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Abstract 

Gold nanoparticles possess many interesting and useful properties, which have made them 

the subject of extensive research. The most notable of these are their optical properties, which 

can be tuned to suit a variety of applications or monitored as conditions change for sensing 

applications. The thermal stability of gold nanoparticles is also of particular interest, as this 

affects their sintering behaviour and therefore their utility in applications such as printed 

electronics, catalysis and sensing. The bulk of the research on thermal stability has focussed on 

lowering their stability to facilitate the formation of continuous, electrically conducting films at 

moderate to low temperatures. However, relatively little is known about increasing their thermal 

stability for applications where it is necessary for their useful properties to be retained at higher 

temperatures. This thesis presents an investigation into the thermal stability of gold 

nanoparticles, with a focus on probing the upper temperature limits of stabilising the particles 

using organic compounds. Firstly, a new method was developed for synthesising gold chloride 

as a precursor to gold nanoparticle synthesis, using the known reaction of gold metal with 

chlorine gas. The resulting gold chloride solutions were of high purity and stability, and were 

used directly for synthesising the nanoparticles used in this project. For the thermal stability 

studies, a selection of compounds was tested for their ability to delay the onset of nanoparticle 

sintering upon heating at a constant rate. Samples were analysed using a range of techniques 

including electrical resistance measurements, SEM, TGA, and XRD. Comparisons were made 

between stabilisers that were bound to the particles and those that were mixed with the particles 

without being chemically attached. A number of compounds of high thermal stability and 

compatible solubility were identified as particularly effective stabilisers, such as a ruthenium 

phthalocyanine complex, oleylamine, 1-pyrenebutanethiol and a perylenedicarboximide 

derivative, with sintering of the particles not occurring until more than 300 °C with these 

stabilisers, up to an unprecedented 540 °C. Important insights were also gained into the 

interactions between nanoparticles and unbound stabilisers and the qualities required for an 

effective stabiliser. Some of the highly stable gold nanoparticles were then monitored for 

changes in their optical and structural properties with temperature using reflection spectroscopy 

and SEM, with the results having potential applications in high temperature optical sensing and 

thermal history indicators. 
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