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Abstract—This paper compares the recent developed state-
of-the-art extended Kalman filter (EKF) based simultaneous
localization and mapping (SLAM) algorithm, namely, invariant
EKF SLAM, with the nonlinear least squares optimization based
SLAM algorithms. Simulations in 1D, 2D, and 3D are used to
evaluate the invariant EKF SLAM algorithm. It is demonstrated
that in most 2D/3D scenarios with practical noise levels, the
accuracy of invariant EKF is very close to that of nonlinear
least squares optimization based SLAM. In the simple 1D case,
the Kalman filter results and the linear least squares results are
exactly the same (for any noise levels) due to the linear motion
model and linear observation model involved.

Index Terms—EKF, optimization, SLAM, Lie group, perfor-
mance.

I. INTRODUCTION

SLAM problem [1] asks whether it is possible for a robot to
build a map of an unknown environment and simultaneously
work out its own location within the map, using informa-
tion gathered from sensors mounted on the robot. Reliable
solutions to SLAM underpin successful robot deployment in
many application domains especially when an external location
reference such as a global positioning system (GPS) is not
available. In point feature based SLAM, the map is represented
by a sparse set of point features, and the solution to SLAM is
an estimate of the observed point features and the latest robot
pose, together with the associated estimate uncertainty.

Both EKF [1] and least squares optimization [2] have been
used extensively in SLAM research in the past. Earlier SLAM
research has used EKF where the state vector contains the
latest robot pose and the positions of the features observed.
However, it has been shown that EKF SLAM could result in
inconsistent estimate [3] [4], here inconsistency means that
the estimated covariance from the algorithm can violate the
theoretical achievable lower bounds [1] [5].

Optimization based SLAM uses a state vector containing
all the robot poses and all the features observed. Because re-
linearization is performed during each iteration step, there is
no inconsistency issue in optimization based SLAM and thus
the quality of the estimate is higher than that of EKF SLAM.
However, when the robot trajectory is very long, the dimension
of the state vector in optimization based SLAM is very high.

Recently, in [6], a 2D invariant EKF SLAM algorithm was
proposed and it was demonstrated to perform much better than
traditional EKF SLAM. Furthermore, in [7], some basic con-
vergence properties of the 3D invariant EKF SLAM algorithm
were proved, without the requirement that the Jacobians were

evaluated at the ground truth as in [5]. It is also pointed out that
the invariant EKF SLAM satisfies two necessary conditions
that a consistent SLAM algorithm should satisfy, namely,
(i) the estimate (relative position and orientation) value is
invariant to the initial robot pose, and (ii) the estimate value is
invariant to the initial robot pose uncertainty. This new version
of EKF SLAM appears to overcome the fundamental limitation
of the traditional EKF SLAM algorithms.

Although optimization based SLAM algorithms are becom-
ing popular recently due to the high quality performance
and the efficiency of the modern sparse solvers [8] [9], they
may not always be the best algorithm to use in practice
due to the accumulated length of the state vector, especially
for the scenarios when a robot continuously operates in an
environment with fixed size. Thus it is interesting to compare
the performance between the state-of-the-art invariant EKF
SLAM with optimization based SLAM algorithm for different
scenarios.

This paper focuses on the accuracy comparison between
invariant EKF SLAM and optimization based SLAM. We
started from the 1D linear case using Kalman filter (KF) and
linear least squares (LLS), then we analyzed 2D/3D nonlinear
cases using right invariant EKF (RI-EKF) method [7] and
non-linear least squares (NLLS) method. We numerically
confirmed that the KF and LLS results for 1D SLAM are
always exactly the same no matter how big the noise level is
and no matter what operation scenario is. For 2D/3D cases,
in most practical scenarios with reasonable noise levels, the
RI-EKF results are very close to that of the NLLS results.

This paper is organized as follows. Section II discusses
some related work. In Section III, the motion model and
observation model of SLAM problem in 1D/2D/3D are s-
tated, and the RI-EKF SLAM algorithm and least squares
optimization based SLAM algorithm are briefly reviewed. In
Section IV, the RI-EKF SLAM and optimization based SLAM
are compared using 1D/2D/3D simulations for different noise
levels and different simulation environments. Finally, Section
V concludes the paper and outlines the future work.

