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ABSTRACT 

 
Forward osmosis (FO) has recently emerged as one of the most promising low energy 

technologies for desalination and water reclamation. The FO process is based on the 

principle of natural osmotic process driven by the concentration difference between a 

concentrated draw solution (DS) and saline water (i.e. feed water, FS) across a 

semipermeable membrane. In the FO process, fresh water is extracted from the saline 

water using special osmotic membranes and the concentrated DS becomes diluted. The 

membrane fouling problem in FO process is less challenging than the reverse osmosis 

(RO) process mainly as the FO process operates in the absence of high hydraulic pressure, 

and this is one of the important operational benefits for FO process application in terms 

of energy. However, the lack of a desirable DS has limited the application of FO 

desalination for producing drinking water quality. When a normal inorganic salt solution 

is used as DS, the recovery of draw solutes from the diluted DS require additional 

subsequent processes that still require energy and this makes FO unattractive compared 

to the existing RO desalination technology.  

 

The objectives of this study are therefore to investigate the performances of the hybrid 

FO systems mainly through pilot-scale operations and simulation for different 

applications, identify its limitations, evaluate its environmental impacts and conduct 

economic analysis. The Thesis has been presented in nine chapters that include an 

assessment of the performance of selected draw solutes under a closed-loop system, 

practical applicability of FO hybrid system through both simulation and module-scale 

experiments, and development of a simulation software to design FO process for optimum 

performance. Most of the chapters are in part or in whole already published during the 

course of this Ph.D. candidature as listed at the beginning of this Thesis. 

 

Considering the challenges of the FO process for potable water desalination, a novel 

concept of fertilizer drawn forward osmosis (FDFO) has been introduced. In this process, 

a highly concentrated fertilizer solution is used as the DS to extract water from saline 

water sources or any impaired water source using a semi-permeable membrane by natural 

osmosis. The main advantage of the FDFO desalination process is that the final product 

water or the diluted fertilizer DS, can be used for direct fertigation and thus the separation 
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of draw solutes is not necessary. However, due to intrinsic process limitations, the diluted 

fertilizer DS may not meet the water quality standards for direct fertigation especially 

when feed water sources with high salinity are used. The final diluted DS may require 

additional dilution before it is suitable for the direct application and the dilution factor 

can be quite significant depending on the feed water salinity. To reduce the salt 

concentration of the diluted DS, the nanofiltration (NF) process has been suggested as 

one of the post-treatment process options to reduce fertilizer nutrient concentrations in 

the diluted fertilizer DS. The concept of the integrated FDFO desalination process with 

NF membrane has been evaluated in bench-scale experiments in the earlier studies. 

However, in this study, this concept has been demonstrated in a larger-scale in the field. 

 

The pilot-scale FDFO and NF system was operated in the field for about six months 

for the desalination of saline groundwater from the coal mining activities. Although the 

FO flux can be significantly lowered when high turbidity feed water is used, however; 

our long-term operation of the FO pilot-scale indicates that simple hydraulic cleaning 

could effectively restore the water flux without the need for a rigid chemical cleaning. 

The NF post-treatment process did not experience any noticeable fouling or scaling 

issues due to the excellent quality of feed water produced by the FDFO process. Test 

fertigation of the turfgrass and potted tomato growth indicates that FDFO-NF 

desalination system can produce water quality that meets irrigation standard. However, 

FO membrane with higher reverse flux selectivity than the cellulose triacetate FO 

membrane used in this study is needed for scale-up operation of the FDFO desalination 

process. The reverse diffusion of draw solutes will be one of the biggest challenges of 

the FDFO process as the nitrogen concentration in the final concentrated brine may not 

satisfy the effluent discharge standards. Low FO feed rejection may also likely to result 

in the gradual build-up of feed solutes (such as Na+ and Cl-) in fertiliser draw solution 

during repetitive recycling of the draw solution by the subsequent NF process 

consequently affecting the final water quality in terms of Na+ and Cl- which can be 

detrimental to the whole process.  

 

Based on the long-term operational data of the FDFO-NF desalination process, 

environmental and economic impacts of the FDFO-NF hybrid system were conducted 

and compared with conventional RO hybrid scenarios using microfiltration (MF) or 
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ultrafiltration (UF) as a pre-treatment process. The results showed that the FDFO-NF 

hybrid system using thin film composite forward osmosis (TFC) FO membrane has a 

less environmental impact than the conventional MF or UF based RO hybrid systems 

due to lower consumption of energy and cleaning chemicals. The energy requirement 

for the treatment of mine impaired water by the FDFO-NF hybrid system was 1.08 

kWh/m3, which is 13.6% less energy than an MF-RO and 21% less than UF-RO hybrid 

system under similar feed conditions. In a closed-loop system, the FDFO-NF hybrid 

system using a TFC FO membrane with an optimum NF recovery rate of 84% had the 

lowest unit operating cost of AUD $0.41/m3. Given the current relatively high price 

and low flux performance of the cellulose triacetate (CTA) and TFC FO membranes, 

the FDFO-NF hybrid system still holds opportunities to lower the operating 

expenditure further in the future when high performance membranes are available in 

the market.  

