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Abstract

We consider energy-optimal navigation plan-
ning in flow fields, which is a long-standing
optimisation problem with no known analyt-
ical solution. Using the motivating example
of an underwater glider subject to ocean cur-
rents, we present an asymptotically optimal
planning framework that considers realistic ve-
hicle dynamics and provably returns an opti-
mal solution in the limit. One key idea that
we introduce is to reformulate the dynamic
control problem as a kinematic problem with
trim states, which encapsulate the dynamics
over suitably long distances. We report sim-
ulation examples that, surprisingly, contravene
the use of regular ‘sawtooth’ paths currently
in widespread use. We show that, when inter-
nal control mechanics are taken into account,
energy-efficient paths do not necessarily follow
a regular up-and-down pattern. Our work rep-
resents a principled planning framework for un-
derwater gliders that will enable improved nav-
igation capability for both commercial and de-
fence applications.

1 Introduction

Many outdoor vehicles are subject to external distur-
bances that can be modelled as flow fields. Examples
include commercial aircraft travelling through wind in a
fuel-efficient manner [Yoo et al., 2014; Girardet et al.,
2014; M. et al., 2015], aerial gliders exploiting ther-
mal airflows [Yoo et al., 2012; Cobano et al., 2013;
Nguyen et al., 2013], and underwater gliders that per-
sistently monitor large areas subject to ocean cur-
rents [Fernndez-Perdomo et al., 2010; Isern-Gonzalez et
al., 2011; Tesei et al., 2015]. These outdoor platforms
are typically difficult to refuel or recharge while in oper-
ation; we are interested in energy-efficient planning that
exploits existing flow fields to achieve maximum mission

duration. This long-standing optimisation problem has
remained open for nearly a century and, unfortunately,
still has no known analytical solution [Zermelo, 1931].

Another complicating factor is that such outdoor vehi-
cles often have complex dynamics [Zarafshan et al., 2008;
Mahmoudian et al., 2010; Lawrance and Sukkarieh,
2011]. Their dynamical models are typically non-linear
and the control space is too large to find a feasible solu-
tion in a timely manner. For instance, a SLOCUM -
type underwater glider [Leonard and Graver, 2001;
Jones et al., 2014] is controlled by physically moving
control masses inside the vehicle and pumping in or out
water from the ballast tank. Because the energy expen-
diture of such a glider is directly affected by the control
inputs, a coarse representation may call into question
the integrity of any control solution found.

Our motivating example is long-duration navigation
for underwater gliders under the influence of ocean cur-
rents. We would like to efficiently control the glider
through ocean currents, avoid obstacles, and reach
a given destination while minimising energy expendi-
ture. This problem has been addressed using oversim-
plified kinematic and energy models with poor compu-
tational efficiency and limited or no performance guar-
antees [Lolla et al., 2014b; 2014a].

In this paper, we present an asymptotically optimal
planning framework for underwater gliders with realis-
tic dynamics. The glider operates in the ocean with
time-invariant current flows that the glider may avoid
or exploit to save energy while avoiding obstacles. Un-
like most previous approaches to this problem, which
assume direct controllability of glider pose, we instead
assume an unrestrictive dynamic model where pose is
controlled implicitly through internal hydraulics. We
reduce a high-dimensional dynamic model of the glider
to a more parsimonious 6-dimensional kinematic model
by considering a trim state: the state of dynamic equi-
librium in which the glider continues indefinitely in a
straight line in the absence of active controls. We con-
sider a path expressed as a sequence of glider kinematic



states where a trim state exists between any consecu-
tive kinematic states. Given the kinematic model, we
find the energy-optimal path between the initial and
goal states by adapting a sampling-based planning algo-
rithm called fast marching tree* (FMT*) [Janson et al.,
2015] which guarantees asymptotic optimality and con-
verges quickly in high-dimensional configuration spaces
compared to traditional algorithms such as RRT* and
PRM* [Frazzoli and Karaman, 2011]. We argue that
our adaptation to FMT* retains its original performance
guarantees.