Throughout this paper, bold lower-case and upper-case
letters are reserved for vectors and matrices, respectively. R
represent the set of real numbers. SO(2), SO(3) are the
special orthogonal groups. The square of Euclidean norm is
denoted by ‖ · ‖2. The square of weighted Euclidean norm
of vector e with a positive definite matrix W is denoted by
‖e‖2W := eᵀW−1e.
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Fig. 1. An example of 1D SLAM problem. xri (i = 0, 1, 2, 3) represent
robot poses and fj (j = 1, 2) represent feature/landmark positions.

II. RELATED WORK

EKF SLAM has been the major technique when the SLAM
problems were emerged in 1990s [1]. However, after a few
years, a few researchers have pointed out a fundamental
problem of EKF based SLAM due to linearization errors
and the fact that Jacobians are evaluated at the estimated
state values, [3] [4] [5] [10], that is, EKF SLAM algorithm
can produce inconsistent estimates, especially when the robot
orientation error is not small.

It was shown in [11] that the inconsistency in EKF SLAM
is closely related to the partial observability of SLAM problem
[12] [13]. This insight resulted in a number of EKF SLAM
algorithms which significantly improve the SLAM consistency,
such as first Jacobian [11] and observability-constrained EKF
SLAM [14]. However, the potential inconsistency is still not
completely avoided.

Recently, in [6], a 2D invariant EKF SLAM algorithm was
proposed that exploits a Lie group based error representation.
Some important convergence and consistency properties of
invariant EKF SLAM were proved in [7]. These convergence
and consistency properties naturally extend the proofs in [1]
[5], without the unrealistic assumptions of linear model [1]
or Jacobians are evaluated at the ground truth [5]. This new
version of EKF SLAM has motivated researchers to reconsider
the pros and cons of filter based and optimization based SLAM
algorithms [15], while previous evaluation and comparisons
had considered traditional EKF SLAM [16].

This paper aims to answer the question of under what
conditions, the state-of-the-art invariant EKF based SLAM
algorithm can produce results with similar accuracy as the
optimal optimization based SLAM algorithms.

III. INVARIANT EKF SLAM AND OPTIMIZATION BASED
SLAM

A. Motion model and observation model in SLAM

In feature based SLAM, there are two kinds of informa-
tion available. One is the odometry information described
by the motion model, another is the observation information
described by the observation model.

1) 1D SLAM: Consider the 1D SLAM problem as shown
in Fig. 1. The robot moves in 1D and the robot position
at time n is denoted as xrn ∈ R. There are a number of
features/landmarks such as f1, f2.

Assume the control input (e.g. odometry) at time n is un ∈
R. Then the robot motion model can be written as

xrn+1 = xrn + un + wn (1)

where wn ∈ R is the process noise and is assumed to be zero
mean Gaussian with variance σ2

od.
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Fig. 2. An example of 2D/3D SLAM problem with three robot poses and
three features/landmarks.

Assume the sensor on-board the robot can measure the
relative position between the observed feature and the robot.
Then the observation model (observing feature fi at time step
n) is

zin = fi − xrn + vin (2)

where fi denotes the position of the stationary feature, vin ∈
R is the observation noise and is assumed to be zero mean
Gaussian wth variance σ2

ob.
Note that in 1D SLAM, both the motion model and obser-

vation model are linear.
2) 2D/3D SLAM: For 2D/3D SLAM as shown in Fig. 2,

the motion model can be described by

xrn+1 = fr(xrn,un, εn) =

(Rn exp(ωn + εω),pn + Rn(νn + εν))
(3)

where the robot pose at time n is denoted by

xrn = (Rn,pn) , (4)

which includes the rotation matrix Rn and the robot position
pn. un = (ωn, νn) is the control input in which ωn and νn
represent the angular increment and linear translation between
time step n and n + 1, respectively, exp(ωn) is the rotation
corresponding to ωn and εn = (εω, εν) ∼ N (0,Φn) is control
noise at the time step n 1.

