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Summary  

Bio-optical tools remain key technologies to address a long-standing goal in 

oceanography: to improve understanding of how marine primary productivity (MPP) 

varies over space and time. A major goal for one particular technique, Fast Repetition 

Rate fluorometry (FRRf), is to retrieve highly resolute patterns of carbon (C) uptake in 

situ to improve satellite retrieved predictions of MPP. However, this goal hinges upon 

the application of a highly-variable, yet poorly-understood conversion factor to scale 

FRRf-derived electron transport rates (ETRs) to rates of C-uptake. Understanding of the 

conversion factor, termed the “electron requirement for carbon fixation” (KC) is limited, 

in particularly for Australian waters where KC has rarely been measured.  

This thesis focuses on coupled ETR – C-uptake measurements, to examine how key 

factors drive variability in KC, utilising both laboratory and field studies to isolate the 

respective influences of growth environment and phytoplankton taxonomy. I performed 

nutrient addition bioassays upon natural phytoplankton assemblages to demonstrate for 

the first time how macronutrient availability (N, P and Si) regulates KC at an Australian 

coastal reference station when nutrient concentrations are low during summer. To 

examine taxonomic variability of KC together with metrics influencing phytoplankton 

growth and physiology (cell size and non-photochemical quenching, NPQ), I grew 

phytoplankton covering a broad range of taxonomic and size classes within a controlled 

laboratory setting where environmental variability could be excluded. Finally, to 

examine how well KC could be predicted in a highly-dynamic system with multiple 

environmental stressors and phytoplankton assemblages, I performed a novel high-

throughput assessment of KC (n = 80) along the eastern Australian coast spanning 

multiple water masses including the Tasman Sea and the East Australian Current 
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(EAC). Prevailing environmental variables, physiological (non-photochemical heat 

dissipation, NPQNSV) and phytoplankton community structure (size-fractionated Chl-a) 

were also measured for each sample to allow evaluation of their respective performance 

in empirically modelling KC variance.  

This thesis highlights the importance in characterising both environmental and 

taxonomic factors to most robustly retrieve KC, but also demonstrates that a single FRRf 

parameter (NPQNSV) may reliably explain ~50% of variability in eastern Australian 

waters. These new findings potentially provide new and unprecedented capacity to 

retrieve C-fixation rate from FRRf-based productivity assessments, but ultimately 

require further validation that may be possible through re-visiting past FRRf data sets. 

These findings are then considered to propose a roadmap to enable broader 

implementation and uptake of FRRf for widespread assessments of marine (and 

freshwater) primary productivity into the future.    
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