

Characterisation of an immunemodulating peptide secreted by a helminth worm

A thesis submitted for the degree of Doctor of Philosophy by Akane Tanaka BSc. (Hons)

School of Life Sciences Faculty of Science University of Technology Sydney

2018

Certificate of Authorship/ Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication. Akane Tanaka

Date: 16/02/2018

This research is supported by an Australian Government Research Training Program Scholarship.

Acknowledgements

I would like to start by thanking my supervisors, Associate Professor Bronwyn O'Brien and Associate Professor Sheila Donnelly. It is their undivided attention and immeasurable support that has allowed me to accomplish this remarkable achievement. The countless opportunities they have provided me over the last five years, has allowed me to develop, not only as a critical-thinking, creative and confident research scientist, but overall as a better person, and I cannot express my gratitude enough for that. I would like to carry on their enthusiasm for science, and the ability to persevere during demanding times, towards my career as a scientist and my life onwards.

I would like to thank Dr Valery Combes and Dr Natalia Tiberti for their expertise and assistance in using the IPA analysis software. It is through this predictive analysis, I was able to generate the basis of my numerous hypothesised mechanisms of action of FhHDM-1. I would also like to acknowledge Dr Michael Johnson, Kun Xiao and Dr Lynne Turnbull, for their assistance in training and running flow cytometry and confocal microscopy experiments. I would also like to acknowledge Dr Nham Tran for sharing his knowledge and expertise on RNA based work. Thank you to Dr Maria Sukkar and Venkata Allam for their collaborative work in testing FhHDM-1 in the murine asthma model. To Fiona Ryan and Lalit Overlunde, thank you for the tremendous amount of support in allowing me to become a competent and highly confident animal handling researcher.

To the laboratory team, Joyce To, Maria Lund, Raquel Alvarado, Monique Merino, Susel Mayra Loli Quinteros, Inah Camaya and Alison Ricafrante, thank you for sharing your scientific knowledge and providing such a welcoming and supportive environment throughout the years. Again, to Joyce, I am so lucky to have had you helping me by my side. I want to thank you so much for everything you have done for me. A special thankyou to Maria and Raquel, as my role models- I hope I have been able to follow your footsteps, and inspire the younger students, as you have both done so for me. Monique and Mayra, thank you both for your assistance in obtaining the valuable data towards the work involving the peptide derivatives and PPAR- γ . To all the other postgraduate students, it has been a great experience working alongside such young and vibrant people, and I wish you all the best in your research careers. To my family, close friends and Clemson, who have been there for me throughout the many years, thank you for supporting me behind the scenes. I am so grateful for the continued encouragement and patience, especially during the practise presentations. I hope to share many more exciting scientific achievements in the future.

I would also like to thank the markers for taking their time to review this thesis, and to thank the Australian Commonwealth Government Department of Industry for the Australian Postgraduate Award Scholarship I received throughout my PhD candidature. Selection of reliable reference genes for the normalisation of gene expression levels following time course LPS-stimulation of murine bone marrow derived macrophages.

Tanaka, A., To, J., O'Brien, B., Donnelly, S., & Lund, M., 2017, BMC Immunology

The Parasitic 68-mer Peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma

Tanaka, A., Allam, V. S. R. R., Simpson, J., Tiberti, N., Sheils, J., To, J., Lund, M., Combes, V., Weldon, S., Taggart, C., Dalton, J. P., Phipps, S., Sukkar, M. B., & Donnelly, S., *Journal of Allergy and Clinical Immunology*

A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis.

Lund, M. E., Greer, J., Dixit, A., Alvarado, R., McCauley-Winter, P., To, J., Tanaka, A., Hutchinson, A. T., Robinson, M. W., Simpson, A. M., O'Brien, B., Dalton, J. P., & Donnelly, S., 2016, *Scientific Reports*, 6:37789

A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease.

Alvarado, R., O'Brien, B., Tanaka, A., Dalton, J. P., & Donnelly, S., 2015, *Immunobiology*, 220:262-269

Novel Therapeutics for Multiple Sclerosis Designed by Parasitic Worms

Dixit, A., Tanaka, A., Greer, J. M., & Donnelly, S., 2017, *International Journal of Molecular Sciences*, 18, 2141

Transcriptional Profiling of Macrophages Predicts a Therapeutic Application for a Parasite-Derived Peptide.