We use zin to denote the relative position observation made
from pose xrn to feature f i. The observation model is given
by

zin = Rᵀ
n(f i − pn) + ξin, (5)

where f i is the feature position and ξin ∼ N (0,Ψi
n) is the

observation noise 2.

B. Invariant EKF SLAM

For 1D SLAM, the problem can be easily solved by KF. For
2D/3D SLAM, it has been shown that the RI-EKF outperforms
other EKF SLAM algorithms [6] [7]. Now we briefly review
the RI-EKF SLAM algorithm. Let the state in EKF SLAM be
denoted as

X =
(
R,p, f1, · · · , fN

)
. (6)

1In 2D case, Rn ∈ SO(2), pn ∈ R2, ωn ∈ R, vn ∈ R2, un ∈ R3,
exp(ωn) ∈ SO(2), εn ∈ R3, and Φn ∈ R3×3. In 3D case, Rn ∈ SO(3),
pn ∈ R3, ωn ∈ R3, vn ∈ R3, un ∈ R6, exp(ωn) ∈ SO(3), εn ∈ R6, and
Φn ∈ R6×6.

2In 2D case, zin, f
i, ξin ∈ R2,Ψi

n ∈ R2×2, while in 3D case, zin, f
i, ξin ∈

R3,Ψi
n ∈ R3×3.



According to (3) and (4), the motion model of state X can be
written as

Xn+1 = f(Xn,un, εn) =(
Rn exp(ωn + εω),pn + Rn(νn + εν), f in, · · · , fNn

)
.

(7)

Considering that the robot observes different landmarks at
each time step, we use On+1 to denote the set of the landmarks
observed at time step n + 1. We can write the observation
model at time step n+ 1 as follows

Zn+1 = hn+1(Xn+1) + ξn+1, (8)

where Zn+1 is a column vector obtained by stacking all
entries (see (5)) hi(Xn+1) = Rᵀ

n+1(f in+1 − pn+1) for all
i ∈ On+1 , ξn+1 ∼ N (0,Ψn+1) is the noise vector obtained
by stacking all entries ξin+1 ∼ N (0,Ψi

n+1) for all i ∈ On+1

and Ψn+1 = diag(· · · ,Ψi
n+1, · · · ). With the motion model

(7) and observation model (8), EKF formula could be applied
to obtain a solution of 2D/3D SLAM.

The key difference between RI-EKF and conventional EKF
is that a novel error state and retraction operation is defined
(for more details see [6] [7]).

The retraction ⊕ of RI-EKF is chosen such that X =
X̂ ⊕ e := exp(e)X̂, where exp is the exponential mapping
on the Lie group G(N) [7], X ∈ G(N) is the actual pose and
landmarks, X̂ ∈ G(N) is the mean estimate and the uncer-
tainty vector e =

[
eᵀ
θ eᵀ

p (e1)ᵀ · · · (eN )ᵀ
]ᵀ

follows
the Gaussian distribution N (0,P) where P is the covariance
matrix in RI-EKF SLAM. In 2D SLAM e ∈ R2N+3, in 3D
SLAM e ∈ R3N+6.

C. Optimization based SLAM
The 1D SLAM problem can also be formulated as a

LLS problem which has a closed-form solution, where the
parameters to be estimated are all the poses (except pose xr0
which is served as an anchor) and feature positions. For 2D/3D
SLAM, the problem can be formulated as a NLLS problem
[2] as below.

The parameters to be estimated include all the robot poses
(except pose xr0 which is assumed to be known) and all the
feature positions

X =
(
R1,p1, · · · ,Rm,pm, f

1, · · · , fN
)
, (9)

The optimization problem is to minimize the negative log-
likelihood function

F (X) =

m∑
i=0

∑
j∈Oi

‖zji −Rᵀ
i (f j − pi)‖2Ψj

i

+

m−1∑
i=0

‖ui −∆xri ‖2Φi
. (10)

where ∆xri represents the relative pose between pose xri+1

and xri .
This NLLS problem could be solved by iterative methods

such as Gauss-Newton. The covariance matrix of NLLS result
can be obtained by inverting the information matrix given
by JTΣ−1J , where J is the Jacobian and Σ is obtained by
stacking Ψj

i and Φi.

