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Abstract

In engineering design, structural components with variable cross sections are extensively employed due to their excel-
lent mechanical properties. From a strength and stiffness perspective, structural components with a uniform cross sec-
tion are not always ideal. Therefore, to effectively utilize material, variable cross section structural components with
excellent properties such as high strength and stiffness are employed in many practical engineering applications. As a
multi-dimensional function is required to describe the state of a variable cross section structural component, determin-
ing the locations of its dangerous cross sections is very difficult. As a result, the development of a reliability-based design
for a variable cross section structural component is a complex process. Therefore, strict theoretical derivations and rea-
sonable quantitative research are required to understand the variation pattern of the reliability of the variable cross sec-
tion structural component with the coordinates to determine the locations of its dangerous cross sections. This article
presents a reliability sensitivity analysis with limited probabilistic information and a reliability-based robust design variable
cross section structural component. Mathematical models for reliability sensitivity analysis and reliability-based robust
design of variable cross section structural components with incomplete probabilistic information are established.
Reliability sensitivity analysis and reliability-based robust design methods for variable cross section structural compo-
nents with non-normally distributed parameters are proposed. The article provides the changing condition of the relia-
bility with respect to the variable cross section, describes the change rule of reliability with respect to design
parameters, and provides the multi-objective optimal design model based on reliability sensitivity. The reliability index
obtained using the presented method is insensitive and therefore robust. Using a numerical example, the variation curves
of the reliability index and reliability of a variable cross section structural component with coordinates of variable cross
section are obtained. A reliability-based robust optimal design approach for variable cross section structural components
for given design reliability index conditions is provided.
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Figure 1. VCS steel beam.

Figure 2. VCS parts: (a) VCS stirring blade, (b) VCS leaf spring, (c) VCS composite box beam, and (d) VCS blade.

properties, for example, VCS beams, which are
employed in large numbers in construction engineering
applications (Figure 1), and VCS parts, which are
extensively employed in mechanical equipment
(Figure 2). VCS structural components are ubiquitous
in everyday life and practical engineering applications.
Lightweight, low-cost, and high-performance VCS
structural components are employed in large numbers
in fields such as aerospace, mechanical machinery, and
civil engineering. An ideal structural component should
have large cross sections at locations where large bend-
ing moments and deformation occur and small cross
sections at locations where small bending moments and
deformation occur. Consequently, an ideal structural
component has a cross section that varies in size along
with its length and excellent properties (e.g. high
strength and stiffness). Thus, the use of VCS structural
components can facilitate material saving, weight and
cost reduction, and performance enhancement.
Therefore, investigating reliability and reliability

sensitivity problems concerning VCS structural compo-
nents has application and academic values.

Reliability, which is an important structure quality
index, is garnering increasing attention from engineer-
ing industries. Of the three stages (design, production,
and application), modern production practice demon-
strates that design determines the reliability level of a
structural component (i.e. inherent reliability of a struc-
tural component), and production and application
ensure the realization of the reliability index 8 of the
structural component. Numerous excellent results have
been achieved using reliability analysis and reliability-
based design methods based on probability and statis-
tics.! !

As different factors affect the reliability of a struc-
tural component to varying degrees, the reliability sen-
sitivity of the structural component should be
sufficiently analyzed. Using a reliability sensitivity anal-
ysis, the impact of the variations in the design para-
meters on the reliability of a structural component can
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be evaluated, which reveals the level of impact of each
design parameter on the reliability of the structural
component, that is, sensitivity.lz*15