We validate the proposed framework using compli-
cated flow fields and obstacles, including different types
of vortices and seabed topographies. Our results exhibit
interesting counter-intuitive paths which we discuss ex-
tensively. In particular, we show that the classical peri-
odic ‘sawtooth’-shaped manoeuvre in depth is not always
energy efficient. We compare our result with current
state-of-the-art algorithms [Kularatne et al., 2016] and
discuss the difference and significance of our framework
in terms of the state space and depth profile.

The significance of this work is primarily to improve
the navigation capability of underwater gliders through
energy-efficient paths. Although the presentation of our
method is specific to underwater gliders, the design prin-
ciples could be useful for application to other types of
vehicles.

This paper is organised as follows. In Sec. 2 we briefly
discuss related work. In Sec. 3, we formally state the
problem and define models of the glider and the ocean
current. In Sec. 4, we formally define and compute the
glider’s trim state, and in Sec. 5, we present an asymp-
totically optimal planning algorithm. We demonstrate
simulated examples using different environment settings
in Sec. 6 and conclude the paper in Sec. 7.

2 Related Work

Various approaches have been presented to solve path
planning problems for autonomous surface and under-
water vehicles (ASVs and AUVs) in flow fields [Ku-
laratne et al., 2016; Fernndez-Perdomo et al., 2010;
Xinke et al., 2015; Isern-Gonzalez et al., 2011]. Often
the dynamics of the vehicles are given as a classical 2-
dimensional kinematic model where the turning rate is
directly controlled. Based on the simple model, the ob-
jective is to minimise the time and energy. In most of the
cases, energy use is modelled simply as a linear function
of time; optimal solutions are often achieved by max-
imising the resultant velocity against the currents.

There also exists work that considers manoeuvres of
underwater gliders in 3-dimensional space [Liu et al.,
2017; Cao et al., 2017]. However, this work also uses a
simple kinematic model with directly controllable turn-
ing rates. Based on the vehicle model in [Cao et al.,

2017], a Dubins path is given as an optimal solution
consisting of a series of ‘sawtooth’ and spiral motions.
In our paper, we prove by examples and discussions that
such manoeuvres are unlikely to be optimal with respect
to the more accurate glider model we introduce.

Existing approaches also generally oversimplify the
complex dynamics of the vehicles. For example, the
SLOCUM -type underwater gliders [Leonard and Graver,
2001] may be accurately modelled as a system of non-
linear equations over high-dimensional state space. Such
a glider is controlled by moving masses and pumping wa-
ter in and out of its ballast tank. Since energy consump-
tion is based on the mechanics/hydraulics of this control
system, a simple energy cost model may be misleading
and could cause failure at the limit of the glider’s en-
ergy capacity. Therefore, accurately modelling the glider
dynamics in planning is mandatory. In our paper, we
present a glider model that is both computationally ef-
ficient and representative of the real dynamics.

A number of planning algorithms have been used
to solve similar path planning problems in flow fields.
Graph-based algorithms including A* [Kularatne et al.,
2016; Fernndez-Perdomo et al., 2010; Isern-Gonzalez
et al., 2011] and sampling-based algorithms such as
RRT [Ko et al., 2014] have been widely used. In [Rao
and Williams, 2009], both A* [Witt and Dunbabin, 2014]

and RRT are applied, but these algorithms cannot offer
analytical performance guarantees.

Recently, FMT* was presented as a novel sampling-
based motion planning algorithm [Janson et al., 2015]

that guarantees asymptotic optimality. Based on the
PRM* and RRT* algorithms [Frazzoli and Karaman,
2011], FMT* uses lazy collision checking to reduce the
inherent bottleneck in sampling-based algorithms, and
it is shown to converge much faster in high-dimensional
problems than its predecessors. In this paper, we adapt
FMT* for our purposes while preserving its important
analytical properties.

3 Problem Formulation

Suppose we have an underwater glider, described by a
12-dimensional dynamical model

ẋ(t) = f(x(t),u(t)) + Vc(t), (1)

where x(t) is the glider state at time t, u(t) is the control
vector, and Vc is the flow velocity vector. Figure 1 shows
an approximate representation of the forces and mo-
ments acting on the inertial reference frame of the glider.
More details can be found in [Leonard and Graver,
2001]. The control vector u(t) = [urp(t),umb

(t)]T con-

sists of forces acting on the moving mass urp = Ṗrp

where rp = [xp, yp, zp]
T and the rate of changing ballast

mass umb
= ṁb. Note that the ballast mass is changed

by pumping in or out water into the ballast tank.