 

In addition, environmental and economic life cycle assessment (LCA) was carried 

through the simulation of a full-scale closed-loop FO and RO or NF hybrid system for 

selecting the most suitable DS. Baseline environmental LCA showed that the dominant 

components for energy use and global warming are the DS recovery processes (i.e., RO 

or NF processes) and FO membrane materials, respectively. When considering the DS 

replenishment in the FO process, the contribution of chemical use to the overall global 

warming impact was significant for all hybrid systems. Furthermore, from an 

environmental perspective, the FO-NF hybrid system with Na2SO4 shows the lowest 

energy consumption and global warming with additional considerations of final 

product water quality and FO brine disposal. From an economic perspective too, the 

FO-NF with Na2SO4 showed the lowest total operating cost due to its lower DS loss 

and relatively low solute cost. In a closed-loop system, FO-NF with NaCl and Na2SO4 

as DS had the lowest total water cost at optimum NF recovery rates of 90 and 95%, 

respectively. Overall, draw solute performances and membrane cost in FO and recovery 

rate in RO/NF  play a crucial role in determining the total water cost and environmental 

impact of FO hybrid systems in a closed-loop operation. 

 

The operation of a large spiral wound forward osmosis (SW FO) module operation is 

essential to provide a better understanding and practical insight for a full-scale FO 
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desalination plant. Therefore, two different 8” SW FO modules (i.e. 8040 CTA and 

TFC FO membrane modules) were investigated for their module-scale operations in 

terms of hydrodynamics, operating pressure, water and solute fluxes, fouling behavior 

and cleaning strategy. FO membrane module operation results indicated that, a 

significantly lower initial DS flow rate is essential in order to lower the pressure drop 

and also maintain lower pressure within the DS channel as exceeding the DS pressure 

above the feed pressure would undermine the integrity of the FO membrane. Under FO 

and pressure assisted osmosis (PAO, up to 2.5 bar) operations, the TFC FO membrane 

module featured higher water flux and lower reverse salt flux compared to the CTA FO 

membrane module. The fouling tests with both the FO membrane modules 

demonstrated that foulant deposition caused feed inlet pressure build-up, indicating that 

the FO fouling deposition likely occurred in the feed channel rather than on the 

membrane surface and the location of foulant deposition.  

 

Performance of an FO hybrid system was evaluated for osmotic dilution of seawater 

using wastewater effluent as a feed source for simultaneous desalination and water 

reuse based on 8040 FO membrane module-scale experiments and the extrapolated 

empirical relationship. The main limiting criteria for module operation is to always 

maintain higher feed pressure than the draw pressure throughout for safe module 

operation. The study showed that a single membrane housing cannot accommodate 

more than 4 elements as the draw pressure exceeds the feed pressure. Six different FO 

modular configurations were proposed and simulated. A two-stage FO configuration 

with multiple housings (in parallel) in the second stage using same or larger spacer 

thickness reduces draw pressure build-up as the draw flow rates are reduced to half in 

the second stage thereby allowing more than 4 elements in the second stage housing. 

The lower values for feed pressure (pressure drop) and osmotic driving force in the 

second stage are compensated by operating under the pressure assisted osmosis (PAO) 

mode which helps enhance permeate flux and maintains positive pressure differences 

between the feed and draw chamber. The PAO energy penalty is compensated by 

enhanced permeate throughput, reduced membrane area, and plant footprint. The 

contribution of FO/PAO to total energy consumption was not significant compared to 

post RO desalination (90%) indicating that the proposed two-stage FO modular 
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configuration is one way of making the full-scale FO operation practical for FO-RO 

hybrid system.  

 

This thesis finally concludes with recommendations to develop high-performance 

membranes in terms of solute rejections, permeability and improved fouling resistance 

for its long-term performances. Improving the solute rejections in the form of low specific 

reverse solute flux is very important in order to eliminate the issue of brine contamination 

with the draw solutes especially containing fertilizer nutrients which becomes 

detrimental for brine management and discharge. High feed solute rejection is essential 

which otherwise would accumulate in the draw solution in a closed-loop FO-RO/NF 

hybrid system thereby undermining the product water quality. The current design of 

spiral wound FO membrane module also needs rethinking. There is a need to significantly 

improve the packing density of the FO membrane element in order to reduce its footprint 

and the capital cost since its current packing density is only about a third of the RO 

membrane element. The module also needs to improve its operational robustness as the 

current module has significant operational challenges in terms of pressure drop. Finally, 

the thesis recommends developing a simulation software that can be used for the full or 

module-scale FO process design and system analysis. A brief structural framework on 

the desing of the software also has been provided.  
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