Using next-generation multi-spectral FRRf to improve current estimates of marine primary production (MPP) within Australian waters

David J. Hughes

April 2018

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Science

C3 Climate Change Cluster, School of Life Sciences, University of Technology Sydney

ii

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been appropriately acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

David J. Hughes

12/04/2018

Dedication

This thesis is dedicated to my parents, Peter and Rose, who shared their appreciation for the natural world with me from an early age, and sparked a lifelong interest in marine science.

Many times over the years they have encouraged me to follow the path that makes me happy and have supported me every step of the way. It is with their support that I embarked on this journey, and this thesis stands as a testament to the belief that they have shown in me.

Now I have reached the conclusion of this journey I look back with full appreciation for their love and support.

Acknowledgements

There are many people to thank for helping me along this journey. First and foremost, I thank my primary supervisor, David Suggett for introducing me to the challenging, but rewarding field of FRRf which ultimately led me to move to the other side of the world to embark on this PhD. Throughout my PhD you always took time out to answer questions, offer guidance and generally help me see the wood for the trees. You have been an inspiration and I hope to have the opportunity to work alongside you again in the future.

I would also like to thank my co-supervisors, Peter Ralph and Martina Doblin for their invaluable help, particularly for taking time out of their busy schedules to turn-around drafts of manuscripts at short notice.

Thanks to Paul Brooks, the vital cog in the machine at C3 who finds technical solutions to keep everybody's research (including mine) ticking along. Thanks to Paul, and Graeme Poleweski, my PhD experience was made a whole lot easier. Thanks also to Gemma, Sue, Phil, Milan, Joey, Dale, and Vinnie for technical support and assistance along the way.

To members of my lab group: Lisa, Sam, Caitlin, Emma, Mickael, and Fernanda for all of your help and moral support along the way. The same applies to Arjun, Ric, Rendy, Leo, Bonnie, Trent, Fabio and Marco A. for the numerous chats (strictly scientific of course) over coffee.

Paul Van Ruth and Mark Doubell for inviting me to collaborate onboard the RV *Investigator* for 3 weeks of research in the Great Australian Bight and for making me feel part of their team – an experience that I will remember long after my PhD.

Marco #1, Marco #2 and Deepa for the good times crammed into the radiation lab onboard the RV *Investigator* for 3 weeks - I'm sure none of us will forget that experience in a hurry. To the crews of the RV *Investigator* and RV *Zelda Faith* for all of their support during oceanographic fieldwork.

My research was only made possible thanks to financial support from the C3 Climate Change Cluster and from UTS via the President's scholarship.

Last, but not least, a special thanks to Deepa Varkey who has been my rock and a pillar of strength to get me through these final few months leading up to submission. I look forward to resuming a normal life with you again...

Table of Contents

Certifi	icate o	of Original Authorship	iii
Dedica	ation.		iv
Ackno	wledg	gements	V
Table	of Co	ntents	vii
List of	Figu	res	xi
List of	Tabl		vvi
LISU	Taur		·····AVI
List of	f Supp	lementary Figures	xviii
List of	f Supp	lementary Tables	XX
Summ	arv		xxvi
Declar	ation	of the Contribution to Each Chapter	xxviii
1 C	hapte	r 1	1
1.1	Esti	mating MPP with Fast Repetition Rate Fluorometry (FRRf)	3
1.2	Det	ermination of the Electron Transport Rate (ETR) by FRRf	6
1.3	The	electron requirement for carbon fixation, (K_c)	9
1.4	Phy	siological processes that influence K_c	11
1.4	4.1	Nitrogen reduction	
1.4	4.2	N_2 fixation	
1.4	4.3	Mehler Ascorbate Peroxidase (MAP) activity	16
1.4	4.4	Cyclic Electron Flow around PSI (CEF-PSI)	
1.4	4.5	Cyclic Electron flow around PSII (CEF-PSII)	19
1.4	4.6	Plastoquinol Terminal Oxidase (PTOX) - Chlororespiration	21
1.4	4.7	Flavodiiron proteins	
1.4	4.8	Photorespiration	23
1.4	4.9	Carbon Concentrating Mechanisms (CCMs)	24
1.4	4.10	Electron and proton "slippage"	25
1.4	4.11	Non-Photochemical Quenching (NPQ)	25
1.5	Met	hodological influences upon <i>K_c</i> variance	25
1.5	5.1	PSII quantification	

