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Robust Incremental SLAM under Constrained
Optimization Formulation
Fang Bai, Teresa Vidal-Calleja, and Shoudong Huang

Abstract—In this paper, we propose a constrained optimization
formulation of SLAM and a robust incremental SLAM frame-
work. The new SLAM formulation is derived from the nonlinear
least squares (NLS) formulation by mathematically formulating
loop-closure cycles as constraints. Under the constrained SLAM
formulation, we study the robustness of an incremental SLAM
algorithm against local minima and outliers as a constraint/loop-
closure cycle selection problem. We find a constraint metric that
can predict the objective function growth after including the
constraint. By the virtue of the constraint metric, we select con-
straints into the incremental SLAM according to a least objective
function growth principle to increase robustness against local
minima, and perform χ2 difference test on the constraint metric
to increase robustness against outliers. Finally, using sequential
quadratic programming (SQP) as the solver, an incremental
SLAM algorithm (iSQP) is proposed. Experimental validations
are provided to illustrate the accuracy of the constraint metric,
and the robustness of the proposed incremental SLAM algorithm.
Nonetheless, the proposed approach is currently confined to
datasets with sparse loop-closures due to its computational cost.

Index Terms—SLAM, Localization, robust estimation, con-
strained optimization

I. INTRODUCTION AND RELATED WORK

SLAM as an optimization problem has been intensively
studied during the past decade [1]. The current state-of-

the-art approach formulates SLAM as a NLS problem, which
can be efficiently solved by local optimization techniques like
Gradient Descent [2], Gauss-Newton [3][4] or its variations
[5] by exploiting the matrix sparsity. The sparse NLS based
solvers are rather efficient, however at the peril of occasionally
converging to local minima (Fig. 1b). Another threat to SLAM
comes from the incorrect loop-closures (outliers in black as
shown in the second row of Fig. 1) typically produced by
a front-end place recognition system. The problems of local
minima and outliers are usually considered as two distinct
problems, and a variety of remarkable literatures have been
published to address either of the problems separately.

A. Related Work

A general strategy to tackle local minima is to use convex
optimization techniques [6]. The techniques have been well
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(a) Odometry. (b) Local minimum. (c) Global minimum.

(d) iSQP (10 outliers). (e) DCS (10 outliers). (f) Cauchy (10 outliers).

Fig. 1. An example of how local minima and outliers jeopardize trajectory
estimates on CSAIL Pn dataset. The odometry is shown in (a). Initialized
with the odometry, Gauss-Newton solver will converge to a local minimum
as in (b). The global minimum in (c) can be obtained by using iSQP, or M-
estimators like DCS or Cauchy (refined with Gauss-Newton). Nevertheless, in
presence of only 10 outliers, DCS and Cauchy as shown in (e) and (f) cannot
recover the correct trajectory given the poor odometry in (a). In this case, the
proposed iSQP can recover the desired trajectory as shown in (d).

studied by the optimization community and some of them
have already been employed in SLAM. The techniques can
be used to obtain a good initial value for the optimizer that
is sufficiently close to the global minimum of the original
problem [7][8]. In some cases, like 2D SLAM, the convex
relaxation can be very tight [9], thus the solution is accurate
enough and can be used directly without any refinement. By
replacing the angular distance of the rotation part in NLS with
chordal distance, the objective function becomes quadratic. In
this scenario, applying the Lagrangian dual theory, the global
minimum can be verified or even computed from the dual
problem if the duality gap is zero [10][11]. Recent progress
[12][13] can efficiently provide certifiably global optimum
using iterative Riemannian trust region methods. Another line
of work stems from the idea that rather than solving the
complicated full problem, it is better to divide it into several
subproblems which are easier to solve and less likely to get
trapped in local minima. Then the subproblems’ solutions
are combined together to obtain the solution for the original
problem. The selection of measurements for the subproblems
can be achieved spatially [14], temporally [4], or automatically
controlled by a strategy, like weight functions in M-estimators
[15][16].