IV. PERFORMANCE COMPARISONS

For evaluating the performance of invariant EKF based
SLAM and optimization based SLAM, we compare their
estimation results in 1D/2D/3D SLAM 3. We use KF and LLS
in 1D SLAM, and RI-EKF and NLLS in 2D/3D SLAM. Monte
Carlo simulations under different noise levels are performed
assuming the noises of odometries and observations are from
Gaussian distributions. The noise levels of odometries and
observations are represented as σod and σob.

A. Simulation setup

1) 1D SLAM simulation setup: In 1D SLAM, the robot
moves along a straight line which allows only 1-DOF motion.
Since it can be proved that the KF and LLS results are the
same, we only confirm the results numerically using two
simulations. In the first small simulation, the robot moves
20m, 10 landmarks are generated on the same line, and are
not far from the robot positions. Noises of odometries and
observations are randomly generated, and the noise level is
σod = 0.20m, σob = 0.20m. Only landmarks inside robot’s
sensor range (set as 3m) can be observed. The number of
steps is 5, and the initial covariance of robot is set as zero.
In the second simulation, other parameters are the same, but
50 landmarks are generated and the number of steps is 100 (2
loops), and the noise level is set as σod = 0.07m, σob = 0.07m.

2) 2D SLAM simulation setup: In 2D SLAM, the robot
moves along a circular trajectory which allows sufficient 3-
DOFs motion. 50 landmarks are generated on a circle around
the trajectory. Noises of odometries and observations are
randomly generated, and robot sensor range is 15m and 2π
FoV. The left figure of Fig. 3 shows the ground truth setup.
Red dots represent the robot’s position and the green dots
represent the landmarks. The robot starts at position ‘+’, and
moves counterclockwise. In a single Monte Carlo run, the
number of steps is 100 (2 loops). In order to evaluate the
performance of RI-EKF and NLLS in 2D SLAM, we perform
the Monte Carlo analysis with 50 runs for each noise level.
The covariance matrices of odometries and observations are
Φn = σ2

odI3 and Ψi
n = σ2

obI2.
3) 3D SLAM simulation setup: In 3D SLAM, the robot

moves a trajectory (inside a cubic of 20m×20m×20m) which
allows 6-DOFs motion. 350 landmarks are generated on circles
around the trajectory. Robot sensor range is 15m, and the
number of steps is 60 (more than one loop). The covariance
matrices of odometries and observations are Φn = σ2

odI6 and
Ψi
n = σ2

obI3, and initial robot pose covariance is set as zero.
We perform a Monte Carlo simulation with 50 runs, and noise
level (unit: radian and meter) is σod = 0.07, σob = 0.07. The
right figure of Fig. 3 shows the ground truth setup of 3D
SLAM simulation.

B. Metrics used for comparison

Proper metrics are needed when comparing different esti-
mation methods [17]. Firstly, it should be noticed that RI-EKF

3The Matlab code of the algorithms are available at: https://github.com/
YanhaoZhang.
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Fig. 3. The ground truth of 2D/3D SLAM simulation. Red dots: robot
trajectory, green dots: landmarks. Robot starts at position ‘+’ and moves
counterclockwise along each trajectory, respectively. Black circle/sphere: the
sensor range (15m) of initial robot pose.

is an incremental estimation method, while NLLS is a batch
estimation method. To be specific, EKF uses as much infor-
mation as NLLS only after its final update process. Therefore,
when evaluating the performance of the two methods, only
the estimation of final state by EKF and the corresponding
estimation by NLLS is comparable, namely the robot’s final
pose and all the landmarks. To compare the estimation of
previous poses, we need to perform NLLS incrementally to
make sure the two estimates are compared when they are using
the same amount of information.

Root mean square error (RMSE) is a classical indicator used
for evaluating the performance of different SLAM methods.
The error en of current pose at time n is defined as 4

eR
n = log (R̂nRT

n ), ep
n = p̂n − R̂nRT

npn, (11)

where eR
n represents the rotation error, ep

n represents the po-
sition error, (R̂n, p̂n) represents the estimated orientation and
position at time n, and (Rn,pn) represents the corresponding
ground-truth pose. Then the estimation error squared (EES)
can be expressed as εn = ‖en‖2, and the RMSE at time n
can be expressed as:

RMSEn =

√√√√ 1

Nmc

Nmc∑
i=1

ε
(i)
n , (12)

where ε(i)n represents the EES computed at time n of the i-th
Monte Carlo run. Nmc represents the total number of Monte
Carlo runs.