	1.5.2	2 Instrument correction factors	
	1.5.3	3 ¹⁴ C-fixation rates	27
	1.5.4	4 Miscellaneous	29
	1.6	Research objectives and thesis outline	29
	1.7	References	33
2	Cha	apter 2:	
	2.1	Abstract	
	2.2	Introduction	50
	2.3	Materials and Methods	55
	2.3.2	1 Sampling and experimental setup	56
	2.3.2	2 Fast Repetition Rate fluorometry (FRRf)	57
	2.3.3	3 Physico-chemical parameters	57
	2.3.4	4 Carbon fixation (¹⁴ C- uptake)	
	2.3.5	5 FRRf electron transport rate	59
	2.3.6	6 Non-photochemical quenching	62
	2.3.7	7 Size-fractionated Chl- <i>a</i>	62
	2.3.8	8 Phytoplankton taxonomy	62
	2.3.9	9 Statistical analysis	63
	2.4	Results	64
	2.4.2	1 Initial conditions	64
	2.4.2	2 Response to nutrient injection	69
	2.5	Discussion	74
	2.5.2	1 Predominance of physiological relief of nutrient limitation upon <i>K</i> _c	74
	2.5.2	A role for taxonomy in regulating K_c ?	
	2.5.3	3 Predicting KC from NPQ _{NSV}	83
	2.5.4	4 <i>K_c</i> variability induced from carbon lifetimes	84
	2.6	Conclusions	85
	2.7	References	87
	2.8	Acknowledgements	98
3	Cha	apter 3:	
	3.1	Abstract	
	3.2	Introduction	
	3.3	Materials and Methods	

	3.3.	1 Phytoplankton culturing	110
	3.3.	2 Additional opportunistic sampling	111
	3.3.	3 Growth rates and cell size	111
	3.3.4	4 Chl- <i>a</i> analysis	112
	3.3.	5 POC and PON analysis	112
	3.3.	6 Fast Repetition Rate fluorometry (FRRf) photophysiology	113
	3.3.	7 Electron transport rate (ETR _{PSII})	113
	3.3.	8 FRRf photosynthesis-irradiance (PE) curves	115
	3.3.	9 Simultaneous FRRf- ¹⁴ C incubations (<i>K_c</i>)	115
	3.3.	10 Additional FRRf-based parameterisation	117
	3.3.	11 Meta-analysis	117
	3.3.	12 Statistical Analysis	118
	3.4	Results	119
	3.4.	Phytoplankton growth, elemental stoichiometry and photophysiology.	119
	3.4.2	Simultaneous ¹⁴ C-uptake and ETR _{PSII} incubations (K_c)	
	3.4.	Relationship between K_c and other metrics	125
	3.4.4	4 Resolving further trends in <i>K_c</i> by including meta-data	125
	3.5	Discussion	127
	3.5.	1 Species-specific variability in K_c	130
	3.5.	2 Class-dependent variability in K _c	132
	3.5.	An overarching explanation for K_c variability through cell size	134
	3.5.4	4 NPQ _{NSV} provides limited predictive capability for K_c	
	3.6	Conclusions	139
	3.7	References	140
4	Cha	anter 4:	
	4.1	Abstract	
	4.2	Introduction	
	4.3	Materials and Methods	
	4.3.	1 Seawater Samples	160
	4.3.	2 Physico-chemical parameters	
	4.3.	3 Size-fractionated Chl-a	
	4.3.4	4 Photophysiological characterisation and electron transport rates	
	4.3.	5 High-throughput FRRf- ¹⁴ C incubations (K_c)	165
	4.3.	6 NPQ _{NSV} and PSU size	