To deal with outliers, despite the classical robust estimation
theory from the optimization community [17], in SLAM,
new insights and methods have been proposed over the past
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years. The first line of work introduces additional variables,
either to the optimization problem [18] or to the probabilistic
graphical models [19], to downweigh the influence of outliers.
This line of work can be regarded as a variant/extension of
M-estimators, as discussed in [19][20]. Since NLS SLAM
formulation aims to minimize the residual error weighted by
a covariance, the second line of work [21][20][22] uses the
covariance explicitly to control the impact of outliers. In this
sense, an outlier is regarded as the measurement extremely
inconsistent with the noise model, thus the estimation algo-
rithm adapts the covariance to make it fit the real measurement
noise. The third line of work [23][24] exploits the probabilistic
interpretation of the objective function, i.e., a χ2 distribution
under Gaussian noise assumption. In these cases, by the idea
that an outlier will lead to a larger χ2 error, the algorithm
attempts to find a set of consistent measurements by perform-
ing χ2 tests with different strategies. The forth line of work
formulates the outlier rejection problem as a measurement
selection problem, then single cluster graph partitioning [25]
or linear programming [26] is used to select a maximal set
of consistent measurements. However, certain assumptions are
made to formulate a tractable selection problem. Another line
of work [27] generalizes multiple loop-closing hypotheses as
a hyper-edge. Then a so-called “prefilter method” is used to
reduce the hyper-graph to a standard pose-graph which will
be further optimized with robust back-end techniques.

B. Motivation and Contributions

Can we formulate the problem of local minima and that of
outliers as one problem, and solve both with a single method?
It has been observed that M-estimators (which have been
originally developed to tackle outliers) can be used to obtain
a good initial value for optimizer in [15]. Further evidence is
showed in [20][16] where dynamic covariance scaling (DCS)
is proposed to deal with both local minima and outliers. In
this paper, we propose a constrained optimization formulation
for SLAM with a straightforward mathematical representation
of loop-closure cycles as constraints. Then the problem of
local minima and the problem of outliers are unified as a
constraint/cycle selection problem.

To be specific, we formulate an incremental SLAM as
a constraint/cycle selection problem. SLAM algorithms by
incrementally feeding measurements into the solver have been
shown to be robust against local minima [28][5]. Incremental
approaches for outlier rejection have been proposed based on
χ2 test [24]. In this paper, we firstly propose a constraint
metric to predict the χ2 error change after including the
constraint without actually solving the problem, then design
an incremental SLAM framework based on least objective
function growth principle and χ2 difference test.

The main contributions of our work are:
- A constrained pose SLAM formulation with mathematical

representations of loop-closure cycles as constraints.
- A constraint metric that can predict the objective function

change after including the constraint.
- An incremental SLAM algorithm robust against both

local minima and outliers.

C. Structure and Notations

We will revisit the NLS SLAM formulation in Section II,
and introduce the constrained SLAM formulation in Section
III. The robustness of incremental SLAM as a constraint/cycle
selection problem is discussed in Section IV. A SQP algorithm
to solve the constrained SLAM formulation is given in Section
V. In Section VI, we present the constraint metric, an strategy
to assess the constraint independence, and the incremental
SQP SLAM. The experimental validation and discussions are
provided in Section VII and VIII respectively. Section IX will
conclude the paper.

Notations: In this paper, SO(3) denotes the special-
orthogonal group which is a set of valid rotation matrices. The
difference between two elements on SO(3) group is defined
by the logarithm mapping Log(·). The homogeneous rigid
transformation on robot poses can be described by the special
Euclidean group (SE(3)) under group operation ⊕,

⊕ : SE(3)×SE(3)→ SE(3)
{t1, R1}⊕{t2, R2}= {t1 +R1t2, R1R2}.

Let ‖e‖2
Σ
= eᵀΣ−1e be the squared Mahalanobis distance with

covariance matrix Σ. Denote the rotation matrix sequential
multiplication below as

n

∏
i=m

Ri = Rm ·Rm+1 · · ·Rn (m,n ∈ Z+,m≤ n)

where for the case m > n, ∏
n
i=m Ri = I.

II. NLS FORMULATION OF POSE-GRAPH SLAM

The structure of a pose-graph SLAM problem can be
visualized as a directed graph G(V,E) (Fig. 2a), where each
robot pose corresponds to a node in the graph described by

pi = {∆∆∆i, Ri} ∈ R3×SO(3), i ∈V.

The theoretical transformation from pi to p j (i.e., the rela-
tive pose encoded to edge (i, j)∈E) is given by εi, j = {ti

j, Ri
j},

where ti
j = Ri

ᵀ(∆∆∆ j − ∆∆∆i), Ri
j = Ri

ᵀR j. Denote the noisy
measurement of the relative pose by ε̃i, j = {t̃i

j, R̃i
j}, then the

measurement error can be defined as

ei, j =

[
ti

j− t̃i
j

Log(R̃i
j
ᵀ ·Ri

j)

]
, (i, j) ∈ E. (1)

The measurement noise is usually assumed to be zero-mean
Gaussian, namely ei, j ∼N (0,Σi, j). The NLS formulation of
the pose-graph SLAM optimization problem is to find the best
configurations of poses pi (i ∈ V ) that minimize the sum of
weighted measurement error squared

argmin
pi i∈V

∑
(i, j)∈E

‖ei, j‖2
Σi, j

= ∑
(i, j)∈E

ei, j
ᵀ ·Σ−1

i, j · ei, j. (2)

Remark 1: We define the relative pose measurement error
ei, j using R3×SO(3) instead of SE(3) directly such that the
translation and rotation can be separated easily. This is useful
to generalize the approach for point feature SLAM, although
the math may not be as elegant as in SE(3).