Figure 1: An approximate representation of the forces
and moments acting on the glider in the inertial reference
frame. The hydrostatic forces consists of the buoyancy
force B, weight due to moving mass m̄g, weight due to
stationary mass msg; the hydrodynamic forces consists
of lift L, drag D and the pitching moment MDL. The
moving mass offset from the nominal centre of gravity
by a vector rp The glide angle γ, pitch angle θ and angle
of attack α represent the orientation and direction of the
glider with velocity V

The discrete-time dynamical model of the glider is

x[k + 1] = F (x[k],u[t]) + Vc[t]. (2)

Given the discrete model and a sequence of control
vectors U[k] = {u[0],u[1], · · · ,u[k]}, the sequence of
glider state vector is recursively found as X[k + 1] =
{x[0],x[1], · · · ,x[k + 1]}.

The time-invariant velocity vector of the ocean current
at a given position vector p = [x, y, z]T is given a priori,
such that

Vc(t) =
[
uc vc wc

]T
, (3)

where Vc is a velocity vector in xyz-directions.
The glider’s energy expenditure comes from the con-

trol of the glider (i.e., forces acting on the masses) and
the hotel load (e.g., onboard processor and sensors).
Given a state x[k] and a control u[k], the glider’s energy
cost is denoted as cost(x[k],u[k]). The energy cost for
a sequence of control vectors is given as cost(x[k],U[k :
k + n])

We consider the following planning problem with the
glider in a flow field:

Problem (Energy-optimal path planning for underwa-
ter glider). Given an initial state x[0] = xinit and a set
of goal states Xg, find an energy-optimal fnite sequence
of control vectors U∗, such that

U∗ = arg min
U={u[0],··· }

cost(x[0],U)

s.t. x[last] ∈ Xg.
(4)

(a) Transition from state xk to xk+1. A desired trim
condition τd

k is found between pk and pk+1

(b) Sequence of state vectors and trim states

Figure 2: Kinematic model for 6D glider. Gray shade
represents initial control from initial glider state to trim
state, and the blue represents the control from trim state
to final glider state.

By executing a sequence of control inputs U∗ from
the initial state x[0], we get the energy-optimal path X∗

that leads to one of the goal states Xg.

4 Gliding Trim State

Assuming the glider operates over long distances, we
can reformulate the dynamic control problem to be more
computationally convenient. A trim state is a state of
dynamic equilibrium in which a vehicle will continue in-
definitely in the absence of disturbances or variations to
control inputs [Leonard and Graver, 2001]. Because the
glider covers a significantly large area over time and a
small amount of energy is required in the absence of con-
trol, we assume that the glider would operate in a series
of trim states with negligible control time between the
states. With this property, we reduce the dynamic prob-
lem into a kinematic problem where the glider’s kine-
matic state vector consists of 6 variables, such that

xk =
[
xk yk zk γk δk mbk

]T
, (5)

where (x, y, z) is the position, γ is the glide angle, δ is the
heading angle, and mb is the ballast mass (i.e., amount
of water in the ballast tank). We assume that the ballast
tank is either empty or full (i.e., mb ∈ [0,mbmax]).

Suppose we have a sequence of state vectors Xk =
{x0,x1, · · · ,xk} and the corresponding position vec-
tors Pk = {p0,p1, · · · ,pk}, where pi = [xi, yi, zi]

T . An
example of such a sequence is shown in Fig. 2b. We con-
sider a trim state τ dk between two position vectors pk



and pk+1, such that

τ dk =
[
V dk γdk δdk md

bk

]T
, (6)

as shown in Fig. 2a. Note that d stands for desired.
With the trim state-based manoeuvre, we approxi-

mate the dynamical path planning problem and re-define
the problem as follows:

Problem (trim state-based path planning). Given ini-
tial and goal states, find an energy-optimal series of state
vectors X∗, such that a valid trim state τ dk between state
vectors xk and xk+1 is found.