For a structural reliability-based robust design, relia-
bility sensitivity is included in an optimal design model
based on a reliability-based design, an optimal design,
a sensitivity-based design, and a robust design, and the
reliability-based robust design is converted to a multi-
objective optimal design that satisfies the reliability
requirements. As a low-cost, high-reliability design con-
cept and method,'®?? Lagaros et al.**> implemented a
combined reliability-based robust design optimization
(RRDO) formulation. Yadav et al.** established new
and effective techniques and tools to ensure a robust
and reliable product design. Wang et al.>> proposed a
unified framework for integrating reliability-based
design and robust design. Wang et al.*® attempts to
integrate reliability, maintenance, and warranty during
reliability-based design. Martowicz and UhI*’ discussed
the applicability of a reliability- and performance-based
multi-criteria robust design optimization technique for
micro-electromechanical systems. Yu et al.>® proposed
in their work a reliability-based robust design optimiza-
tion framework dedicated to the tuned mass damper in
passive vibration control. Paiva et al.*’ outlined an
architecture for simultaneous analysis and calculation
of robustness and reliability in aircraft wing design
optimization. Wang et al.*® presented a new approach
to efficiently carry out dynamic reliability analysis for
RRDO. Qui et al.*!' proposed a reliability-based robust
design approach on the basis of axiomatic theory, aim-
ing at actualizing a reliability-based robust design
framework for mechanism motion.

Many researches based on VCS have been reported.
Boiangiu et al.*? provided differential equations for free
bending vibrations of straight beams with VCS using
Bessel’s functions. Kang et al.*® investigated the metho-
dology to enhance hydroformability of non-
axisymmetric thin-wall tubular component with VCS.
Li et al.** provided a transfer matrix method used to
predict the transmission loss of apertures assuming that
the cross-sectional dimensions are small compared to
an acoustic wavelength. Jun et al.*® studied a flexible
extrusion process which involves extruding the materi-
als via one fixed and one movable die.

Currently, most reliability analysis techniques for
VCS structural components in mechanical equipment
are developed based on accumulated experience or
experiments. The failure mechanisms of VCS structural
components have not been completely revealed, and
reliability-based design models for VCS structural com-
ponents have not been clearly established; conse-
quently, the available reliability-based design models
lack ideal accuracy and precision. Currently, research

on reliability-based design of VCS structural compo-
nents is in the early stage, and no research has been
conducted on reliability sensitivity analysis and
reliability-based robust design of VCS structural
components.

In this study, based on preliminary theoretical
research on structural reliability, a reliability sensitivity
analysis is performed on VCS structural components,
and a reliability-based robust design is developed with
incomplete probabilistic information using theoretical
methods such as structural reliability-based design,
reliability sensitivity analysis, and reliability-based
robust design. In addition, a reliability sensitivity anal-
ysis is performed on VCS structural components with
non-normally distributed parameters, and a reliability-
based robust design is developed for these structural
components using modern mathematical and mechan-
ical theories and methods, such as probability and
statistics theory, stochastic perturbation technique,
higher-order moment method, reliability-based design
technique, sensitivity theory, and robust design
method. Engineering reliability sensitivity analysis
and reliability-based robust design methods for VCS
structural components using limited probabilistic
information are proposed. The problem of whether
the reliability of VCS structural components is sensi-
tive to the design parameters is discussed. For the
condition in which the probabilistic characteristics of
the basic random variables are known, information
that relates to the reliability sensitivity analysis and
reliability-based robust design of a VCS structural
component can be rapidly and accurately obtained.

Reliability analysis method

One goal of structural reliability analysis is to determine
the reliability of the system

R=|  f(xnex 1)
8:(X)>0
where fy(X) is the joint probability density function of
the basic random parameter vectors (X = (X1X;---
X,)"); z is the coordinate variable of the VCS structural
component; and g.(X) is the state function of the VCS
structural component that varies with z, which
describes the safety and failure states, that is

gz(X) =r—28.(X) (2)

where r represents the strength of the material; S. repre-
sents the stress of the VCS structural component that
varies with z; and X represents the random variable vec-
tors. g.(X) can indicate two states of the structural com-
ponent, that is
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g:(X) <0 failurestate
2.(X)>0 safestate

3)

The first four moments of g.(X) can be expressed as
follows™®

b = Bl = 20 = . X) = lu] @

0g: 0g.
oy, = Varlg.(X)] = ‘3)(;) C(X) ga;x) 5)
3 0g, (X 9g.(X)  0g.(X
ol - e 0. 0
(6)
g, = E{(gz(X) - ng,,)q = 8§3£'TX) o aiz)((i() ) ag;;\’) o ag(;;X)
(7)

where ® represents the Kronecker product, and p(X),
Cx(X), C3(X), and C4(X) represent the mean, covar-
iance, third-moment, and fourth-moment matrices,
respectively, of the random variables of the structural
component (X).