Remark 2: In later discussion, we assume that there is a
node index sequence such that all the noisy measurement ε̃i, j
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(a) A pose graph SLAM exam-
ple with 8 poses, 7 odometry
edges and 2 loop-closure edges
(ε2,5 and ε1,8).

(b) The cycle ε3,4, ε4,5, ε3,5 con-
tains an outlier edge ε3,5 which
should not be included in the
solver.

(c) Loop-closures to end-node 8. (d) Loop-closures to end-node 5.

Fig. 2. Diagram of loop closure cycles.

can be organized in the order i < j. If this does not hold, we
invert the noisy measurement by

{t̃i
j, R̃i

j}= {t̃
j
i , R̃ j

i }
−1 = {−R̃ j

i
ᵀ
t̃ j
i , R̃ j

i
ᵀ
}.

While this inversion does not ensure exactly the same cost
function as the original one, but in working precision the
results are nearly the same according to our observations.

III. CONSTRAINED SLAM FORMULATION

In SLAM, a complete loop-closure cycle includes the
sequential transformations (odometry edges) and the loop-
closure edge. For example in Fig. 2a, odometry edges ε2,3,
ε3,4, ε4,5, and loop-closure edge ε2,5 constitute a complete
loop-closure cycle. In NLS formulation defined by (2), loop-
closure cycles in the graph are not explicitly described.

A. Mathematical Representation of A Loop-closure Cycle

The sequential transformations of robot poses (i.e., edges
in pose graph) can be explicitly described by a sequence of
operations with the group operation ⊕ on SE(3).

In Fig. 2a, there are two loop-closure edges, ε2,5 and ε1,8.
The complete loop-closure cycles corresponding to these two
loop-closure edges can be described as below

ε2,3⊕ ε3,4⊕ ε4,5 = ε2,5 (3)
ε1,2⊕ ε2,3⊕ ε3,4⊕ ε4,5⊕ ε5,6⊕ ε6,7⊕ ε7,8 = ε1,8 (4)

ε1,2⊕ ε2,5⊕ ε5,6⊕ ε6,7⊕ ε7,8 = ε1,8. (5)

Note loop-closure cycle (5) can be derived from loop-closure
cycle (3) and (4), thus is redundant. In graph theory, a set of
independent cycles that can be used to express all cycles in
the graph are called “cycle basis” [29]. In Fig. 2a, the cycle
basis can be chosen as {(3), (4)} {(3), (5)} or {(4), (5)}.

In general, we consider the case when: there are two edges
(at least one loop-closure edge) to pose pk from pose pi and
p j ( j = i+m) when the robot travels from pose pi to p j. The
edges involved are εi,i+1, εi+1,i+2, · · · , εi+m−1,i+m, and εi,k,
εi+m,k. The loop-closure cycle is given in the form

εi,i+1⊕ εi+1,i+2⊕·· ·⊕ εi+m−1,i+m⊕ εi+m,k = εi,k. (6)

Further, with a slight abuse of notation, the information
contained in (6) can be described as below two equations.

[
m−1

∏
l=0

Ri+l
i+l+1]t

i+m
k +

m−1

∑
t=0

[
t−1

∏
l=0

Ri+l
i+l+1]t

i+t
i+t+1− ti

k = 0 (7)

Log{[Ri
k]
ᵀ · [

m−1

∏
l=0

Ri+l
i+l+1]R

i+m
k }= 0 (8)

The result can be easily obtained by expanding SE(3) group
operation ⊕ and applying SO(3) logarithm mapping to the
rotational part. We will refer to (7) and (8) as mathematical
representations of loop-closure cycles in the following discus-
sion.