The optimal states X∗ could be considered as a series
of waypoints to follow. In this formulation, the varia-
tions to control inputs are made in two cases: 1) from
the initial kinematic state xk to the trim state τ dk , and
2) from trim state to the next state xk+1. We assume
that the state transitions between a kinematic state and
a trim state is instantaneous, because the state transi-
tion time is negligible compared to the gliding time in a
trim state.

4.1 Computing a trim state

Within a trim state, the glider is moving in a straight
line, described as

pk+1 = pk +

Vk(γ) cos γ cos δ
Vk(γ) cos γ sin δ
Vk(γ) sin γ

+

ucvc
wc

∆t, (7)

where the flow vector is the average between the initial
and final position vectors pk and pk+1. We rearrange
the z-term from (7) to get

∆t =
zf

Vk(γ) sin γ + wc
. (8)

We substitute ∆t to the x- and y-th terms and rearrange
them into the form sin2 δ + cos2 δ = 1:(

xf
zf

(Vk sin γd + wc)− uc
)2

+

(
yf
zf

(Vk sin γd + wc)− vc
)2 = Vk

2 cos2 γd. (9)

We find the desired trim condition τd by numerically
solving the non-linear equation above. In this paper, we
sample a set of evenly spaced glide angles Γd and enu-
merate the values in the set to find the solution satisfying
the equation in (9) by finding

(γ∗,m∗b) = arg min
γ∈Γd,mb∈[0,mbmax]

‖LHS(γ,mb)− RHS(γ,mb)‖,

(10)

where LHS and RHS are the left and right hand side of
(9). Note that Vk is the function of γ and mb, and the
heading angle δk can be derived from (7) using γ∗.

Since the trim velocity Vk is a function of glide an-
gle γ and ballast mass mb, and the heading angle δ
is an independent variable, we only need the glide an-
gle γ that satisfies the equation for a given position
change pk+1 − pk = (xf , yf , zf ) and the current vector.
Because the terms (Vk sin γ) and (Vk cos γ) are invariant
with position change, we could pre-calculate once at the
start of the framework, and use them for the rest of the
computations.

The set of glide angles Γd is restricted to be sampled
as follows

Γd ⊂

tan−1

 −2KD0

KL0
∓
√
K2
L0

+KL0
J2
L/KD

 ,±60◦

 ,
(11)

where the maximum glide angle is heuristically chosen
for safety. It is important to note that the minimum
glide angle is limited by the glider dynamics.

For a given trim state τ dk , we find the corresponding
control vector u. More details on the kinematic state
variables can be found in Appendix A.

4.2 Energy cost

The total energy consumption Etotal is given as a sum

Etotal = E∆B + EH + E∆xp
+ E∆δ, (12)

where 1) E∆B = −ηpgz∆mb is the energy required to
empty the ballast tank, which depends on the static pres-
sure (i.e., depth from surface), 2) E∆xp

= ηm · m̄ ·∆xp
is the energy required to change the gliding angle λ
by changing the position of the moving mass xp, 3)
E∆δ = ηδ ·∆δ is the energy required to change the head-
ing angle, and 4) EH = LH · ∆t is the hotel cost. It is
important to note that the energy consumption based on
our model depends on the internal non-linear dynamics,
as opposed to other existing work where energy model is
over-simplified.

Given two vehicle states xk and xk+1, the energy cost
is the sum of the following processes: 1) from state xk
to trim state τ dk , 2) during trim state τ dk , and 3) from
trim state τ dk to state xk+1. Note that the hotel cost
only exists during the trim state because we assume that
the time it takes for trim state transition is negligible
compared to the manoeuvre. In this paper, the cost for
a sequence of state vectors X is expressed as cost(X),
and that for a transition between two state vectors
is cost(x,y).

5 Asymptotically Optimal Planning

In this section, we present our implementation of FMT*.
We highlight variations made to the algorithm to be ap-
plicable to the underwater glider case.