Another indicator we used in this paper is average nor-
malised estimation error squared (NEES), which shows the

4Let T̂n and Tn denote the estimated robot pose at time n and that of
ground truth in SE(3), respectively, namely,

T̂n =

[
R̂n p̂n

0T 1

]
, Tn =

[
Rn pn

0T 1

]
.

Then the error between T̂n and Tn can be calculated as:

T̂nT−1
n =

[
R̂n p̂n

0T 1

]
·
[
RT

n −RT
npn

0T 1

]
=

[
R̂nRT

n p̂n − R̂nRT
npn

0T 1

]
.

Fig. 4. The estimation result of the first small 1D SLAM simulation with 5
poses and 10 landmarks. Robot starts at position -10. Noise level: σod = 0.20,
σob = 0.20. Red dots: robot pose ground truth (represented by ‘∗’), pose
estimation by KF (dark color) and pose estimation by LLS (bright color).
Green dots: landmarks of ground truth and estimation by KF and LLS. The
small interval around each estimate represents its 2σ bound. Notice that
for showing the estimation results clearly, we have put robot positions and
landmarks in different lines, but they are actually on the same line.

consistency of the estimator. As shown in [18], the NEES at
time n is expressed as

ηn = ‖en‖2Σ̂n
, (13)

where Σ̂n is the estimated covariance at time n. Then the
average NEES of a Monte Carlo simulation with Nmc runs is

η̄n =
1

Nmc

Nmc∑
i=1

η(i)n , (14)

where η
(i)
n represents the NEES computed at time n of the

i-th Monte Carlo run. As it has been shown in [19] (pp. 234-
238), under the hypothesis that the estimator is consistent and
approximately linear-Gaussian, Nmc · η̄n is χ2 distributed with
Nmc · dim(η̄n) degree of freedom, where dim(η̄n) represents
the dimension of η̄n. For Monte Carlo simulations with Nmc =
50, the two-sided 95% probability regions are [0.65, 1.43],
[1.48, 2.49], and [2.36, 3.59] for η̄n with dimension of 1, 2,
and 3, respectively. As it has been described in [18], if η̄n is
significantly larger than the upper bound, then the estimator
is overconfident.

C. Results and analysis for 1D case

In 1D SLAM, robot’s motion model and observation model
are linear functions, therefore the results of KF and LLS are
exactly the same under the condition that they are using the
same amount of information. Fig. 4 shows the estimation of
the first simulation with 5 poses, where both the estimate and
variances are the same for KF and LLS. Fig. 5 shows the
estimation error with 2σ bound of the second simulation with
100 poses. The noise level is σod = 0.07 and σob = 0.07.
We can see that the estimation error and its 2σ bound of
robot positions are exactly the same using KF and LLS in
1D SLAM.

D. Results and analysis for 2D case

For evaluating the performance of RI-EKF and NLLS in 2D
SLAM, a Monte Carlo simulation with 50 runs is performed.
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Fig. 5. The robot position estimation error with 2σ bound of the second
1D SLAM simulation (100 steps) using KF and LLS method, σod = 0.07,
σob = 0.07, unit: meter.
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Fig. 6. The position and orientation estimation error with 2σ bound of a single
2D SLAM Monte Carlo run using RI-EKF and NLLS method, σod = 0.07,
σob = 0.07. Error is calculated using (11), unit: radian and meter.

For a single Monte Carlo run with noise level σod = 0.07 and
σob = 0.07, the robot position and orientation estimation error
with 2σ bound is reported in Fig. 6, where both RI-EKF and
NLLS achieve good estimation result. The error is calculated
using (11). Further, for evaluating the general performance of
RI-EKF and NLLS method at this noise level, we calculate the
RMSE and average NEES of robot’s orientation and position
over the 50 Monte Carlo runs. The result is reported in Fig.
7, where blue lines represent the result of RI-EKF and red
lines represent that of NLLS. From Fig. 6 and Fig. 7, we
see that the estimation errors and the RMSE of position and
orientation reduce obviously around the 41-th step where loop
closure happens. Moreover, although the RMSE of NLLS is a
bit lower than that of RI-EKF before the loop closure, they are
very close when time step gets larger. Overall, position and
orientation NEES of both methods do not exceed the upper
bound of their 95% probability regions as described in Section
IV-B.