Remark 3: The idea of considering a loop-closure as a cycle
(i.e., the composition of relative poses) is not completely new.
Olson [25] formulates two potential loop-closure edges along
with the “Dijkstra link” as a loop to evaluate the pairwise
consistency between the loop-closure edges. Dubbelman et al.
[30] use relative transformations along a loop-closure cycle
in their work “trajectory bending”. Huang et al. [31] give
a comprehensive discussion on the nonlinearity/convexity by
using relative states in the formulation. Carlone et al. [32]
exploit cycle basis to formulate the 2D orientation estimation
problem as an integer optimization problem in terms of their
regularizations.

B. Constrained SLAM Formulation

We propose a constrained SLAM formulation by taking all
theoretical transformations εi, j, (i, j) ∈ E as variables to be
estimated, and mathematical representations of loop-closure
cycles (7) and (8) as equality constraints of the resulting
optimization problem. From a graphical perspective, in graph
G, we take all the edges as variables to be estimated, and
constrain the problem with a cycle basis of G.

From (1) and (2), if we further define the weighted distance
between the theoretical relative pose εi, j and the noisy relative
pose measurement ε̃i, j as

d(ε̃i, j,εi, j)|Σi, j = ei, j
ᵀ ·Σ−1

i, j · ei, j,

then the objective function takes the form

d(x,η)|Σ = ∑
(i, j)∈E

d(ε̃i, j,εi, j)|Σi, j ,

where x, η , and Σ collect all εi, j, ε̃i, j, and Σi, j, respectively.
For convenience, we assign each loop-closure cycle an

unique index, and use Ci(x) = 0 to denote the constraint
corresponding to the loop-closure cycle i. Compactly, the
constrained SLAM formulation can be described as problem

P :
min d(x,η)|Σ

s.t. Ci(x) = 0 (i ∈ D)
. (9)

The indices of all the constraints are included in set D.
Problem P can be solved by SQP (whose details will be
provided in Section V).

In short, the constraints are mathematical representations of
loop-closure cycles, and the objective function can be regarded
as a metric of the closeness between the estimated relative
transformations and the actual noisy measurement data. In this
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sense, SLAM can be interpreted as finding the set of consistent
transformations such that the constraints are satisfied, and
meanwhile preserving the most information from the noisy
measurement data.

Remark 4 (Observability): The NLS formulation (2) of
SLAM is not observable, since the variables are absolute
and the measurements are relative. As a result an anchor is
required to solve the NLS formulation. However by using
relative variables, the constrained SLAM formulation (9) is
always observable thus the problem can be solved directly
without introducing any anchor.

Remark 5 (Initial Value for Optimizer): The initial value for
the iterative solver of the proposed constrained SLAM formu-
lation (9) can be always chosen as the noisy measurement data
η . Thus the initialization error is bounded by the measurement
noise. This is different from the NLS formulation (2) where
the initialization error is accumulated (e.g. through odometry
or spanning tree).

Remark 6 (Relationship with NLS): In theory, the globally
optimal solutions from both formulations are exactly the same.
By applying a simple transformation it is possible to pass
from one solution to the other and vice versa. For example,
in the constrained formulation, after convergence where all
constraints are satisfied, the absolute poses can be calculated
by compounding the estimated state.

C. The Case of Feature-based SLAM

The feature based SLAM can be regarded as a special case
of pose-graph SLAM, where some nodes as well as the edges
to those nodes only contain the translational part. As a result,
the constraints/loop-closure cycles in the feature based SLAM
comprise only translational equations in the form of (7). This is
the main reason why we keep translation and rotation separate.
The feature based SLAM using constrained optimization has
been studied by Bai et al. [33], but only the 2D outlier-free
case is considered.

IV. ROBUST INCREMENTAL SLAM AS A CONSTRAINT
SELECTION PROBLEM

In this section, we will discuss the robustness of an incre-
mental SLAM algorithm towards local minima and outliers
based on the constrained SLAM formulation.

A. Incremental SLAM

The key of an incremental SLAM algorithm is to design a
sequence of subproblems Pk (k = 0,1,2 . . .n)

Pk :
min d(x,η)|Σ

s.t. Ci(x) = 0 (i ∈ Dk)
(10)

which only contains a portion of the constraints from the
original problem P . The sets of indices satisfy

D0 ⊂ D1 ⊂ D2 · · ·Dn−1 ⊂ Dn ⊆ D

where D0 = /0, indicating none of the constraints is included
at subproblem P0.

When solving the subproblems sequentially with SQP,

x0
P1−−→
SQP

x1
P2−−→
SQP

x2 · · ·xn−1
Pn−−→
SQP

xn

we get a solution sequence x0,x1,x2 . . . ,xn. If there are no
outliers in the dataset, then Dn = D. If there are outliers in the
dataset, then Dn is designed to be the maximal constraint set
which contains no outliers.