Algorithm 1 Abridged FMT* Algorithm

V ← {xinit, xgoal} ∪ SampleFree(n)
Vunvisited ← V \ {xinit};Vopen ← {xinit};Vclosed ← ∅
while Solution not found do

z ← min{c (Vopen)}
xNear ← neighbour(z, V ) ∩ Vunvisited
for all x ∈ xNear do

yNear ← neighbour(x, V ) ∩ Vopen
ymin ← arg miny∈yNear{c(y) + Cost(y, x)}
if noCollision(ymin, x) then

addEdge(ymin, x)
end if

end for
move all connected x from Vunvisited to Vopen
Vopen ← Vopen \ {z};Vclosed ← z
if Vopen = ∅ then

return Failure
end if

end while

return Sequence of waypoints

Like PRM*, the FMT* algorithm starts with a set
of sample points in the state space. In this paper, we
sample states V over the 6-dimensional kinematic state
space. Note that each sampled state v ∈ V is a trim
state [x, y, z, γ, δ,mb]

T . Instead of randomly sampling
the states across the dimensions, we first choose Np sam-
ples over the position space (x, y, z), and then uniformly
sample Na angle states (γ, δ) for each position state. Be-
cause we assume the ballast tank is either empty or full
(i.e., mb ∈ {0,mbmax}), the overall number of samples
is Ns = Np ·Na · 2. The sampled states are initially la-
belled as unvisited except the starting position x0 which
is labelled as opened.

The algorithm incrementally grows a branching tree
that eventually finds an optimal solution. At a given in-
stance, we first find an open state z with the lowest over-
all cost. From z, we find a set of unvisited states xNear
that incur the least transition cost. For each unvisited
state x ∈ xNear, we find the open state y such that the
sum of the cost at y and the transition cost from y to x
is the minimum. After we find such an open state y, we
then check if the transition is collision free. If so, we
set z to closed and any newly connected states in xNear
become opened. We continue growing the tree until we
reach the goal state or when no more open states exist.
Pseudocode is presented in Alg. 1.

5.1 Analysis

Finding the nearest neighbours, the most time consum-
ing task in sampling-based planners, is handled effi-
ciently by the concept of mutual connectivity. FMT*
assumes that if state x is one of the N -nearest neigh-

bours of state y, then state y is also one of the N -
nearest neighbours of state x. This is important be-
cause it eliminates duplicate computations in finding the
nearest neighbours when we find xNear from z and y
from x ∈ xNear. More formally, mutual connectivity
assumes cost(a, b) ≡ cost(b, a) In this paper, the mutual
connectivity may not hold true because of the dynam-
ical constraints (i.e., cost(a, b) 6≡ cost(b, a)). However,
we slightly abuse the definition so that the cost func-
tion cost∗ in our implementation is forced to be direc-
tional. Formally speaking,

cost∗(a, b) =

{
cost(a, b) if a is opened and b is unvisited

cost(b, a) otherwise
.

(13)

With the directional cost function, we always guarantee
that the cost is computed from open to unvisited states.
As a consequence, our implementation holds true for mu-
tual connectivity and asymptotic optimality is preserved.

We also exploit the important property of FMT*
called ‘lazy’ collision checking, where the collision be-
tween two states is checked after a candidate transition is
computed. This crucial property of FMT* improves the
computation time significantly, because collision check-
ing is usually the most time consuming operation in
sampling-based planning methods.

6 Case Studies

In this section, we demonstrate simulated examples for
different flow fields and obstacle types. The combina-
tions of the flow fields and obstacles are chosen to demon-
strate how the framework finds an energy-optimal path
by using the flow fields. We show counter-intuitive so-
lutions and discuss them in terms of the interesting me-
chanics of the glider. We also compare our approach
with state-of-the-art work in the field and discuss why
our approach is more realistic and valid.

The model of the underwater glider was described in
Sec. 3 with parameters in Appendix B. Using the plan-
ning algorithm presented in Sec. 5, an optimal path with
respect to energy cost, described in Sec. 4.2, is found.
The framework is implemented using C++ within the
standard planning library called OMPL [Şucan et al.,
2012]. The simulation is planned under a 6-Dimensional
state space described in Sec. 4. The kinematic states are
shown in SI units with angles in radians.

6.1 Opposing current

In this case study, we demonstrate a glider path
from initial kinematic state [50, 0, 5,−0.2, 0, 2]T

to [950, 0, 5, 0.2, 0, 0]T . The glider has to traverse
against an opposing current that linearly decays with
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Figure 3: Opposing current with no obstacle

depth as shown in Fig. 3 with 3D, top-down and side
views.