	4.3.	7 Statistical analysis	167
4	.4	Results	168
	4.4.2	1 Physico-chemical characterisation	168
	4.4.2	2 K _c , biomass and photophysiology	172
	4.4.3	Predicting K_c from physico-chemical versus taxonomic variables	174
4	.5	Discussion	
	4.5.3	1 Cell size does not appear to significantly aid retrieval of K_c	
	4.5.2	2 Using K_c to inform dynamics of the study region	
4	.6	Conclusions	
4	.7	References	
5	Cha	anter 5:	
U	ciit		_ 0 0
Ge	neral	l discussion	
5	5.1	Future research perspectives	203
6	Cha	apter 6:	
6	Ch 2 5.1	apter 6:	204 205
6 6	Cha 5.1 5.2	apter 6: Abstract Introduction	204 205 206
6 6 6	Cha 5.1 5.2 5.3	apter 6: Abstract Introduction Fast Repetition Rate Fluorometry (FRRf) measurements of PP	204 205 206 210
6 6 6	Ch 2 5.1 5.2 5.3 5.4	apter 6: Abstract Introduction Fast Repetition Rate Fluorometry (FRRf) measurements of PP What is ETR _{PSII} and its relationship to CO ₂ -uptake?	204 205 206 210 214
6 6 6	Cha 5.1 5.2 5.3 5.4 Ligh	apter 6: Abstract Introduction Fast Repetition Rate Fluorometry (FRRf) measurements of PP What is ETR _{PSII} and its relationship to CO ₂ -uptake? ht, Nutrient Limitation	204 205 206 210 214 219
6 6 6	Cha 5.1 5.2 5.3 5.4 Ligh All a	apter 6: Abstract Introduction Fast Repetition Rate Fluorometry (FRRf) measurements of PP What is ETR _{PSII} and its relationship to CO ₂ -uptake? ht, Nutrient Limitation autotrophs, significant for chlorophytes (e.g. <i>C. reinhardtii)</i>	204 205 206 210 214 219 219
6 6 6 6	Cha 5.1 5.2 5.3 5.4 Ligh All a 5.5	apter 6: Abstract Introduction Fast Repetition Rate Fluorometry (FRRf) measurements of PP What is ETR_{PSII} and its relationship to CO_2 -uptake? ht, Nutrient Limitation autotrophs, significant for chlorophytes (e.g. <i>C. reinhardtii)</i> Physiological regulation of K_c	204 205 206 210 214 219 219 221
6 6 6 6 6	Cha 5.1 5.2 5.3 5.4 Ligh All a 5.5 5.6	apter 6:AbstractIntroductionFast Repetition Rate Fluorometry (FRRf) measurements of PPWhat is ETR_{PSII} and its relationship to CO_2 -uptake?ht, Nutrient Limitationautotrophs, significant for chlorophytes (e.g. <i>C. reinhardtii)</i> Physiological regulation of K_c Evolutionary (taxonomic) divergence.	204 205 206 210 214 219 219 221 226
6 6 6 6 6 6	Cha 5.1 5.2 5.3 5.4 All a 5.5 5.6 5.7	apter 6:AbstractIntroductionFast Repetition Rate Fluorometry (FRRf) measurements of PPWhat is ETR_{PSII} and its relationship to CO_2 -uptake?ht, Nutrient Limitationautotrophs, significant for chlorophytes (e.g. <i>C. reinhardtii)</i> Physiological regulation of K_c Evolutionary (taxonomic) divergenceConstruction of Absolute Rates of Electron Transport (ETR _{PSII})	204 205 206 210 214 219 219 219 221 226 232
6 6 6 6 6 6 6 6 6	Cha 5.1 5.2 5.3 5.4 Ligh All a 5.5 5.6 5.7 5.8	apter 6:AbstractIntroductionFast Repetition Rate Fluorometry (FRRf) measurements of PPWhat is ETR_{PSII} and its relationship to CO_2 -uptake?ht, Nutrient Limitationautotrophs, significant for chlorophytes (e.g. <i>C. reinhardtii)</i> Physiological regulation of K_c Evolutionary (taxonomic) divergence.Construction of Absolute Rates of Electron Transport (ETR _{PSII})Determination of CO_2 -uptake	204 205 206 210 214 219 219 219 221 226 232 235
6 6 6 6 6 6 6 6 6 6 6 6 6	Cha 5.1 5.2 5.3 5.4 Ligh All a 5.5 5.6 5.7 5.8 5.9	apter 6: Abstract Introduction Fast Repetition Rate Fluorometry (FRRf) measurements of PP What is ETR _{PSII} and its relationship to CO ₂ -uptake? ht, Nutrient Limitation autotrophs, significant for chlorophytes (e.g. <i>C. reinhardtii)</i> Physiological regulation of K_c Evolutionary (taxonomic) divergence Construction of <i>Absolute</i> Rates of Electron Transport (ETR _{PSII}) Determination of CO ₂ -uptake A roadmap towards widespread implementation of FRRf for PP	204 205 206 210 214 219 219 219 221 226 232 235 242
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Cha 5.1 5.2 5.3 5.4 Ligh All a 5.5 5.6 5.7 5.8 5.9 5.10	apter 6: Abstract Introduction Fast Repetition Rate Fluorometry (FRRf) measurements of PP What is ETR _{PSII} and its relationship to CO ₂ -uptake? ht, Nutrient Limitation autotrophs, significant for chlorophytes (e.g. <i>C. reinhardtii)</i> Physiological regulation of K_c Evolutionary (taxonomic) divergence Construction of Absolute Rates of Electron Transport (ETR _{PSII}) Determination of CO ₂ -uptake A roadmap towards widespread implementation of FRRf for PP	204 205 206 210 214 219 219 219 219 221 226 232 235 242 250