Akane Tanaka, Venkata S. R. R. Allam, Natalia Tiberti, Joyce To, Maria E. Lund, Bronwyn O'Brien, Valery Combes, John P. Dalton., Maria B. Sukkar, & Sheila Donnelly. Oral presentation. The New Horizon Conference (33rd Combined Health Science Conference) 2016.

Helminth parasites; should we reunite with our old friends?

Akane Tanaka, Venkata S. R. R. Allam, Natalia Tiberti, Joyce To, Maria E. Lund, Bronwyn O'Brien, Valery Combes, John P. Dalton., Maria B. Sukkar, & Sheila Donnelly. Oral presentation. St George Hospital (St George and Sutherland Clinical School Research in Progress Meetings) 2017.

A helminth derived peptide induces the expression of SerpinB2 in macrophages to regulate Th1 immune responses.

Akane Tanaka, Maria E. Lund, Joyce To, John P. Dalton, Bronwyn O'Brien, Sheila Donnelly. Poster presentation. European Macrophage and Dendritic Cell Society Conference (31st Annual Conference) 2017.

Table of Contents

Certificate of	Authorship/ Originality	ii
Acknowledge	ements	iii
Publications	in peer-reviewed journals arising from PhD research	V
Associated pu	ublications in peer-reviewed journals	vi
Scientific pre	sentations arising from PhD Research	vii
Table of cont	ents	viii
List of Figure	es	xiv
List of Tables	3	.xvii
List of Abbre	eviations	xviii
Abstract		.xxii
Chapter 1: I	ntroduction	1
1.1	Helminth parasites are potent immune-modulators	2
1.2	Helminth parasites as "worm therapy"	9
1.3	Limitations and challenges for the use of live worm therapy	20
1.4	Use of excretory/secretory molecules of helminth parasites to pre-	vent
	autoimmunity	22
1.5	Fasciola hepatica is a potent immune-modulator	25
1.6	Identification of the individual immune-modulatory molecule	s of
	FhES	30
1.7	FhHDM-1: A cathelicidin-like immune modulating peptide	32
	1.7.1 Structure of FhHDM-1	32
	1.7.2 FhHDM-1 is likely not anti-microbial, anti-parasiticida	l or
	cytotoxic to mammalian cells	35
	1.7.3 FhHDM-1 binds lipopolysaccharide	35
	1.7.4 FhHDM-1 modulates the biological activity	, of
	macrophages	36
1.8	Research questions and aims	38
	1.8.1 Assessing the anti-inflammatory activity of FhHDM-1	38
	1.8.2 Determining the minimal bioactive derivative of FhHDM-1.	38

1.8.3 Determining the interaction of FhHDM-1 with neutrophils... 39

Chapter	r 2: N	lateria	s and Methods	. 40
2	2.1	Gener	al materials	. 41
		2.1.1	General Chemicals and Reagents	. 41
		2.1.2	General Buffers	. 41
2	2.2.	Prepar	ation of Parasite Molecules	. 42
		2.2.1	Fasciola hepatica Helminth Defense Molecule (FhHDM	-1),
			derivative peptides, cathelicidins and cathelicidin-	like
			peptides	. 42
		2.2.2	Amine labelling of FhHDM-1 and FhHDM-1.C2 peptide	. 42
2	2.3	Cell c	ulture	. 43
		2.3.1	General tissue culture reagents and materials	. 43
		2.3.2	Animals	43
		2.3.3	Primary cells	. 44
			2.3.3.1 Cell culture of murine bone marrow deriv	ved
			macrophages	. 44
			2.3.3.2 Cell culture of murine peritoneal macrophages	. 44
			2.3.3.3 Cell culture of murine T cells	. 45
			2.3.3.4 Cell culture of murine neutrophils	. 45
			2.3.3.5 Cell culture of primary murine bone marrow deri	ved
			dendritic cells	. 45
			2.3.3.6 Cell culture of human peripheral blood leukocytes	. 46
		2.3.4	Cell-lines	. 46
			2.3.4.1 RAW 264.7 murine macrophages	. 46
			2.3.4.2 Baby Hamster Kidney cells with high or low Epider	mal
			Growth Factor Receptor expression	. 47
2	2.4	Functi	onal assays	. 48
		2.4.1	Cytokine assays	. 48
			2.4.1.1 Treatment of murine primary bone-marrow deri	ved
			macrophages, RAW 264.7 macrophages and mu	rine
			neutrophils	. 48
			2.4.1.2 Intraperitoneal injection of FhHDM-1	. 48
			2.4.1.3 Stimulation of murine primary bone-marrow deri	ved
			macrophages, RAW 264.7 macrophages, mur	ine
			peritoneal macrophages and murine neutrophils	. 48