The most critical part of the incremental SLAM is how to
design the constraint set Dk for each subproblem Pk, which
can guarantee the global convergence between subproblems
and ensure outlier free. In this sense, a robust incremental
SLAM can be regarded as a constraint selection problem.

B. Least Objective Function Growth (LOFG)

To avoid local minima, the solution sequence {xk} should be
designed in a way that xk−1, i.e., the solution of subproblem
Pk−1 which also serves as the initial value of subproblem
Pk, lies within the basin of convergence of subproblem Pk.
To achieve this, one possible way is to ensure that xk−1 and
xk are as close as possible to each other as discussed by Hu
et al. [15]. This heuristics can be described as a least solution
change principle.

However, the solution change (the closeness of solutions)
is not a well-defined concept since there are many potential
criteria. In this paper, we use the objective function growth

∆Fk−1
k = Fk−Fk−1 = d(xk,η)|Σ−d(xk−1,η)|Σ (11)

between sequential subproblems to represent the solution
change. As a result, the least solution change proposition
becomes the least objective function growth (LOFG) principle.

C. Constraint Metric

The solution xk−1 is computed with the set of constraints
in Dk−1, denoted by xk−1 ← {Ci}i∈Dk−1 . Incrementally, the
solution xk is computed from the set of constraints in Dk =
Dk−1∪{ik}, so xk is dependent on xk−1 and Cik , namely

xk← xk−1∪Cik ←{Ci}i∈Dk−1 ∪Cik .

The solution change from xk−1 to xk is caused merely
by the new added constraint Cik . If the solution change is
described by the objective function growth, is it possible to
know the objective function growth ∆Fk−1

k prior to solving of
subproblem Pk?

Obviously, ∆Fk−1
k is related to the constraint Cik and the

solution xk−1. Thus the problem becomes how to formulate
a constraint metric, combined with solution xk−1, to predict
the objective function growth ∆Fk−1

k . Such a metric will be
provided in Section VI-A.

D. χ2 Difference Test

The validity of the objective function growth ∆Fk−1
k can

be checked by χ2 difference test [34]. χ2 difference test is a
variation of χ2 test employed on the difference of χ2 error
and the change of the degree of freedom (DOF). In our case,
after adding a constraint, the increase of χ2 error is ∆Fk−1

k ,
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meanwhile the DOF of constrained relative measurements rises
from n1 to n2. Then the validity of ∆Fk−1

k can be examined by
χ2

α(n2−n1) test, where α is the confidence probability which
is usually set to 0.95.

Different from existing methods in SLAM to deal with
outliers [23][24], the change of χ2 error is predicted by
a constraint metric, rather than solved from including the
constraint. By the virtue of this, we perform χ2 difference test
on the constraint metric. If the constraint metric passes the χ2

difference test, the loop-closure cycle implied by the constraint
is considered to be outlier free; otherwise, containing outliers.

E. Robustness

The robustness of incremental SLAM against local minima
and outliers stems from the fact that the constraint which
satisfies the LOFG principle, in most of the cases, also passes
the χ2 difference test. This is because a constraint satisfying
LOFG principle is closer to an equality, thus the measurements
constitute the loop-closure cycle are more consistent and un-
likely to contain outliers. In other words, the LOFG principle
and χ2 difference test, to some extent, correspond to how
close the constraint added is to an equality, which motivates
the constraint metric formulation in Section VI-A. Finally a
robust incremental SLAM can be achieved by evaluating the
constraint metric and select the constraint satisfying LOFG
principle and χ2 difference test into the subproblems.

V. IMPLEMENTATION OF SQP SOLVER

In this section, we briefly introduce the implementation of
SQP for constrained SLAM formulation.

A. Sequential Quadratic Programming (SQP)

SQP is realized by repeatedly performing linearization and
solution update until the solution converges. For the con-
strained SLAM formulation in (9), the goal of linearization is
to achieve a quadratic programming with a quadratic objective
function and linear equality constraints

min ‖HΨ−η‖2
Σ

s.t. AΨ = b (12)

where the optimal solution Ψ∗ (and its covariance) can be
computed by Lemma 1.

Lemma 1: [35] The solution Ψ∗ to the quadratic program-
ming (12) is

Ψ
∗ = γ−QAᵀ(AQAᵀ)−1[Aγ−b] (13)

where Q=H−1ΣH−ᵀ, γ =H−1η . The uncertainty (covariance
of Gaussian distribution) of Ψ∗ can be approximated by

Cov(Ψ∗) = Q−QAᵀ(AQAᵀ)−1AQ. (14)

Then the solution of the original problem (9) is updated by
the quadratic programming solution Ψ∗ (which is usually an
Euclidean increment) to obtain the new linearization point for
the next iteration.