Table I shows the average RMSEn and average η̄n of Monte
Carlo simulations with different noise levels from 0.01 to 0.15.
We can see that the averaged RMSE of both RI-EKF and
NLLS increases slightly along with the increase of the noise
level. An interesting point is that the averaged η̄n of RI-EKF
also increases along with the noise level, but that of NLLS
changes little.
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Fig. 7. RMSE and average NEES of 2D SLAM Monte Carlo simulation,
σod = 0.07, σob = 0.07. Blue lines: result by RI-EKF; red lines: result by
NLLS; dashed lines: the upper bound of 95% confidence region.
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Fig. 8. The position and orientation estimation error with 3σ bound of a 3D
SLAM Monte Carlo simulation, σod = 0.07, σob = 0.07. Error is calculated
by (11), unit: radian and meter.

E. Results and analysis for 3D case

Fig. 8 shows the estimation error with 3σ bound of a 3D
simulation with noise level σod = 0.07 and σob = 0.07. We see
that in 3D SLAM, RI-EKF also achieves good performance
w.r.t. estimation error. The general performance of RI-EKF and
NLLS of the 3D Monte Carlo simulation is reported in Fig. 9,
where it shows that both the average estimation error (RMSE)
and the normalized average estimation error (NEES) of RI-
EKF are close to that of NLLS in this 3D case. When looking
at the RMSE, the result by RI-EKF and that by NLLS are
similar after around the 41th step where loop closure happens.

V. CONCLUSION AND FUTURE WORK

This paper evaluates the performance of invariant EKF
based SLAM with respect to the optimization based SLAM.
For 1D case, since all the models involved are linear, simple



TABLE I
PERFORMANCE OF 2D SLAM SIMULATION WITH DIFFERENT NOISE LEVELS

RI-EKF σod = 0.01 σod = 0.03 σod = 0.05 σod = 0.07 σod = 0.09 σod = 0.11 σod = 0.13 σod = 0.15
σob = 0.01 σob = 0.03 σob = 0.05 σob = 0.07 σob = 0.09 σob = 0.11 σob = 0.13 σob = 0.15

RMSE of position 0.016 0.051 0.084 0.121 0.158 0.205 0.253 0.303
RMSE of orientation 0.001 0.002 0.004 0.005 0.007 0.010 0.013 0.016

NEES of position 1.202 1.274 1.331 1.432 1.574 1.743 2.111 2.213
NEES of orientation 0.602 0.607 0.620 0.652 0.681 0.886 0.992 1.126

NLLS σod = 0.01 σod = 0.03 σod = 0.05 σod = 0.07 σod = 0.09 σod = 0.11 σod = 0.13 σod = 0.15
σob = 0.01 σob = 0.03 σob = 0.05 σob = 0.07 σob = 0.09 σob = 0.11 σob = 0.13 σob = 0.15

RMSE of position 0.015 0.047 0.076 0.108 0.144 0.172 0.203 0.235
RMSE of orientation 0.001 0.002 0.003 0.005 0.006 0.008 0.009 0.010

NEES of position 1.171 1.239 1.146 1.193 1.174 1.240 1.210 1.240
NEES of orientation 0.580 0.573 0.551 0.567 0.533 0.574 0.581 0.574
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Fig. 9. RMSE and average NEES of a 3D SLAM Monte Carlo simulation,
σod = 0.07, σob = 0.07. Blue lines: result by RI-EKF; red lines: result by
NLLS; dashed lines: the upper bound of 95% confidence region.