		2.4.1.4 Cytokine assay of stimulated murine primary bone-
		marrow derived macrophages, RAW 264.7 macrophages,
		murine peritoneal macrophages and murine
		neutrophils 49
		2.4.1.5 Multiplex assay of cytokines and chemokines from
		stimulated RAW 264.7 macrophages and murine
		neutrophils
		2.4.1.6 Effect of FhHDM-1 and FhHDM-1.C2 on Th1 cytokine
		production by macrophages
	2.4.2	Cytotoxicity assays
		2.4.2.1 Assessment of FhHDM-1 and peptide derivative
		cytotoxicity on RAW264.7 macrophages 51
	2.4.3	Phagocytosis assays
		2.4.3.1 Assessing the effect of FhHDM-1 on the ability of
		murine neutrophils to phagocytose E. coli particles 52
2.5	Flow	cytometry
	2.5.1	General flow cytometry reagents and materials
	2.5.2	Standard flow cytometry staining protocol 54
	2.5.3	Assessment of purity of cell populations via flow cytometry 54
		2.5.3.1 Assessing purity of primary murine macrophages 54
		2.5.3.2 Assessing purity of primary murine T cells 56
		2.5.3.3 Assessing purity of primary murine neutrophils 57
		2.5.3.4 Assessing purity of primary murine dendritic cells 58
		2.5.3.5 Assessing the surface expression of EGFR on BHK
		cells
	2.5.4	Assessment of FhHDM-1 and peptide derivative binding with
		animal and human cell populations
		2.5.4.1 Assessing the interaction of Alexa Fluor 488 labelled
		FhHDM-1 and FhHDM-1.C2 peptides with BMDMs,
		RAW264.7 macrophages, BHK cells and murine
		neutrophils
		2.5.4.2 Assessing the interaction of biotin-labelled FhHDM-
		1.C1 and FhHDM-1.C2 peptides with RAW 264.7
		macrophages61

		2.5.4.3 Assessing the interaction of Alexa Fluor 647 labelled
		FhHDM-1 with human peripheral blood leukocytes 61
		2.5.4.4 Gating strategy for the identification of human peripheral
		blood leukocytes
	2.5.5	Assessment of cellular functions via flow cytometry
		2.5.5.1 Assessing the effect of FhHDM-1 and peptide
		derivatives on murine macrophage viability 69
		2.5.5.2 Assessing the effect of FhHDM-1 and FhHDM-1.C2 on
		murine macrophage lysosomal pH 69
		2.5.5.3 Assessing the effect of FhHDM-1 on murine neutrophil
		phagocytosis of Ovalbumin particles
		2.5.5.4 Assessing the effect of FhHDM-1 on the expression of
		murine neutrophil surface markers 70
		2.5.5.5 Assessing the effect of FhHDM-1 treated murine
		neutrophils on murine dendritic cell activation
	2.5.6	Flow cytometry instrumentation and data analysis
2.6	Micro	scopy
	2.6.1	Standard microscopy staining protocol
	2.6.2	Assessment of FhHDM-1 and FhHDM-1.C2 peptide binding and
		internalisation by murine macrophages
		<i>internalisation by murine macrophages</i>
		internalisation by murine macrophages
		 <i>internalisation by murine macrophages</i>
		 <i>internalisation by murine macrophages</i>
	2.6.3	 <i>internalisation by murine macrophages</i>
2.7	2.6.3 Molec	 <i>internalisation by murine macrophages</i>
2.7	2.6.3 Molecc 2.7.1	 <i>internalisation by murine macrophages</i>
2.7	2.6.3 Molecc 2.7.1	 <i>internalisation by murine macrophages</i>
2.7	2.6.3 Molecc 2.7.1	 <i>internalisation by murine macrophages</i>
2.7	2.6.3 Molecc 2.7.1	 <i>internalisation by murine macrophages</i>
2.7	2.6.3 Molecc 2.7.1 2.7.2	 <i>internalisation by murine macrophages</i>
2.7	2.6.3 Molec 2.7.1 2.7.2	 internalisation by murine macrophages
2.7	2.6.3 Molec 2.7.1 2.7.2	 internalisation by murine macrophages