List of Figures

Figure 2.6 Relationship between a) the electron requirement for carbon fixation (K_C) and the expression of non-photochemical quenching (NPQ_{NSV} calculated as per Oxborough, 2012) and b) K_C /nPSII against NPQ_{NSV} (i.e. without estimation of

Figure 3.1 Measured values of the electron requirement for carbon fixation (mol e⁻ [mol C]⁻¹), K_C for the 17 phytoplankton strains examined in this study. The background colour corresponds to taxonomic class (also labelled). Error bars indicate standard errors and letters indicate means that are statistically indistinguishable ($\alpha = 0.05$) (ANOVA).

Figure 3.3 Relationship between the electron requirement for carbon fixation, K_C (mol e⁻ [mol C]⁻¹), and corresponding measures of a) phytoplankton growth rate (d⁻¹), b) lognormalised cell volume (V[log]) and c) non-photochemical quenching, estimated as the normalised Stern-Volmer coefficient (McKew et al. 2013), denoted here as NPQ_{NSV} (dimensionless) for all strains grown in the main study (i.e. excluding strains sampled "opportunistically" where growth data was unavailable. The cryptophyte, *R. salina* (red circle) has been excluded from the regression in panel a – if included the relationship weakens (R² = 0.49, p < 0.05), generating a regression equation of y = -3.73 + 7.31..124

Figure 3.4 Distance-based redundancy (dbRDA) plot illustrating the DistLM model based on the phytoplankton growth rate, and selected predictive variables: Cell volume, POC:PON ratio and the electron requirement for carbon fixation (K_C). Symbols represent the different phytoplankton classes (see key). Note: *R. salina* is excluded from this analysis (see results section). 126

Figure 3.6 Relationship between the electron requirement for carbon fixation, K_C (mol e⁻ [mol C]⁻¹), and corresponding measures of a) phytoplankton growth rate (d⁻¹), b) lognormalised cell volume (V[log]) and c) non-photochemical quenching, estimated as the normalised Stern-Volmer coefficient (McKew et al. 2013), denoted here as NPQ_{NSV} (dimensionless) for all strains grown in the main study (i.e. excluding strains sampled "opportunistically" where growth data was unavailable, together with meta-analysis data.