When the first two moments of the basic random
parameters of the structural component (X = (X1 X5 - -
X,)"), that is, the mean vector (E(X)) and C,(X) are
known, B can be expressed using the second-moment
method (Bsm) as follows

Mo Elg:(X)]

function.

B

where s, = 0, /o, and as, = 1, /og are the coeffi-
cient of skewness and the coefficient of kurtosis of g(X),
respectively.

When the distribution of X = (XX -- X,)" cannot
be determined, the Bgy of the structural component
can be calculated using the higher-moment method
based on which an approximate estimate of the reliabil-
ity (Rgm) can be determined, that is

Rem = ©(Brm) (11)

Thus, the reliability of the structural component is
obtained; in addition, a reliability analysis can be per-
formed on the structural component and a reliability-
based design can be developed.

Reliability sensitivity analysis

When the first four moments of X = (X, X>--- X,)" are
known, although the distribution of X cannot be deter-
mined, a reliability analysis and reliability-based design
for the structural component can be performed based
on the high-moment method for reliability-based
design. Based on By and Ry (defined by the high-
moment method for reliability analysis and reliability-
based design), the reliability sensitivity to the mean vec-
tor mx = E(X) and standard deviation vector ox of
X=XX> X))\, respectively, are obtained by the
following derivations

BFM -

Bsm = (8)
Og Varlg.(X)]
_ T OREM  OREM
When X = (X X,--- X,,) each completely follow a — =
normal distribution, a first-order approximate estimate Iy Pewm
of the relia.bilit}}/1 of the structural Cor?lponent can be IBrm Mg, N Brwm d07g. N Brwm 00, N 9Brn 0,
obtained using the second-moment method (Rgp) O, ouTt dog Ok 30, opL o, out
Rsm = @(Bsm) ) (12)
where ®(-) represents a standard normal distribution Rem _ IRem
80'§ B,BFM
= .. T o p _ .

. When' X .(X' X2 . Xn) ed(.:h follow a non-normal Bem WM. . Prm dog. | Py g, | Pry M.
distribution, if approximate estimates of the first four 0. 9oL + % 9oL + 0. 30T + P
moments of X = (X, X» - - X,)" (i.e. E(X), Co(X), C5(X), He. 90 e O0x g 90x Mg 90x
and C4(X)) are known, B8 can be defined using the (13)
higher- t method follows®’

igher-moment method (Bgw) as follows where

~ 6(3aug, +2)Bsw T 1las, (Bgy — 1)
FM — > (10a) OREM 14
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(15)
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If the first-order mean value of the Taylor series

expansion of g(X) is identified (i.e. u, =

g(pmx), where

Mg is a function of wy and unrelated to o), then we

have

= (oG i 5

a6 d
ao,g]z“ = U§CM3(X) ysiy (ox®@ox) + (UX®0'X)TC,U,3(X)T
X X
(25)
e 3ok @ o) CulX) - (ox @ ay)  (26)
Py Ox @ 0x)CualX) o r(ox @ oy
X o x

where ¢(-) represents a standard normal probability
density function. The known condition and the results
of the calculation of relevant data and reliability are
combined and substituted into the equations for the
reliability sensitivity of a structural component (equa-
tions (12) and (13)). Thus, information that relates to
the reliability sensitivity (i.e. 9Rpm/0my and
dRgM /30 x) can be obtained.