The parabola-shaped depth profile is interesting com-
pared to ‘sawtooth’-shaped paths, which are often as-
sumed to be efficient. Surprisingly, after we consider
the depth profile and the energy consumption associ-
ated with changing the depth (i.e., changing the ballast
mass mb and pushing the movable mass m̄), our path
avoids such manoeuvres. Note that filling the ballast
tank is assumed to be cost-free; diving down does not
incur energy consumption. Also, there exists no further
energy loss as long as the state of the tank does not
change. As a consequence, the only instance of energy
loss due to the ballast tank is at the bottom where we
pump out water from the tank.

6.2 Opposing current with sand dunes

In this example, we consider a case where there exist
sand dunes on the ocean floor, with the same initial and
goal states and linearly decaying opposing current as in
Sec. 6.1.

Although we have the same ocean current and states
of interest, the behaviour of the glider is interestingly
different to the previous example. In Sec. 6.1, we have
shown that the energy-efficient path for the linearly de-
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Figure 4: Opposing current with 3 sand dunes

caying currents is a parabola-shaped curve in the absence
of obstacles. However, in this example, we no longer can
execute such control inputs due to collisions. In Fig. 4,
we demonstrate the energy-efficient glider path avoiding
collision. The glider initially dives down to avoid the
strong opposing current and then goes up to avoid the
sand dune.

Intuitively, the glider would have to follow the dune’s
curvature in order to avoid strong opposing currents.
However, the energy-efficient path contradicts this intu-
ition for the following reasons. First the glider does not
dive too deep because it would have to empty the ballast
tank twice. Note that the cost of emptying the ballast
tank increases with the depth. Secondly, the strong op-
posing current near the surface forces a steep angle of
ascent (e.g., around x = 450).

6.3 Quad vortices

We demonstrate an example with four rotational vor-
tices, previously presented in [Kularatne et al., 2016]

for the case of surface vehicle (e.g., boat). Note
that the examples from the work were over the xy-
plane. We have extended an additional depth di-
mension for this case study. Figure 5 shows the
energy-efficient glider path from [0, 0, 5,−0.2, 0, 2]T



-200

-100

0
z 

(m
)

400

Sample: 34850, Cost: 3082.5000 (J)

y (m)

200

500

x (m)

4003002000 1000

0 100 200 300 400 500

x (m)

0

50

100

150

200

250

300

350

400

450

500

y 
(m

)

Sample: 23234, Cost: 3082.5000 (J)

0 100 200 300 400 500

x (m)

-150

-100

-50

0

z 
(m

)

Sample: 23234, Cost: 3082.5000 (J)

Figure 5: Quad vortices (test 1)

to [500, 250, 5, 0.2, 0, 0]T , and Fig. 6 shows that
from [0, 0, 5,−0.2, 0, 2]T to [500, 500, 5, 0.2, 0, 0]T .

By introducing the depth profile for the glider, the
shapes of our paths are counter-intuitive compared to
other existing work. The paths in previous work tend to
be more smoothly varying and move as close to the cur-
rents as possible. This is because there exists no energy
loss due to depth changes. However, we have shown
throughout this paper that the underwater glider con-
sumes a significant amount of energy while changing its
depth. As a consequence, our paths are coarser and gen-
erated from only a few waypoint states to follow. Again,
we show that our solution considering the depth profile
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Figure 6: Quad vortices (test 2)

avoids the ‘sawtooth’-shaped trajectories.

6.4 Irrotational flows with island

In this example, we consider an example with an is-
land obstacle and two sources of irrotational currents
as shown in Fig. 7 with 3D, top-down and side views.
The glider initially starts from [50,−100, 5,−0.2, 0, 2]T ,
and reaches its goal on [950, 100, 5, 0.2, 0, 0]T .