B. Implementation on Manifold

The key idea of optimization on R3×SO(3) is to maintain
a rotation matrix in the global scale which will be iteratively
updated by Euclidean increments in the axis-angle space. The
rotation matrix and axis-angle representation are related by
exponential and logarithm mapping. The quadratic system
(12) is attained by linearizing rotation matrices to the axis
angles which then serve as the rotational part of the Euclidean
increment. The details on how to compute the related Jacobian
are provided in the supplementary material [36].

VI. ROBUST INCREMENTAL SQP SLAM

In this section, we will formulate a constraint metric based
on how close the constraint is to an equality. An approach
to find independent constraints/loop-closure cycles (i.e., cycle
basis in the graph) is also provided. Then we put things
together and propose our robust incremental SQP SLAM.

A. Constraint Metric

From a probabilistic perspective, the closeness that a con-
straint is to an equality can be benchmarked by fpd f {Ci(x) =
0}, which is the probability density of Ci(x) at 0. However,
it is difficult to obtain an exact analytical expression for the
distribution of Ci(x), because of the nonlinearity introduced
by rotation matrices. At xk−1, a viable approach is to find a
Gaussian approximation for Ci(x) around Ci(xk−1).

At solution xk−1, constraint Ci(x) = 0 can be linearized
to ĀiΨ = b̄i. Therefore the covariance can be approximated
by ĀiCov(Ψ∗k−1)Ā

ᵀ
i , where Ψ∗k−1 is the Euclidean increment

at subproblem Pk−1. Hence, the Gaussian approximation for
Ci(x) is given by

Ci(x)∼N (Ci(xk−1), ĀiCov(Ψ∗k−1)Ā
ᵀ
i ).

The probability density at 0 is

fpd f {Ci(x) = 0}
∝ exp(−Ci(xk−1)

ᵀ · [ĀiCov(Ψ∗k−1)Ā
ᵀ
i ]
−1 ·Ci(xk−1)).

During optimization, we use the negative logarithm of
fpd f {Ci(x) = 0}, which is used as the constraint metric to
predict the objective function growth ∆Fk−1

k

∆Fk−1
k ' Ci(xk−1)

ᵀ · [ĀiCov(Ψ∗k−1)Ā
ᵀ
i ]
−1 ·Ci(xk−1). (15)

Remark 7: The constraint metric (15) is a Mahalanobis
distance incorporating the error and uncertainty accumulated
in the loop-closure cycle, which is used in this paper to
represent the impact of the loop-closure edge on the objective
function. Similar ideas were used in EKF-based Mahalanobis
gating to evaluate loop-closure hypotheses [37], where the
motion uncertainty is accumulated in the robot pose.

B. Independent Constraints/Loop-closure Cycles

A typical method to decide the independence of cycles is
to use Gaussian elimination, which has been used to find
the minimum cycle basis of a graph [29]. The minimum
cycle basis can ensure the sparsest system matrix, however is
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Algorithm 1 Robust Incremental SQP SLAM
Criteria K :
• Ci is independent from the considered constraints
• Ci passes χ2 difference test

repeat
1 Compute constraint metric by (15) for all unconsidered

constraints
2 Add an unconsidered constraint with the smallest con-

straint metric that satisfies K into the subproblem
3 Solve the subproblem by SQP

until no constraints satisfy K

relatively expensive to compute. For simplicity, in this paper,
we adopt a variation of the fundamental cycle basis [29],
by assuming there exists an outlier free spanning tree, i.e.,
odometry, in presence of outliers (as shown in Fig. 2b).

Assume all the measurements are arranged from node i to j,
with i < j. In this case, the loop-closure cycles corresponding
to different end-nodes are independent. For example, in Fig.
2b, there are two cluster of loop-closure cycles, with end-nodes
5 and 8 respectively. The loop-closure cycles corresponding to
end-node 5 (shown in Fig. 2c) and that corresponding to end-
node 8 (shown in Fig. 2d) are independent. For the cycles in
each subgraph as in Fig. 2c and Fig. 2d, the independence of
the cycles can be further assessed by Gaussian elimination or
the methods described in the supplementary material [36].