	2.7.2.3 Quantitative real time quantitative RT-PCR 76
	2.7.2.4 Quantification of relative gene expression levels 78
	2.7.3 Molecular biology instrumentation and data analysis
	2.7.4 Reference gene analysis
	2.7.4.1 Identification of suitable reference genes from the
	microarray data and the literature
	2.7.4.2 Analysis of reference genes expression stability 79
	2.7.4.3 Analysis and identification of the most suitable reference
	gene
2.8	CPPpred analysis
2.9	Statistical analysis
Chapter 3: T	ranscriptional profiling of macrophages treated with FhHDM-1 83
3.1	Introduction
3.2	Transcriptional profiling of FhHDM-1 treated murine
	macrophages
3.3	Analysis of SerpinB2 expression levels and the inhibition of Th1
	cytokine production in FhHDM-1 treated macrophages
3.4	Analysis of <i>Havcr2</i> and <i>Lsp-1</i> expression by helminth, mammalian and
	snake cathelicidin-like peptides
3.5	Discussion
Chapter 4: A	Analysis of the anti-inflammatory effect of FhHDM-1 in murine
macrophages	
4.1	Introduction
4.2	Transcriptional profiling of murine macrophages treated with FhHDM-
	1 in response to LPS stimulation 104
4.3	Modulation of intracellular pathways in murine macrophages treated
	with FhHDM-1 in response to LPS stimulation 110
4.4	Assessment of the effect of FhHDM-1 as a PPAR-γ agonist 114
4.5	Discussion 121

Chapter 5: D	etermining the minimal bioactive derivative of FhHDM-1	124
5.1	Introduction	125

5.2	Assessment of the ability of FhHDM-1, and its peptide derivatives, to
	inhibit TNF cytokine secretion by LPS stimulated macrophages 128
5.3	Determination of FhHDM-1 and FhHDM-1.C2 cytotoxicity
5.4	Assessment of the ability of FhHDM-1 and FhHDM-1.C2 to bind
	murine macrophages
5.5	Assessment of the internalisation of FhHDM-1 and FhHDM-1.C2 by
	murine macrophages 141
5.6	Assessment of lysosomal changes in macrophages induced by FhHDM-
	1 and FhHDM-1.C2
5.7	Assessment of the modulation of macrophage function by FhHDM-1
	and FhHDM-1.C2
5.8	Discussion
Chapter 6: Ir	iteraction of FhHDM-1 with neutrophils154
6.1	Introduction 155
6.2	Determining the interaction of FhHDM-1 with human
	Neutrophils 157
6.3	Assessment of the modulation the biological function of murine
	neutrophils by FhHDM-1 161
	6.3.1 Ability of FhHDM-1 to modulate phagocytosis of resting and
	activated murine neutrophils
	6.3.2 Assessment of the effect of FhHDM-1 on surface marker
	expression on resting and activated murine neutrophils 167
	6.3.3 Effect of FhHDM-1 on pro-inflammatory cytokine and
	chemokine production by LPS stimulated murine
	neutrophils
6.4	Assessment of the ability of FhHDM-1 treated neutrophils to activate
	murine dendritic cells
6.5	Discussion
Chapter 7: G	eneral Discussion 178
Bibliography	
Appendix	

List of Figures

1.1	Axes of the immunological response profiles for activated CD4+ T cells
1.2	Lifecycle of <i>Fasciola hepatica</i>
1.3	One-dimensional gel of Fasciola hepatica excretory/secretory (FhES)
	molecules
1.4	Structure of FhHDM-1
2.1	Assessment of the purity of primary murine bone marrow derived macrophages isolated by differentiation with M-CSF
2.2	Assessment of the purity of primary peritoneal macrophages isolated by negative microbead selection
2.3	Assessment of the purity of primary murine T cells obtained by CD3 microbead isolation
2.4	Assessment of the purity of primary murine neutrophils isolated by
2.5	Assessment of the purity of primary murine dendritic cells isolated by
2.6	Assessment of the expression of EGFR on BHK cells expressing low
2.7	Human peripheral blood leukocyte populations were identified using differential surface markers by flow cytometry
2.8	Human B- and T- lymphocytes and Natural killer cells were identified by flow cytometry
2.9	Human monocytes were identified by flow cytometry
2.10	Human neutrophils and eosinophils were identified by flow cytometry
2.11	Human dendritic cells and basophils were identified by flow cytometry
3.1	FhHDM-1 treatment does not induce any significant changes in gene expression profiles in murine BMDMs
3.2	FhHDM-1 treated macrophages express <i>SerpinB2</i> , and this is conserved across other helminth, mammalian and sea snake cathelicidin-like
	peptides