Similar to the previous example, the path in this ex-
ample is quite coarse and not as smoothly varying as
those in other work. As already described, the ma-
noeuvre in our solution avoids the significant energy loss
which otherwise would be incurred by changing depth.
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Figure 7: Island obstacle with two irrotational vortices

Note that there is only one instance of energy loss due to
depth change (i.e., at the bottom) when the ballast tank
is emptied. While considering the depth constraint, the
glider exploits the current flows by gliding in the same
direction, reducing the energy loss due to the hotel load
(i.e., reducing the time spent).

7 Conclusion and Future Work

In this paper, we addressed the problem of path plan-
ning in the presence of flow fields for underwater gliders
with complex dynamics. We introduced a trim state-
based control approach by reformulating the complex dy-
namical model into a kinematic model with trim states.
Based on the reduced control space, we have imple-
mented the state-of-the-art sampling-based planning al-
gorithm, FMT*, while preserving its important proper-
ties. The glider model is computationally efficient and
the solution is realistic, which we demonstrate in a se-
ries of examples. We showed that the depth profile is
significant in planning over flow fields, because the en-
ergy expenditure during a depth change is significant.
The most important avenue of future work is to develop
a probabilistic variant of the framework that would con-
sider actuation and localisation uncertainty.
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Kavraki. The Open Motion Planning Library. IEEE
Rob. Autom. Mag., 19(4):72–82, December 2012.
http://ompl.kavrakilab.org.

[Tesei et al., 2015] A. Tesei, R. Been, D. Williams,
B. Cardeira, D. Galletti, D. Cecchi, B. Garau, and
A. Maguer. Passive acoustic surveillance of surface
vessels using tridimensional array on an underwater
glider. In Proc. of IEEE OCEANS, pages 1–8, 2015.

[Witt and Dunbabin, 2014] J. Witt and M. Dunbabin.
Go with the flow: Optimal AUV path planning in
coastal environments. In Proc. of ARAA ACRA, 2014.

[Xinke et al., 2015] Z. Xinke, J. Xianglong,
Y. Jiancheng, and L. Yiping. Path planning in
stronger ocean current for underwater glider. In Proc.
of IEEE CYBER, pages 891–895, 2015.

[Yoo et al., 2012] C. Yoo, R. Fitch, and S. Sukkarieh.
Probabilistic temporal logic for motion planning with
resource threshold constraints. In Proc. of RSS, 2012.

[Yoo et al., 2014] C. Yoo, R. Fitch, and S. Sukkarieh.
Online task planning and control for aerial robots with
fuel constraints in winds. In Proc. of WAFR, 2014.

[Zarafshan et al., 2008] P. Zarafshan, S. B. Moosavian,
S. A. A. Moosavian, and M. Bahrami. Optimal control
of an Aerial Robot. In Proc. of IEEE/ASME AIM,
pages 1284–1289, 2008.

[Zermelo, 1931] E. Zermelo. ber das Navigationsproblem
bei ruhender oder vernderlicher Windverteilung, vol-
ume 11. WILEY-VCH Verlag, 1931.



A Variables in trim state

For a trim state τk = [Vk, γk, δk,mbk]T , the trim vari-
ables are described as follows

V dk =

√
md
b − (m−mh − m̄)

− sin γdk(KD0
+KDαdk

2
) + cos γdk(KL0

+KLαdk)

γdk = αdk + θdk

md
bk =

{
mbmax if zf > 0

0 otherwise
,

(14)

where

αdk =
KL

2KD
tan γdk(

−1 +

√
1− 4KD

KL
2 cot γdk(KD0

cot γdk +KL0
)

)
xp = −zPd

tan θd

+

(
(mf3 −mf1)udwd +

(
KM0

+KMα
d
)
V d2

)
m̄g cos θd

.

The heading angle δdk is calculated by substituting the
the above variables to the x- or y-term in (9). Note that
we only consider xp where yp and zp are fixed parame-
ters.

B Glider parameters

Parameter Value
J2 0.1 Nm2

m 11.22 kg
m̄ 2.0 kg

mbmax 2.0 kg
mh 8.22 kg
mf1 2.0 kg
mf3 14.0 kg
KD0

5 N(s/m)2

KD 20 N(s/m)2

KL0 0 N(s/m)2

KL 306 N(s/m)2

KM0
0 Nm(s/m)2

KM -36.5 Nm(s/m)2

LH 1 (J/s)


