
Command Line Scripts:

Trinity

Due to memory and processing requirements, assembly processing was conducted using the UTS

eResearch ARCLab (https://clusterportal.feit.uts.edu.au) which contains virtual computers running

Linux-based operating systems with hardware specifications of: 144 GB RAM, 1TB HD and 28 cores

with multi-threading enabled. The following command was used during assembly, a description of

each command and constraint can be found by referring to Table S1.

./Trinity --seqType fq --max_memory 100G --left leftread.fastq --right rightread.fastq --CPU 28 --

SS_lib_type RF --normalize_reads --output trinity_output/

Table 2.2 Trinity assembly command information with corresponding constraint and meaning.

Command Constraint and meaning

--seqType fq Input files are fq files containing sequences and quality scores

--max_memory 100G
Maximum memory that can be used by this process cannot exceed 100GB
at any time.

--left/--right Input names of forward and reverse raw read files

--CPU 28 Maximum processing of up to 28 cores can be utilised at any time.

--SS_lib_type RF
Indicates that the strand specific library type is double stranded (R=
Reverse, F=Forward)

--normalize_reads
Data normalisation will be performed during assembly using in silico
normalisation built into the software to record coverage levels of unique
coverage levels.

Before proceeding, TPM estimations were calculated for each ant species using a perl script,

‘align_and_estimate’, included in the Trinity software package. This process compares the

assembled .fasta file to the original raw, forward and reverse, FastQ files. The command used for this

step was:

./align_and_estimate_abundance.pl --transcripts inputname.fasta --est_method RSEM --

aln_method bowtie2 --trinity_mode --prep_reference

A description of each command and constraint can be found by referring to Table 2.3. The output

file, from TPM estimation, resulted in a .txt file with information of each Trinity ID number,

estimated abundance, and actual abundance.

https://clusterportal.feit.uts.edu.au/

Table S2: Trinity abundance estimation command information with corresponding constraint and

meaning

Command Constraint and meaning

--transcripts Name of assembled fasta file

--est_method
Alignment estimation method. RSEM uses an inbuilt software called eXpress and
is an alignment based method for predicting transcript count

--aln_method
Alignment method. Bowtie2 is an external software that is recommended to be
used with RSEM.

--trinity_mode
Creates a gene_trans_map file in order for alignment to differentiate between
isoforms.

--prep_reference Builds a target index from the input files

Bowtie

bowtie2 --local -p 5 --no-unal -x bowtie2_indicies/Trinity.fasta -q -1

../trimmomatic/pp_adapt5_R1_paired_trimmed.fq.gz -2

../trimmomatic/pp_adapt5_R2_paired_trimmed.fq.gz | samtools view -Sb - | samtools sort -no - - >

bowtie2.namesorted.bam

Blastx

The BLASTx command employed is detailed below, and a description of each option can be found in

Table 2.5.

blastx -query filename.fasta -db databasename -outfmt "6 qseqid sseqid salltitles pident length

slen mismatch gapopen qstart qend sstart send evalue bitscore" -num_alignments 1 -max_hsps 1

-num_threads 28 –out filename.txt

Table S3 BLASTx command information with corresponding constraint and meaning.[54, 57]

Command Constraint and meaning

-query Fasta file containing sequences for blasting.

-db Database name that search will be blasting against.

qseqid Return Sequence ID for match

ssegid Return Gene ID for match

saltitles Return all subject titles

pident Return percentage identity match

length Return length alignment

slen Return subject sequence length

mismatch Return number of mismatches

gapopen Return number of gap openings

qstart Return position of start of alignment in query

qend Return position of end of alignment in query

sstart Return position of start of alignment in database

send Return position of end of alignment in database

evalue Return e-value score

bitscore Return bitscore

-num_alignments Return the number of alignments of the query sequence to the best match

-max_hsps Setting is 1 instructing BLASTx to return only the single best match.

-num_threads Maximum number of CPU’s/cores to be used at any time

-out Output filename

The first step in annotating the transcriptomes was that the BLASTx package and the entirety of the

NCBI NR database (100 GB) was downloaded to a local server. Subsequently, a command was run to

unzip the data and format the database into a nucleotide library using an inbuilt ‘makeblastdb’ perl

script. In order to process all data in a reasonable timeframe, the .fasta Trinity output file was split

into 10–20 parts and allowed to run in parallel on different servers to reduce run time. The following

command was used to split the file into distinct parts directly after the final nucleotide of a particular

contig:

awk 'BEGIN {n_seq=0;} /^>/ {if(n_seq%1000==0){file=sprintf("outputfilename%d.fasta",n_seq);}

print >> file; n_seq++; next;} { print >> file; }' < inputfilename.fasta

A typical file would contain 120,000 lines of information and would run on a single server using 28

cores and 240 GB of RAM and require 3–4 days of continual processing till completion. After

completion, each group of fasta files were combined into a master file using a ‘cat’ command.