Figure 6.3 (A) Chlorophyll-specific C-fixation rates determined from 24 hr incubations with ¹³C representing net primary productivity (NPP*) and from short term (30 min) incubations with ¹⁴C representing (PP*) in the marine diatom *Chaetoceros muelleri*

(CCAP 1010/3) grown in duplicate semi-continuous batch cultures with daily dilutions (according to their 24 h growth rates) at a continuous growth irradiance of 180 µmol quanta m⁻² s⁻¹ throughout a transient change in NO₃⁻ availability. Cultures acclimated to NO₃⁻ replete conditions (800 µM NO₃⁻) were driven into non-steady state NO₃⁻ limitation of 80 µM (NO₃⁻) on day 0, followed by the initiation of severe NO₃⁻ stress (30 µM NO₃⁻) on day 9 and a recovery period with fully NO₃⁻ replete medium starting on day 18. Error bars are standard deviations of 2 independent replicate cultures. (B) Dependency of NPP* and PP* on their corresponding cell specific growth rates. The extrapolated regression lines of NPP* (= -81.9x + 109, r2 = 0.811) and PP* (=192x - 102, r2 = 0.683) intercept one another at 0.025 d⁻¹ and 106 µmol C (mg Chl)⁻¹ h⁻¹.....238

Figure 6.5 Construction of ETRs according to various algorithms from published studies. All ETRs follow the same theoretical construct: $\text{ETR}_{\text{PSII}} = \mathbf{E} \cdot \mathbf{a}_{\text{LHII}} \cdot \mathbf{\Phi}_{\text{PSII}}$ but also requires unit correction factors (**C**) to derive appropriate units plus spectral correction factors (**s.c.f**) to correct for bias of σ_{PSII} in relation to the fluorometer's LED excitation LED spectra.

List of Tables

Table 3.1 Summary of phytoplankton strains used in this study, indicating taxonomic class and cell volume (μ m³). The grey shaded area represents strains that were sampled opportunistically in addition to the main study (note the different growth conditions).

Table 4.1 Mean (\pm SE, standard error) of physico-chemical variables and biological parameters within Cluster A and B (see Fig. 4.3 for cluster information). Student's t-test

results indicate statistical differences between clusters (* and ** denotes significance
levels of 0.05 and <0.01 respectively)
Table 4.2 Percentage of variance in Kc explained by DistLM using combinations of predictor variables. 178
Table 6.1 Fast Repetition Rate fluorometry (FRRf) variables and parameters, their
synonyms and derivations
Table 6.2 Synthesis of K_C information (modified and updated from Lawrenz et al.

 Table 6.5
 Methodological issues associated with FRRf measurements and recommended solutions/best practice.
 243

Table 6.6 Recommended ancillary measurements for future K_C campaigns. Measurements have been divided into essential and desirable for field studies (targeting CO₂-uptake rates representing NPP) and laboratory studies (CO₂-uptake rates equivalent to both GPP and NPP). No recommendation is given for measuring CO₂-uptake reflecting GPP in the field, reflecting the methodological uncertainty involved: see Section 6.5).