3.3	FhHDM-1 prevents IFN- γ secretion by T cells via murine
	macrophages
3.4	FhHDM-1 treated macrophages mediate the inhibition of Th1 cytokine
	production via cellular contact between macrophages and T cells
4.1	FhHDM-1 inhibits pro-inflammatory cytokine production by LPS
	stimulated murine macrophages 10
4.2	FhHDM-1 significantly alters the gene expression profile of LPS
	treated murine macrophages
4.3	FhHDM-1 significantly down-regulates genes associated with
	inflammation, in LPS treated murine macrophages 10
4.4	FhHDM-1 represses pro-inflammatory signalling pathways 1
4.5	FhHDM-1 selectively down-regulates pro-inflammatory genes in
	response to TLR-4 and TLR-3 ligands
4.6	FhHDM-1 inhibits the production of pro-inflammatory cytokines, TNF
	and IFN-B, by LPS and Poly (I:C) stimulated murine macrophages
4.7	The helminth cathelicidin-like peptide from Opisthorchis viverrini also
	selectively down-regulates pro-inflammatory gene expression in
	macropahges in response to TLR-4 and TLR-3 ligands
5.1	A sequence of 5 amino acids located to the N-terminus side of the
	amphipathic region of FhHDM has cell-penetrating capability in
	<i>silico</i> 12
5.2	The complete amphipathic helix and the N-terminal amino acids of
	FhHDM-1 are required for the suppression of TNF production by LPS
	stimulated RAW 264.7 macrophages
5.3	FhHDM-1 and FhHDM-1.C2 directly modulate macrophage function
	to prevent TNF production
5.4	FhHDM-1 and FhHDM-1.C2 are not cytotoxic to macrophages 1.
5.5	FhHDM-1.C2 binds to murine macrophages to a similar extent as full
	length FhHDM-1 1.
5.6	FhHDM-1.C2 binds to murine macrophages 14

5.7	FhHDM-1.C2 is internalised by murine macrophages, to a similar
	extent as the full length FhHDM-1
5.8	FhHDM-1.C2 is internalised by murine macrophages
5.9	FhHDM-1.C2 increases macrophage lysosomal pH similar to that of the
	full length FhHDM-1
5.10	FhHDM-1.C2 is as effective as full-length FhHDM-1 in inducing the
	inhibition of cytokine/chemokine production in murine macrophages
5.11	FhHDM-1.C2 modulates the expression levels of Havcr2, Lsp-1 and
	SerpinB2 in BMDMs in a similar manner to that of the full length
	FhHDM-1
5.12	The ability of FhHDM-1.C2 to inhibit Th1 immune responses is
	comparable to that of the full length FhHDM-1
6.1	FhHDM-1 binds to human neutrophils and monocytes
6.2	FhHDM-1 binds to human neutrophils and monocytes
6.3	FhHDM-1 binds to murine neutrophils
6.4	FhHDM-1 inhibits the phagocytosis of Ovalbumin and E. coli particles
	by resting and LPS activated murine neutrophils
6.5	FhHDM-1 does not affect the expression levels of the neutrophil
	surface markers, CD11b and CD62L
6.6	FhHDM-1 inhibits the production of TNF by LPS stimulated murine
	neutrophils
6.7	FhHDM-1 down-regulates the secretion of pro-inflammatory cytokines
	and chemokines by LPS stimulated murine neutrophils
6.8	FhHDM-1 prevents dendritic cell activation by activated murine
	neutrophils
7.1	FhHDM-1 treatment of macrophages results in the inhibition of pro-
	inflammatory immune responses

