Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 24 (2017) 181-193 Copyright ©2017 Watam Press

http://www.watam.org

BASIC EXISTENCE AND UNIQUENESS RESULTS FOR SOLUTIONS TO SYSTEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

Christopher C. Tisdell¹, Zhenhai Liu² and Shev MacNamara³

^{1,3}School of Mathematics and Statistics, The University of New South Wales, UNSW Sydney NSW 2052, Australia

²Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, Guangxi University for Nationalities, Nanning 530006 Guangxi, Peoples Republic of China

Abstract. We produce new global existence and uniqueness results for solutions to systems of initial value problems involving fractional differential equations. The uniqueness results rely on differential inequalities and a comparison with monotonically converging sequences of functions. The existence results involve fixed-point theorems that rely on a strategic choice of Liapunov function and harness new *a priori* bounds on solutions. We present an example where the new results yield existence of solutions, but the classical global Cauchy–Lipschitz approach does not directly apply.

Keywords. uniqueness of solutions; nonlinear fractional differential equations of arbitrary order; initial value problem; existence of solutions; Liapunov function; fixed point theorem

AMS (MOS) subject classification: 34A08, 34A12

1 Introduction

Our discussion is centred around the following system of initial value problems (IVPs) of arbitrary order q > 0

$$D^{q}\left(\mathbf{x} - T_{\lceil q \rceil - 1}[\mathbf{x}]\right) = \mathbf{f}(t, \mathbf{x}); \tag{1.1}$$

$$\mathbf{x}(0) = \mathbf{A}_0, \ \mathbf{x}'(0) = \mathbf{A}_1, \dots, \ \mathbf{x}^{(\lceil q \rceil - 1)}(0) = \mathbf{A}_{\lceil q \rceil - 1}.$$
(1.2)

Above: $\lceil q \rceil$ is the ceiling value of q; D^q represents the Riemann–Liouville fractional differentiation operator of arbitrary order q > 0 (a precise definition is found in (2.3) a little later); $f : [0, a] \times \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}^n$; each component of the vector function $T_{\lceil q \rceil - 1}[\mathbf{x}]$ is the Maclaurin polynomial of order $\lceil q \rceil - 1$ of