List of Supplementary Figures

Supplementary Figure S3.2 Principle component analysis (PCA) of metadata, showing the variability in K_C explained by experimental growth conditions. The colour of each point represents K_C value as a scale from lowest (yellow) to highest (red). The shape of the symbol depicts the approach used to quantify/estimate PSII reaction centre content

Supplementary Figure S4.1 Hierarchical cluster analysis (HCA) of samples (n = 80) based upon physico-chemical variables (temperature, salinity, NH₄⁺, NO_x⁻, PO₄³⁻ and Si). HCA identified two distinct hydrographic clusters, a and b (highlighted by blue and green sections respectively). 196

List of Supplementary Tables

Supplementary	Table S3.1 Provisional	meta analysis	data	150

List of Abbreviations

AEF	Alternative electron flow
ANACC	Australian national algal culture collection
ANOVA	Analysis of variance
ATP	Adenosine triphosphate
Bac	Bacillariophyceae
С	Carbon
CCM	Carbon concentrating mechanism
CDOM	Coloured dissolved organic matter
CEF-PSI(II)	Cyclic electron flow around PSI(II)
CO_2	Carbon dioxide
Chl	Chlorophyceae
Chl-a	Chlorophyll <i>a</i>
Cry	Crptophyceae
CTD	Conductivity, temperature and depth
Суа	Cyanobacterium/Cyanophyceae
dbRDA	Distance-based redundancy analysis
DCMU	3-(3,4-dichlorophenyl)-1,1-dimethylurea
Dia	Diatom
DIC	Dissolved inorganic carbon
Din	Dinophyceae
DistLM	Distance-based linear modeling
DOC	Dissolved organic carbon
DPM	Disintegrations per minute
EAC	East Australian Current
Eus	Eustigmatophyceae
FDOM	Fluorescent dissolved organic matter
FDP	Flavodiiron protein
FIRe	Flash Induction and Relaxation fluorometry
Fla	Flagellate
Flv	Flavoproteins
FRRf	Fast Repetition Rate fluorometry
FY	Fluorescence Yield
GAP	Glyceraldehyde 3-phosphate
GC	Gas chromatography
GPP	Gross primary production
Нар	Haptophyte
HC1	Hydrochloric acid
HgCl ₂	Mercuric chloride
HPLC	High-performance liquid chromatography
IMOS	Integrated Marine Observing System
LED	Light emitting diode

LEF	Linear electron flow
MDS	Multidimensional scaling
MIMS	Membrane inlet mass spectrometry
MLD	Mixed layer depth
MPP	Marine primary production
Ν	Nitrogen
N_2	Atmospheric Nitrogen
NADP ⁺ (H)	Nicotinamide adenine dinucleotide phosphate
NaH ¹⁴ CO ₃	¹⁴ C-labelled Sodium bicarbonate
NaH ₂ PO ₄	Sodium phosphate dibasic
NE	North east
NH4 ⁺	Ammonium
NH ₄ NO ₃	Ammonium nitrate
NO ₂ ⁻	Nitrite
NO ₃	Nitrate
NPP	Net primary production
NPQ	Non-photochemical quenching
NPQ _{NSV}	NPQ(normalised Stern-Volmer coefficient)
NSW	New South Wales
O_2	Oxygen
OCP	Orange carotenoid protein
Р	Phosphorus
Pabs	Particulate absorption spectra
PAM	Pulse amplitude modulated fluorometry
PAR	Photosynthetically active radiation
PCA	Principal component analysis
PE	Photosynthetic-irradiance
Pel	Pelagophyceae
PH	Port Hacking
Pmf	Proton motive force
PO_4^{3-}	Phosphate
POC	Particulate organic carbon
PON	Particulate organic nitrogen
POP	Particulate organic phosphorus
PP	Primary production
PQ	Plastoquinol
PQ	Photosynthetic quotient
Pry	Prymnesiophyceae
PSI	Photosystem I
PSII	Photosystem II
PSU	Practical salinity unit
PSU	Photosynthetic unit
PTOX	Plastiquinol terminal oxidase
Q _A	Quinone-A electron acceptor

$q_{\rm E}$	Energy-dependent Quenching
ROS	reactive oxygen species
rpm	Revolutions per minute
RuBisCO	Ribulose-1,5-bisphosphate carboxylase/oxygenase
S	Sulphur
Scf	Spectral correction factor
Si	Silicate
SiO ₄	Silicate
SST	Sea surface temperature
ST	Single turnover
SVP	Surface velocity program
TOC	Total organic carbon
V	Cell volume