C. Robust Incremental SQP SLAM

We propose a robust incremental SQP SLAM which sum-
marizes the insights of the paper. The algorithm contains
two components: constraint selection and SQP solver. For
each subproblem, at a given solution, using constraint metric
(15), the algorithm selects an independent constraint that can
ensure LOFG, then followed by a χ2 difference test to identify
whether the constraint is an inlier or not. After that, a SQP
solver is used to solve the subproblem. The algorithm stops
when all the independent constraints are considered (in the
outlier free case), or all the unconsidered constraints fail χ2

difference test (in the case of presenting outliers).
The main procedure of the proposed robust incremental SQP

SLAM is sketched in Algorithm 1.

VII. RESULTS

In this section, we will show the validity of the proposed
framework, including the accuracy of the constraint metric and
the robustness of iSQP.

A. Evaluation Setup

Since most mature techniques for outlier rejection are M-
estimators or its variants [20][19], and it has been shown that
M-estimators can work robustly against local minima as well,
we compare with two of them in our experiments, dynamic
covariance scaling (DCS) and Cauchy, which generalize the
work in [18][20][16][15][19]. Both DCS and Cauchy are
available in g2o implementation [3]. The tuning parameter for

(a) MITb (Total 20 independent constraints).

(b) CSAIL Pn (Total 127 independent constraints).

(c) Intel (Partial: first 150 independent constraints).

(d) Manhattan (Partial: first 150 independent constraints).

Fig. 3. The relationship between constraint metric and objective function
growth. The root mean squared error from top to bottom are 0.2400, 0.0168,
7.2e-7 and 1.5e-5, respectively.

DCS can vary greatly depending on the dataset, so we perform
an exhaustive search for the best tuning parameters within
interval [1, 1000] for the datasets evaluated, which yields
around 92 for MITb and 190 for CSAIL Pn. For Cauchy, the
tuning parameter is always set to 1.

The outliers are generated by assigning the correct relative
pose measurement computed from the global minimum esti-
mate of two randomly selected poses, to two other poses. For
the robustness measure, we use the absolute trajectory error
(ATE), which is the mean of root squared position error of the
estimated poses in presence of outliers with respect to that of
optimal solution in the outlier free cases. The original datasets
CSAIL P, MITb, Intel, Manhattan used in the experiments can
be found at [38].

B. Accuracy of the Constraint Metric
The constraint metric plays a key role in the proposed

method. In this section, we show the accuracy of the metric
(15) by solving 4 outlier free datasets with iSQP, and recording
the constraint metric and corresponding objective function
growth for each subproblem in Fig. 3.

It can be seen from Fig. 3 that the proposed constraint
metric (15) can generally follow the trend of the objective
function growth, even for the noisy dataset MITb. The metric
tends to be more accurate if the number of loop-closures in
the dataset increases, for example CSAIL Pn with 127 loop-
closures. For less noisy and dense loop-closure datasets like
Intel (with around 900 correct loop-closures) and Manhattan
(with around 2000 correct loop-closures), the metric can nearly
exactly predict the objective function growth.
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C. Robustness of iSQP

To show the robustness of iSQP against local minima and
outliers, we firstly use a recreated dataset named CSAIL Pn
to show the point, then Monte Carlo simulation on MITb is
used to test the potential of the algorithm.

1) CSAIL Pn: CSAIL Pn is a dataset recreated from
CSAIL P with increased noise, whose initial odometry is
shown in Fig. 1a. In this adverse case, Gauss-Newton will
converge to a local minimum (Fig. 1b) while the global
minimum can be attained by iSQP, DCS, or Cauchy (refined
with Gauss-Newton) as shown in Fig. 1c. In the presence of
10 outliers, both DCS (Fig. 1e) and Cauchy (Fig. 1f) would
fail while iSQP is still robust (Fig. 1d).

2) Monte Carlo Simulation on MITb: We opt to use MITb
for Monte Carlo simulation because: First, the constraint
metric accuracy on MITb is worst among the 4 datasets in
Section VII-B, which means it will be more challenging for
iSQP. Second, the dataset is noisy, and 807 poses are sparsely
connected by only 20 loop-closures. Therefore the problem is
prone to converge to local minima and fail in presence of even
1 outlier. Third, the SQP solver is not very efficient, and the
constraint metric is relatively expensive to compute. A Monte
Carlo simulation on sparse loop-closures dataset will be faster,
while still shows the point of our claim.

The initial odometry, local minimum and global minimum
of the MITb dataset are plotted in the supplementary material
[36]. In the outlier free case, a simple Gauss-Newton will
converge to a local minimum, while the global minimum can
be readily recovered by iSQP, or M-estimators refined with
Gauss-Newton. Then we randomly add 1, 2, 5, 10, 15, 20
outliers to the dataset respectively, and run a 100 trial Monte
Carlo simulation to test the robustness.