List of Tables

1.1	Use of helminth infections, and their products, to prevent or treat
1.0	
1.2	Use of helminth infections and products to treat autoimmune disease in
	humans
1.3	Use of helminth excretory/secretory (ES) products as therapeutics in
	animal models of autoimmune disease
1.4	Host immune response profiles induced by Fasciola hepatica and its
	excretory/secretory molecules (FhES)
2.1	General chemicals and reagents
2.2	Cytokines and chemokines detected by multiplex
2.3	Antibodies used in flow cytometry experiments
2.4	Antibody master mixes for identification of individual human
	peripheral blood leukocyte population
2.5	Table of TaqMan primer probes
2.6	In silico ranking of reference genes for experiments using BMDMs
	treated with FhHDM-1, FhHDM-1.C2 other cathelicidins and
	cathelicidin-like peptides
2.7	In silico ranking of reference genes for experiments using LPS or Poly
	(I:C) stimulated BMDMs treated with FhHDM-1 and Opisthorchis
	viverrini helminth peptide
3.1	Genes significantly regulated by 24h FhHDM-1 treatment of murine
	BMDMs
3.2	Regulation of <i>Haver2</i> and <i>Lsp-1</i> expression by helminth, mammalian
	and snake cathelicidin-like peptides
41	FhHDM-1 up-regulates $PPAR-y$ gene expression in response to LPS in
1.1	murine macronhages
	murine macrophages

-	Negative
+	Positive/ plus
±	Plus/minus
\uparrow	Increase
\downarrow	Decrease
٥C	Degrees celsius
α	Alpha/anti
β	Beta
δ/Δ	Delta
κ	Kappa
γ	Gamma
μg	Microgram
μl	Microlitre
μm	Micrometre
μΜ	Micromolar
BHK	Baby hamster kidney cells
BMDM	Bone marrow derived macrophage
CD	Cluster of differentiation
CDAI	Crohn's disease activity index
cDNA	Complementary deoxyribonucleic acid
CEMA	Cationic alpha helical peptide
ChIP	Chromatin immunoprecipitation
CIA	Collagen-induced arthritis
CNS	Central nervous system
CPP	Cell-penetrating peptide
Ct	Cycle threshold value
CXCL	C-X-C-motif chemokine ligand
DAPI	4',6-Diamidine-2'-phenylindole dihydrochloride
DC	Dendritic cell
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DNAse	Deoxyribonuclease
DNBS	Dinitrobenzene sulfonic acid

dNTP	Deoxynucleotide triphosphate
DSS	Dextran sodium sulfate
EAE	Experimental autoimmune encephalomyelitis
EC50	Half maximal effective concentration
EGFR	Epidermal growth factor receptor
ELISA	Enzyme-linked immunosorbent assay
ES	Excretory/Secretory (products)
FACS	Fluorescence activated cell sorting
FDR	False discovery rate
FhCL1	Fasciola hepatica cathepsin L1
FhES	Fasciola hepatica excretory/secretory (products)
FhHDM-1	Fasciola hepatica helminth defence molecule-1
FhPrx	Fasciola hepatica peroxiredoxin
FSC-A	Forward scatter profile
FSC-H	Forward scatter height profile
FSW	Flow cytometry staining wash
GM-CSF	Granulocyte macrophage colony stimulating factor
h	hours
HDP	Host defence peptide
IBD	Inflammatory bowel disease
ICD	Idiopathic chronic diarrhoea
IDR	Innate defence regulator
IFN	Interferon
Ig	Immunoglobulin
IL	Interleukin
IMP	Investigational medicinal product
i.p.	Intraperitoneal
IPA	Ingenuity pathway analysis
kDa	Kilodalton
LDH	Lactate dehydrogenase
LPS	Lipopolysaccharide
LXR	Liver X receptor
M1	Pro-inflammatory macrophage
M2	Anti-inflammatory macrophage
MCP-1	Monocyte chemotactic protein-1

M-CSF	Macrophage colony stimulating factor
MFI	Mean fluorescence intensity
MHC	Major histocompatibility complex
mer	Amino acid residues
min	Minutes
MIP	Macrophage inflammatory protein
ml	Mililitre
MLDS	Multiple-low dose streptozotocin
Mphi	Macrophages
MPO	Myeloperoxidase
MRI	Magnetic resonance imaging
mRNA	Messenger ribonucleic acid
MS	Multiple sclerosis
msec	Milliseconds
NEJ	Newly excysted juvenile
NET	Neutrophil extracellular trap
ng	Nanograms
NK	Natural killer cells
nm	Nanometre
NOD	Non-obese diabetic (mice)
OD	Optical density
O/N	Overnight
Ova	Ovalbumin
Ov-HDM	Opisthorchis viverrini helminth defence molecule
PI	Peak I
PII	Peak II
PC	Phosphorylcholine
PMA	Phorbol myristate acetate
Poly (I:C)	Polyinosinic:polycytidylic acid
PPAR	Peroxisome proliferator activated receptor
PSMβ1	Proteasome subunit, beta type1
qRT-PCR	Quantitative reverse transcriptase polymerase chain reaction
RA	Rhematoid arthritis
Relm-a	Resistin-like molecule alpha
RNA	Ribonucleic acid