List of Symbols

a^{Chl}	Spectral light absorption
<i>0</i> 1 HII	PSII absorption coefficient of the light-harvesting pigments
$A(\lambda)$	Wavelength-dependent absorbance
B	Pathlength amplification factor
Р С	Fraction of [RCII] in the closed state
d ⁻¹	Daily division rate
ΔрН	Proton gradient
E	Irradiance
E_K	Light saturation parameter
E_{LED}	Intensity of the fluorometers 450 nm measuring beam
ETR _{PSII}	Electron Transport Rate through PSII
$arPhi_{ m PSII}$	quantum yield of photochemistry under actinic light
F'	Fluorescence yield under actinic light at time <i>t</i>
Г	Minimum PSII fluorescence yield (dark-acclimated state) where all
F_0	PSII reaction centres are open
	Minimum PSII fluorescence yield (light-acclimated state) where all
F_0	PSII reaction centres are open
E	Maximum PSII fluorescence yield (dark-acclimated state) where all
Γ _m	PSII reaction centres are closed
	Maximum PSII fluorescence yield (light-acclimated state) where all
Γm	PSII reaction centres are closed
F_{t}	Steady-state fluorescence
$F_{\rm v}$	Maximum variable PSII fluorescence yield (dark-acclimated state)
F_{v}'	Variable fluorescence yield under actinic light
F_v/F_m	Maximum photochemical efficiency (dark-acclimated state)
F_v'/F_m'	Maximum photochemical efficiency (light-acclimated state)
F_q'/F_m'	Effective photochemical efficiency under actinic light
F_q'/F_v'	PSII efficiency factor (under actinic light
K_C	Electron requirement for carbon fixation
K_R	Instrument-specific constant
L	Optical pathlength of filter particulates
λ	Wavelength
μ	Growth rate
$n_{\rm PSII}$	Assumed ratio of PSII reaction centres per unit chlorophyll-a
qE	Energy-dependent quenching
qJ	FRRf connectivity model (assumes partial connectivity between RCIIs)
qP	Photochemical quenching parameter
[RCII]	Concentration of functional PSII reaction centres
[RCII] ^(FRRf)	Concentration of [RCII] as estimated by FRRf
ρ	PSII Connectivity Factor

ρ′	PSII Connectivity Factor under actinic light
ROS	Reactive Oxygen Species
σ_{PSII}	Functional absorption cross-section of PSII
$\sigma_{PSII}()$	Functional absorption cross-section of PSII (under actinic light)
$ au_{\mathrm{PSII}}$	Turnover time of PSII
Y	Fractional yield
YF	Fluorescence yield
YPSII	Photochemical yield of PSII

Summary

Bio-optical tools remain key technologies to address a long-standing goal in oceanography: to improve understanding of how marine primary productivity (MPP) varies over space and time. A major goal for one particular technique, Fast Repetition Rate fluorometry (FRRf), is to retrieve highly resolute patterns of carbon (C) uptake *in situ* to improve satellite retrieved predictions of MPP. However, this goal hinges upon the application of a highly-variable, yet poorly-understood conversion factor to scale FRRf-derived electron transport rates (ETRs) to rates of C-uptake. Understanding of the conversion factor, termed the "electron requirement for carbon fixation" (K_C) is limited, in particularly for Australian waters where K_C has rarely been measured.

This thesis focuses on coupled ETR – C-uptake measurements, to examine how key factors drive variability in K_C , utilising both laboratory and field studies to isolate the respective influences of growth environment and phytoplankton taxonomy. I performed nutrient addition bioassays upon natural phytoplankton assemblages to demonstrate for the first time how macronutrient availability (N, P and Si) regulates K_C at an Australian coastal reference station when nutrient concentrations are low during summer. To examine taxonomic variability of K_C together with metrics influencing phytoplankton growth and physiology (cell size and non-photochemical quenching, NPQ), I grew phytoplankton covering a broad range of taxonomic and size classes within a controlled laboratory setting where environmental variability could be excluded. Finally, to examine how well K_C could be predicted in a highly-dynamic system with multiple environmental stressors and phytoplankton assemblages, I performed a novel high-throughput assessment of K_C (n = 80) along the eastern Australian coast spanning multiple water masses including the Tasman Sea and the East Australian Current