Reliability sensitivity is used to evaluate the level of
impact of a certain factor on the reliability of a struc-
tural component. To uniformly describe the level of
impact of various factors on the reliability of a struc-
tural component, the reliability variation gradient at
the nominal point is generally selected as the sensitivity
factor. Therefore, the reliability sensitivity gradient can

be expressed as follows
_ [ ({Rewm 2+ aRpm )
Oy, doy,

(27)

DRewm (my o)

Grad DX

Reliability-based robust design

Structural reliability-based robust optimal design
can be expressed using the following mathematical
model
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Figure 3. Actual structural and mechanical model of a cantilever bracket.

n

min f(X) = > wifi(X)

k=1

st. g — D '(Ry)og. >0 (28)
gl(X)ZO (l:1525~ 71)
hJ(X):O (j:1,2,. ,S)

where R, represents the reliability specified in the
design requirements; X represents the basic random
vectors, including the design variable vectors (denoted
by x = (X;x2--- X,,)") and random parameter vectors;
and wy represents the weighting factor of the sub-
objective function f;(X) (wy>0). The value of wy is
determined by the order of magnitude and degree of
importance of each sub-objective function. In this
study, wy is determined using the weighting combina-
tion method, that is

. A7) ()
AR ACSREAC)
Wy = Sier (X)) i (X
P A () A ()]

B

- () ()
T A G ) ()

Numerical example

Figure 3 shows a tapered beam under a vertical pres-
sure. Each geometric cross-sectional parameter can be
considered to independently follow a normal distribu-
tion. The mean and variance of the tapered beam para-
meters are as follows: cross-sectional thickness b = (12,
0.06) mm; free-end height a = (18, 0.09) mm; slope of
the tapered beam « = arctan(0.12, 0.006); and length
of the tapered beam / = (500, 2.5) mm. The probability
distributions of the load and the strength parameter are
unknown; however, the first four moments of the load
and the strength parameter are known. The first four
moments of the load borne by the beam P = 3400 N,

170N, 7.3756 X 10°N?, 2.539 x 10° N* and the
first four moments of the tensile strength of the
material r = 221 MPa, 11.05MPa, 2.0255 X 10° MPa®,
4.532 X 10*MPa®. Here, a reliability sensitivity analy-
sis is performed on this structural component, and a
reliability-based robust design is developed for this
structural component.

Reliability analysis of the tapered beam

Structural brackets and various types of bases are often
involved in structural design. These structures are gen-
erally composed of shaped steel bars, plates, and some
prefabricated structural components to satisfy the
mechanical strength, stiffness, and appearance require-
ments. The bending stress of a tapered beam at any
arbitrary cross section z is

6P(1 —z)
bla + tana(l — 2)|*

S:(X) =

(30)

Transversal force-caused bending is common in
engineering structures. As the ratio of beam span and
cross-sectional height is n > 5, the shear stress resulting
from the load is not considered. According to the
stress—strength interference theory, the state equation
expressed with the ultimate stress state is expressed as
follows

6P(I — 2)
bla + tana(l — z)]*

g:(X) =r— (31)

where r represents the material strength of the tapered
beam; X =[a b r P [ tana]’ represents the basic ran-
dom variable vectors, and z represents the coordinates
of any arbitrary cross section of the tapered beam. All
probabilistic numerical characteristics of X are known.
However, the probability distributions of some random
variables are unknown.
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Table |I. Reliability sensitivity to wx and ox before optimization.

Random variables R/ dpy dR/dox Gradient of sensitivity
a 1.049694 X 10° —7.03445 1.905708 X 102
b 1.572851 x 10? —10.9063 1.5766 X 10°
p —0.5352x 1073 —0.3949 X 1072 6.6513x 107*
I 0.1321 x 10~ -73199x 10°* 1.3234 X 1072
tana 16.2693 —11.2668 1.9790 X 10
r 0.89003 X 108 —7.2570x 10°° 1.1484 < 1078
should be effectively ensured based on the reliability
L analysis results.
0.99} Based on the equations for the Bgy (equation (10)),
098k Rewm (equation (11)), and V' (equation (32)) of a VCS
oot structural component, the V, Bgm, and Rpy of the
tapered beam at the dangerous cross section are
0% Vo = 288 mm?®
% 0.95 IBFM = 1.36064
& oo4) Ry = 091319
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Figure 4. Reliability curves of the tapered beam.