For comparison, we also use Cauchy+DCS combination
(denoted by “Chy+DCS”, with DCS tuning parameter 5)
where Cauchy (denoted by “Chy”) is used to bootstrap DCS.
The ATE of different methods with respect to different number
of outliers is depicted in Fig. 4. For DCS, Chy, and Chy+DCS,
we define a trial to be a success if the ATE is less than 0.1. For
iSQP, if all the outliers are identified and inliers are included,
the solution is considered as a success. The averages of ATE
and success rates (SR) for iSQP, DCS, Chy and Chy+DCS are
summarized in Table I.

The result shows that: DCS can hardly converge for this
noisy and sparsely connected dataset if initialized from odom-
etry, while Cauchy can converge better but yield less accurate

TABLE I
PEFORMANCE OF ISQP, DCS AND CAUCHY ON MITB DATASET

Qty. of Outliers 1 2 5 10 15 20

iSQP ATE 0.000 0.128 0.578 0.570 1.419 1.522
SR 100% 95% 79% 74% 47% 39%

DCS ATE 0.862 0.954 1.762 2.041 2.746 2.864
SR 38% 21% 4% 2% 0% 0%

Chy ATE 0.147 0.167 0.551 0.928 1.664 1.723
SR 94% 95% 72% 59% 26% 19%

Chy-
DCS

ATE 0.153 0.182 0.509 0.821 1.429 1.464
SR 95% 95% 77% 61% 30% 24%

(a) 1 outlier. (b) 2 outliers. (c) 5 outliers.

(d) 10 outliers. (e) 15 outliers. (f) 20 outliers.

Fig. 4. The ATE of iSQP, DCS, Cauchy and Cauchy+DCS combination in
100 run Monte Carlo simulation with respect to different number of outliers
on the MITb dataset.

result. Cauchy+DCS combination outperforms both in terms
of convergence and accuracy. However, iSQP can achieve
comparable robustness, or slightly better in statistics.

VIII. DISCUSSION

M-estimators are famous for their simplicity and efficiency
to deal with outliers. Nevertheless the outlier rejection is still
embedded in the computation of the solution. An idea is to
formulate the outlier rejection problem as a data selection
problem [25][26] which is independent of the solver, thus
the modularity of SLAM is enhanced. Motivated by previous
work [15][25][26][27], we formulate a data selection problem
to deal with both local minima and outliers. Even though
LOFG principle is heuristic, the algorithm performs well in
challenging sparsely connected pose-graph scenarios.

Recently, χ2 test is used as a benchmark to reject outliers in
the graph SLAM formulation [23][24]. However two problems
remain. First, an overall χ2 test is not conspicuous, and the
sensitivity decreases as the number of Gaussian measurements
involved increases because high quality measurements can
compensate poor quality measurements. The χ2 difference test
is relatively more conspicuous compared with the χ2 test.
Second, the existing methods need to solve the problem in
order to obtain a χ2 error, which poses heavy burden to the
solver and break the modularity of SLAM. By using a metric
to predict χ2 error, the solver can maintain its efficiency and
the modularity of SLAM is preserved.

The main issue of the proposed approach lies in its com-
putational efficiency. For sparse dataset like MITb, it takes
our Matlab implementation around 0.2s for constraint selection
and 2s for subproblem resolution respectively on an Intel i5-
5300U 2.3GHz quad-core CPU. However in adverse cases, the
system matrix AQAᵀ in (13)(14) may lose sparsity, resulting in
cubic (subject to matrix inversion) computational complexity.
Another challenge for densely connected pose-graph datasets
is that: if the noise is very large, a naive use of the metric
(15) may not be robust enough. However, the method can be
extended using joint validation, checking multiple cycles with
respect to one single loop-closure edge.
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IX. CONCLUSION

To summarize, we propose a constrained optimization for-
mulation of pose-graph SLAM with mathematical represen-
tations of loop-closure cycles as constraints. We discuss the
robustness of incremental SLAM as a constraint selection
problem. We propose to use a constraint metric to predict the
objective function growth, and select constraints according to
the LOFG principle. An iSQP SLAM algorithm is proposed
based on the SQP solver, and χ2 difference test. The results
validate the accuracy of the constraint metric, and the com-
parable robustness of iSQP contrasted to DCS and Cauchy.
The main issue of the proposed approach is its computational
cost. In the future, we will work towards improvements in
the efficiency of the solver, and more cost-effective constraint
metrics.
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