ROS	Reactive oxygen species
RRMS	Relapsing-remitting multiple sclerosis
RT	Room temperature
RXR	Retinoid X receptor
SEA	Soluble egg antigens
sec	Seconds
SEM	Standard error of mean
SLE	Systemic lupus erythematous
SNP	Single nucleotide polymorphisms
SUMO	Small ubiquitin-like modifier proteins
SPMS	Secondary progressive multiple sclerosis
sup	Supernatant
SSC-A	Side scatter profile
TGF-β	Transforming growth factor-beta
Th1	T-helper 1
Th2	T-helper 2
Th17	T-helper 17
TID	Type 1 diabetes
TIM-3	T cell immunoglobulin domain and mucin domain-3
TLR	Toll-like receptor
TNBS	Trinitrobenzene sulfonic acid
TNF	Tumour necrosis factor
Treg	T-regulatory
uPA	urokinase-type plasminogen activator
vATPase	Vacuolar ATPase
v/v	Volume/volume
хg	Relative centrifugal force

Abstract

Parasitic worms (helminths) have evolved mechanisms to potently modulate the mammalian immune response to ensure their long-term survival, while concomitantly preventing excessive tissue pathology within the host. The outcome of this activity is a potent suppression of mammalian pro-inflammatory Th1 and Th17 immune responses. This immune-modulatory phenomenon is attributable to the molecules excreted/secreted by helminths as they migrate through their human hosts. The identification of these molecules has the potential to contribute to the development of novel therapeutics for the treatment of autoimmune diseases as these diseases are mediated by pro-inflammatory Th1 and Th17 immune responses.

It has previously been shown that the delivery of a single peptide, FhHDM-1, which is excreted/secreted from the helminth, *Fasciola hepatica*, prevented the development of murine type 1 diabetes and multiple sclerosis. The aetiological similarity between these two diseases, is the establishment of the pro-inflammatory environment by macrophages and neutrophils. Therefore, it was hypothesised that FhHDM-1 likely mediated its protective effect through anti-inflammatory mechanisms directed at these cells. In this study, it was confirmed that FhHDM-1, specifically interacted with both murine and human neutrophils and macrophages. Furthermore, it was demonstrated that FhHDM-1 modulated the activity of these cells, by inhibiting the secretion of pro-inflammatory cytokines/chemokines, which, in turn, prevented further activation of pro-inflammatory T cells and dendritic cells.

The use of transcriptional profiling revealed that, of the 41,436 genes analysed in macrophages, treatment with FhHDM-1 altered the expression levels of only 6 of these. Of these, only the expression level of *SerpinB2* was increased, and this was shown to subsequently mediate the suppression of pro-inflammatory cytokine secretion by T cells. In the context of an inflammatory stimulus, FhHDM-1 regulated the expression of numerous pro-inflammatory genes in macrophages. Pathway analysis predicted that this anti-inflammatory activity was mediated through the activation of PPAR- γ pathways. This is the first report of a PPAR- γ agonist being secreted by a helminth parasite as a mechanism of modulating mammalian innate immune responses.

Importantly, a homologous parasite peptide from a related trematode parasite demonstrated the same activity suggesting a conserved mechanism of action among parasite helminths.

Analysis of the sequence of the FhHDM-1 peptide, combined with immunological assays of peptide derivatives, supported the discovery of the minimally active sequence, FhHDM-1.C2. This peptide contained both the amphipathic C-terminus region, previously identified as functional, and a sequence of 5 amino acids (KARDR), which was newly identified as essential for the binding and internal localisation of FhHDM-1. This C2 derivative mimicked the activity of the full length peptide in every way, such as the ability to bind and be internalised by macrophages, to increase macrophage lysosomal pH, to induce the expression of *SerpinB2*, and to inhibit the production of pro-inflammatory cytokines.

In summary, this thesis has newly identified the binding and active domains of the parasite immune-modulatory peptide, FhHDM-1, and discovered the novel mechanisms by which the peptide regulates pro-inflammatory innate immune responses. Combined, these findings have significantly advanced the progress towards translation of the FhHDM-1 peptide for therapeutic use in immune-mediated diseases.