Volume (V) is one of the important reference values
for the reliability-based design of a tapered beam and is
a main target for a lightweight design. The selected
tapered beam has a V of

b2 tan «

= abl +
V = abl 5

(32)

The first four moments of the state function of the
VCS structural component are determined by substitut-
ing the known condition and relevant data into
the expressions of the first four moments of the state
function of a VCS structural component (equations
(4)(7)). Then, a reliability analysis and calculation are
performed by substituting the known condition and rel-
evant data into the equations for By (equation (10))
and Rgy (equation (11)). By substituting the known
condition, Bgym and Ry curves with respect to z are
obtained by calculation, as shown in Figure 4.

As demonstrated in Figure 4, the Brpym and Rpy
curves of the tapered beam exhibit a parabolic shape.
The Brm and Rpym of the tapered beam vary with z. The
minimum By and Ry occur near 0.345 m, that is, the
cross section at z = 345mm is a dangerous cross sec-
tion. Thus, when developing a reliability-based design
for a VCS structural component, balanced reliability

The reliability of the VCS structural component is
also calculated by simulation using the Monte Carlo
method, and the result, which is denoted by Ryc, is
where Ryc represents the reliability obtained from the
numerical simulation based on 10° samples using the
Monte Carlo method. The calculation results demon-
strate that the results obtained using the proposed
method are consistent with the results obtained from
the numerical simulation using the Monte Carlo
method.

Reliability sensitivity analysis of the tapered beam

A reliability sensitivity analysis of the tapered beam is
performed via calculation by substituting the known
condition and relevant data into the expressions of the
sensitivity of Rgy of a structural component (equations
(12) and (13)). The data in Table 1 list the values of the
reliability sensitivity of the structural component with
non-normally distributed parameters to puy and oy, as
well as the Ry sensitivity gradient.

The reliability sensitivity analysis demonstrates that
the reliability sensitivity of the entire tapered beam to
each X reaches the extreme value at the dangerous loca-
tion. The dangerous cross section is the most sensitive
to variations in X. A comparison with the Rgy curve
shown in Figure 4 indicates that the location on the
tapered beam with high reliability is the least sensitive
to variations in X. As demonstrated in Table 1, the
reliability sensitivity of the tapered beam to each r, b, q,
[, and tana has a positive value. These random vari-
ables each have a positive impact on the Rgy of the
tapered beam, that is, an increase in the mean value of
each r, b, a, [, and tana will cause an increase in the
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Rpm of the structural component—the Rpyy of the
tapered beam increases as each r, b, @, [, and tana
increases. Conversely, the sensitivity of the Rgy; of the
tapered beam to P (i.e. force applied at the free end of
the tapered beam) has a negative value. P has a nega-
tive impact on the Rgy of the tapered beam, that is,
the Ry of the tapered beam decreases as P increases
and the reliability sensitivity of the tapered beam to P
reaches the extreme value at the dangerous location. A
change in b will have the most significant impact on the
Ry of the tapered beam, followed by a, tana, /, P,
and r. In addition, Table 1 also demonstrates that the
reliability sensitivity of the tapered beam to the var-
iance of each random variable has a negative value.
The Rgm of the tapered beam decreases as the variance
of each basic random variable increases, that is, the
variance of each basic random variable has a negative
impact on the Ry of the tapered beam.

Reliability-based robust design for the tapered beam

A reliability-based robust optimal design that satisfies
the design reliability requirement (R, = 0.99) and mini-
mizes the weight of the tapered VCS beam is developed.

Determining design variables. By analyzing the main para-
meters that affect the reliability of the tapered beam,
three parameters, namely, a, b, and tana, are selected
as the design variables when developing a reliability-
based robust optimal design model. Thus, the design
variable vectors are x = [a b tana]".

