negative (MDA-MB-231) over the MCF-7 cells. Furthermore, compounds **119c**, **120c**, and **126a** also altered the distribution of cells throughout the cell cycle, as well as the ability to induce apoptosis in the MDA-MB-231 cells. This observed selectivity towards the harder to treat triple negative breast cancer cells make these compounds more ideal drug candidates for further development.