KF and LLS could be used to generate identical optimal
results. For 2D/3D cases, since invariant EKF SLAM make
uses of Lie group based error representation, the partial-
observability does not have any impact on the EKF estimation
consistency, resulting the EKF SLAM behaves similarly to
optimization based SLAM in most of the practical scenarios.
Although the invariant EKF can still result in poor quality
eatimation when the noise level is set to be very high, the
comparison in this paper makes researchers to rethink the value
of EKF based SLAM algorithms in practice.

This paper has focused on the accuracy and consistency
comparison between invariant EKF and optimization based
SLAM. The computational complexity is not compared. Al-
though the optimization based algorithms took much longer
time than EKF based SLAM in our current implementation
in MATLAB, we still cannot draw any conclusion on the
computational cost since our code is not optimized yet. Future
research is necessary for more thorough comparison especially
in 3D, more comparisons using experimental datasets, and the
improvement on the current invariant EKF SLAM algorithm.

REFERENCES

[1] G. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M.
Csorba, “A solution to the simultaneous localization and map building
(SLAM) problem,” IEEE Transactions on Robotics and Automation, vol.
17, no. 3, pp. 229–241, 2001.

[2] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization
and mapping via square root information smoothing,” International
Journal of Robotics Research, vol. 25, no. 12, pp. 1181-1203, 2006.

[3] S. J. Julier and J. K. Uhlmann, “A counter example to the theory of
simultaneous localization and map building,” 2001 IEEE International
Conference on Robotics and Automation, vol. 4, pp. 4238–4243, 2001.

[4] J. A. Castellanos, J. Neira, and J. D. Tardos, “Limits to the consistency
of EKF-based SLAM,” Symposium on Intelligent Autonomous Vehicles,
Vol. 37, no. 8, pp. 716–721, 2004.

[5] S. Huang and G. Dissanayake, “Convergence and consistency analysis
for Extended Kalman Filter based SLAM,” IEEE Transactions on
Robotics, vol. 23, no. 5, pp. 1036–1049, 2007.

[6] A. Barrau and S. Bonnabel,“An EKF-SLAM algorithm with consistency
properties,” CoRR, arXiv:1510.06263, 2015.

[7] T. Zhang, K. Wu, J. Song, S. Huang, G. Dissanayake, “Convergence and
consistency analysis for a 3D invariant-EKF SLAM.” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 733–740, 2017.

[8] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F.
Dellaert. “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” The International Journal of Robotics Research, vol. 31, no. 2, pp.
216–235, 2012.

[9] G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A general
framework for graph optimization,” 2011 IEEE International Conference
on Robotics and Automation, pp. 3607–3613, 2011.

[10] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of
the EKF-SLAM algorithm,” In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3562–3568, 2006.

[11] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis and im-
provement of the consistency of extended Kalman filter based SLAM,”
2008 IEEE International Conference on Robotics and Automation, pp.
473–479, 2008.

[12] J. Andrade-Cetto and A. Sanfeliu, “The effects of partial observability
in SLAM,” 2004 IEEE International Conference on Robotics and
Automation, vol. 1, pp. 397–402, 2004.

[13] K. W. Lee, W. S. Wijesoma, and J. I. Guzman, “On the observability
and observability analysis of SLAM,” 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3569–3574, 2006.

[14] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Observabilitybased
rules for designing consistent EKF SLAM estimators,” The International
Journal of Robotics Research, vol. 29, no. 5, pp. 502–528, 2010.

[15] K. Lenac, J. Cesic, I. Markovic, I. Cviic, and I. Petrovic, “Revival
of filtering based SLAM? Exactly sparse delayed state filter on Lie
groups,” 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1012–1018, 2017.

[16] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Real-time monocular
SLAM: Why filter?,” 2010 IEEE International Conference on Robotics
and Automation, pp. 2657–2664, 2010.

[17] S. Huang, Z. Wang, G. Dissanayake, and U. Frese, “Iterated D-SLAM
map joining: Evaluating its performance in terms of consistency, accu-
racy and efficiency,” Autonomous Robots, vol. 27, no. 4, pp. 409–429,
2009.

[18] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry,” IEEE Transac-
tions on Robotics, vol. 33, no. 1, pp. 1-21, 2017.

[19] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, “Estimation with Appli-
cations To Tracking and Navigation,” John Wiley and Sons, 2001.