Establishing objective functions. The weight of the tapered
beam can be minimized by minimizing its V. Therefore,
the first optimization objective of the reliability-based
robust optimal design is

(X)) =V

To eliminate the reliability sensitivity of the tapered
beam to the design parameters (i.e. to enable the
tapered beam to be robust), the sensitivity function of
the reliability constraint to the design parameters is
selected as the second optimization objective of the
reliability-based robust optimal design, that is

o= [ o] [Ree

Establishing constraint conditions. The tapered beam needs
to satisfy certain reliability requirements. Thus, we have
the following reliability constraint condition

(33)

Rem — Ry >0 (35)

The geometric dimensions of the tapered beam also
need to satisfy certain design conditions. Thus, we have
the following inequality constraint conditions

0.1<tana <0.15

Reliability-based robust optimal design. The design values of
the parameters are selected as the initial values for opti-
mization: x=[a b tana]=1[0.019822, 0.010452,
0.14787]. The parameters obtained from reliability-
based robust optimization are as follows

¥ =293.36mm’
a=19.822mm
b =10.452mm
tana = 0.1479

The Bem and Ry of the tapered beam after optimi-
zation are

Brm = 3.4010
The calculation results are as follows. (1)

Riyv = 0.99966 satisfies the reliability-based robust
optimal design requirement for the reliability of the
tapered beam, that is, Ry = 0.99. (2) R is considerably
higher than the initial reliability (Rgy = 0.91319), and
the V of the tapered beam is correspondingly increased
by AV =V —Vy=29336mm’ — 288 mm® = 5.36 mm">.
This finding demonstrates that the reliability-based
robust design reaches the VCS structural component
design goal—balanced reliability—and that the reliabil-
ity theory and technique are effective and practical light-
weight techniques.

Figure 5 shows the variation curve of the Rgpp of the
tapered beam with z after optimization. Compared to

0.9999

0.9998 [

0.9997 |-

0.9996 [
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0.9994 |
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Figure 5. Bgm and Rey curves after optimization.
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Table 2. Reliability sensitivity to wx and o after optimization.

Random variables dR/0py dR/dox Gradient of sensitivity
a 0.7115 —9.2846 X 1072 0.7175
b 1.3962 —0.2047 14111
p —0.3940 X 1074 —0.6984 X 1074 8.0188x 107¢
I 3.1559 % 1073 —2.3458 % 10°* 3.1646 X 1073
tana 0.11022 —0.1664 1.9962 % 107"
r 0.7335x 10~ '° —0.1477 X 107° 1.6456 x 107 '°
200 181
180 16k
> 2
S 1e0r Z 14
§ 140 § 1ok
£ 120p 2 |
E 100 é
> o 0.8
Jé 80} <
% 601 % 06r
.2 bS]
E 40+ g 0.4}
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Figure 6. Variation curves of the Rgym sensitivity gradient with z: (2) variation curve of the Rgy sensitivity gradient before
optimization and (b) variation curve of the Rgy sensitivity gradient after optimization.

the Rgyv shown in Figure 4, the Ry of the tapered
beam is significantly higher after optimization.

A comparison of Rgy before and after the
reliability-based robust optimal design indicates that
the numerical value of Rgy; significantly increases, and
the range within which Rgy; varies also significantly
decreases after optimization, which demonstrates that
the reliability-based robust optimal design method is
effective and can produce a balanced result. Therefore,
research on the reliability of a VCS structural compo-
nent can ensure the reliability level, reflect the actual
condition of the VCS structural component, and ensure
that the design working performance of the VCS struc-
tural component is more consistent with its actual
working performance. Research on the reliability of a
VCS structural component can facilitate the develop-
ment of a lightweight design, ensure that the working
performance and parameters of the VCS structural
component are optimal, and help reach design goals,
such as weight reduction, efficiency enhancement,
energy saving, environmental protection, performance
enhancement, and a safe and reliable design.