(EAC). Prevailing environmental variables, physiological (non-photochemical heat dissipation, NPQ_{NSV}) and phytoplankton community structure (size-fractionated Chl-*a*) were also measured for each sample to allow evaluation of their respective performance in empirically modelling K_C variance.

This thesis highlights the importance in characterising both environmental and taxonomic factors to most robustly retrieve K_C , but also demonstrates that a single FRRf parameter (NPQ_{NSV}) may reliably explain ~50% of variability in eastern Australian waters. These new findings potentially provide new and unprecedented capacity to retrieve C-fixation rate from FRRf-based productivity assessments, but ultimately require further validation that may be possible through re-visiting past FRRf data sets. These findings are then considered to propose a roadmap to enable broader implementation and uptake of FRRf for widespread assessments of marine (and freshwater) primary productivity into the future.

Declaration of the Contribution to Each Chapter

Chapter 2

This chapter has been submitted for publication in Limnology and Oceanography as:

Hughes DJ, Varkey D, Doblin M.A, Ingleton T, McInnes A, Ralph P.J, Van Dongen-Vogels V, Suggett D.J (2017) Impact of nitrogen availability upon the electron requirement for carbon fixation in Australian coastal phytoplankton communities. Currently under review. Experimental design was by DJH with help from DJS. Fieldwork was conducted by DJH, VVDV and TI. Laboratory sample analysis was performed by DH with help from DS. Data analysis and interpretation was done by DJH with help from DV and DJS. Writing of the manuscript was completed by DJH with help from DJS, DV, MAD and PJR.

Chapter 3

The experiments of this study were designed by me, with help from Assoc. Prof. David Suggett (UTS). I was responsible for the majority of laboratory work, data analysis and interpretation, and the writing-up of the manuscript. Dr. Maria Giannini (UTS) and Arjun Verma (UTS) grew and provided several phytoplankton strains used in this experiment. Dr. Joseph Crosswell (CSIRO) provided assistance with analysis of dissolved inorganic carbon. Dr. Deepa Varkey (Macquarie University) provided support with R-software. Assoc. Professor David Suggett, Prof. Peter Ralph (UTS), Assoc. Professor Martina Doblin (UTS) and Dr. Deepa Varkey provided detailed feedback on the manuscript at various stages.

Chapter 4

The data presented in this chapter reflects a joint laboratory effort. I was responsible for the experimental design, methodological development, data interpretation, and write-up of the manuscript with help from Assoc. Professor David Suggett (UTS). I performed the coupled ¹⁴C/FRRf incubations, and jointly conducted size-fractionated Chl-a analysis with Assoc. Professor David Suggett (UTS). Assoc. Professor David Suggett collected multispectral FRRf measurements. Dr. Joseph Crosswell (CSIRO) performed analysis of dissolved inorganic carbon. Assoc. Professor Martina Doblin (UTS), Prof. Peter Ralph (UTS) and Assoc. Professor David Suggett were instrumental in securing ship-time.

Chapter 6

This opinion paper reflects a joint effort. I was responsible for writing the majority of the original manuscript which was then significantly improved by contributions from Assoc. Professor David Suggett (UTS), Dr Doug Campbell (Mount Allison University), Professor Mark Moore (University of Southampton). Dr Evelyn Lawrenz and Prof. Ondrej Prasil (Czech Academy of Sciences) performed time-resolved measurements of ¹⁴C-incubations and provided significant intellectual input into the manuscript. Assoc. Prof. Martina Doblin and Marco Alvarez (UTS) performed short vs long-term ¹⁴C incubations and provided comprehensive feedback on the manuscript.