The values of x = [a b tana]" after the reliability-
based robust design (¢ = 19.822mm, b = 10.452mm,
and tana = 0.1479) are selected for a reliability

sensitivity analysis. Table 2 lists the values of the relia-
bility sensitivity of the VCS structural component to
px and oy and the corresponding Ry sensitivity gra-
dients after optimization.

The reliability sensitivity analysis results obtained
before and after the reliability-based robust optimal
design indicate that the numerical value of the reliability
sensitivity significantly decreases after the reliability-
based robust optimal design, which ensures stable relia-
bility and eliminates the reliability sensitivity of the VCS
structural component to the design parameters for inter-
ference factors, enhances the safety, reliability, and
robustness of the VCS structural component, and attains
the reliability-based robust design goals and effect.

The reliability sensitivity of the tapered beam at any
arbitrary location can be calculated using equations
(12) and (13). The Rgy sensitivity gradient of the
tapered beam at any arbitrary location can be calcu-
lated using the expression of the Rgy sensitivity gradi-
ent of a structural component (equation (27)). Figure 6
shows the variation curves of the Rg\; sensitivity gradi-
ent of the VCS structural component with z plotted
based on the variation patterns of the mean value and
mean square error of the reliability sensitivity of the
VCS structural component with z.
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Figure 7. Reliability sensitivity to the mean value of x.

The previously mentioned calculation results demon-
strate the following conclusions. (1) The higher the
Rpm of the VCS structural component Ren = P(Brm),
the gentler the variation curve of Rgy with z, and the
smaller the numerical value of the Rgy; sensitivity gra-
dient, that is, the lower the sensitivity of Rpy of the
VCS structural component to variations in the design
parameters (the more robust the VCS structural com-
ponent). (2) The numerical value of the Rpy; sensitivity
gradient significantly decreases after the reliability-
based robust optimal design. This finding demonstrates
that the reliability-based robust optimal design yields
notable results, and the reliability-based robust optimal
design method is effective and practical.

Figure 7 shows the comparison of the reliability sen-
sitivity to the mean values of x before and after the
reliability-based robust optimal design. Figure 7
demonstrates the level of impact of variations in each
random variable on the reliability sensitivity of the
VCS structural component and provides the reliability
sensitivity to the mean value of x.

Figure 7 demonstrates the following results. (1) The
Rpy of the VCS structural component varies with the
design parameters. A change in b will have the most
significant impact on the Rgy of the VCS structural
component, followed by a and «. Therefore, variations
in the sensitive parameters should be strictly controlled
when designing the shape and dimensions of the VCS
structural component. (2) The numerical values of the
reliability sensitivity to x are smaller after the
reliability-based robust optimal design. This finding
demonstrates that the Ry of the VCS structural com-
ponent is less sensitive to variations in the design vari-
ables (i.e. the VCS structural component is more
robust) after the optimization, and the reliability-based
robust optimal design goal is achieved.

Conclusion

In structural design, the reliability-based robust optimal
design method can be employed to ensure that the

reliability of the design structure is stable when the
design parameters undergo variations (i.e. eliminated
reliability sensitivity of the structure to the design para-
meters). By doing so, the objectives of satisfying the
reliability requirements and reducing cost can be
achieved. In this article, the reliability-based design
method is combined with the robust design theory, the
function of reliability sensitivity is included in the
objective function of the reliability-based optimal
design model, and reliability-based robust optimal
design is converted to a multi-objective optimization
problem that satisfies the reliability requirements.
Based on this idea, mathematical models for reliability
sensitivity analysis and reliability-based robust optimal
design of VCS structural components are established.
Reliability sensitivity analysis and reliability-based
robust optimal design theories and methods for VCS
structural components are proposed. A case study is
conducted to illustrate the proposed method. In the
case study, an in-depth reliability sensitivity analysis is
performed on a VCS tapered beam, and a reliability-
based robust design is also developed for this tapered
beam. Ideal analysis and design results are obtained,
which forms a solid foundation for the reliability sensi-
tivity analysis and reliability-based robust design of
VCS structural components in practical engineering
applications.
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