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Abstract

Robustness against parameter mismatches and position-sensorless operation are two important research topics for

permanent magnet synchronous motor (PMSM) drives. In this paper, a sliding mode disturbance observer (SMDO) is

proposed to achieve either of two functions for different application environments: 1) if a position sensor is equipped,

accurate current regulation can be achieved by deadbeat predictive current control (DBPC) despite mismatched motor

parameters; 2) if the position sensor is not equipped but with a good estimation of motor parameters, the observer can

serve as a back electromotive force (EMF) estimator. On this basis, the rotor position can be extracted for position-

sensorless control. Usually, low-pass filter is required to suppress high frequency noises in conventional sliding

mode observer. This inevitably leads to phase delay in the estimation, which cannot be directly used for disturbance

compensation. While in the proposed method, a complex coefficient filter is inherently embedded, which can provide

accurate estimation without phase or magnitude error. Experimental results obtained from a 2.4 kW PMSM drive

platform indicate that high performance current control can be achieved with good robustness for position sensor

based operation. And, rotor position can be accurately estimated with good steady and dynamic performance for

position-sensorless operation.
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I. INTRODUCTION

For power converters and motor drives, inner current loop plays an important role in performance of the whole

control system. During past decades, many methodologies have been investigated for high performance current

regulation, including proportional-integral (PI) control [1], [2], hysteresis control [3], [4], sliding-mode control [5],

and predictive control [6]–[8].

PI control is widely used in practical applications due to its simplicity and good steady state performance.

However, to reduce overshoot during dynamic process and attenuate interference with sampling noise, the bandwidth

of such controller is usually limited and hard to tune [9]. Additionally, classic PI control may suffer from instability

during high speed operation [1]. Hysteresis control presents fast dynamic response and good robustness. The

main issues are requirement of high sampling frequency, relatively larger current ripples and variable switching

frequency. Sliding-mode control (SMC) features good robustness against disturbance and dynamic performance

[10]. In practical application, SMC must be well designed to avoid high frequency chattering. Generally, predictive

control can be classified into finite-control-set control (FCSC) and continuous-control-set control (CCSC). In FCSC,

there is no modulator and the discrete voltage vector is directly selected online by minimizing a cost function [11],

[12]. FCSC has advantages of fast dynamic response and flexibility to handle system constrains, etc. However, the

computational burden of FCSC is usually high especially for long prediction horizons [13] and multiple vectors

based schemes [14]. Additionally, variable switching frequency and relatively larger harmonic ripples are issues

need to be addressed. In CCSC, the output voltage is usually synthesized by a modulator with fixed switching

frequency and concentrated harmonic spectrum. Among CCSCs, deadbeat predictive control (DBPC) is one of the

commonly used methods owing to its good dynamic performance and simple calculation. However, as DBPC is

directly derived based on the system model to cancel tracking error at the next sampling instant, its performance

is inevitably influenced by accuracy of model parameters.

To achieve satisfactory performance based on crude estimation of system models, many methods have been

proposed for model based predictive control. In [15], a predictive current control based on an extended Luenberger

observer is investigated for the current control of PWM rectifier. By compensating the estimated disturbances

in predictive model, the tracking error is effectively eliminated during steady state. Similarly, a sliding mode

observer with an improved reaching law is proposed in [6] for robust current control of PMSMs. These methods

are designed in synchronous reference frame, which requires position information for proper implementation. Hence,

such observers cannot be directly used for position-sensorless control. In [16], a closed-loop prediction model with



sliding mode feedback is proposed for sensorless control of induction motor drives. By designing feedback gains

based on H-∞ methods, good performance is obtained with uncertain stator and rotor resistances. For finite-control-

set predictive current control of PMSMs, a simple yet very effective method by adding prediction error for all voltage

vectors is studied in [7]. The demonstrated results show that the current ripples are reduced and the robustness

against inductance variation is improved.

To achieve high performance current control of PMSMs, accurate information of rotor position is usually required.

In practice, position-sensorless operation is preferred in hostile environments and low cost applications [17], [18].

Even equipped with a position sensor, a rotor position estimator is still required to achieve sensor fault-tolerant

control for safety or reliability reason in some cases, such as in automotive applications [19]. For position-sensorless

control of PMSMs, many model based methods can be found in existing literature. In [20], some design principles

are introduced to improve stability and dynamic performance of full order observer (FOO). To reduce the sensitivity

of extended Kalman filter (EKF) to round-off errors, different square-root algorithms based EKFs are studied and

compared in [21]. Apart from FOO and EKF, sliding mode observer (SMO) has also been widely used because

of its simplicity and satisfactory performance [18], [22], [23]. The main issues of SMO in practical application

include high frequency chattering and harmonic ripples in estimated position caused by inverter nonlinearity and

flux spatial harmonics, etc. To obtain smooth rotor position, different filters can be used to filter out harmonic

components [24].

Usually, previous observers are specially investigated for “single-use”. Few research investigates using one

observer to meet requirements for different application environments. For a compact solution, a sliding-mode

disturbance observer (SMDO) is designed in this paper, which can be used for different purposes. The main

contributions include:

1) A SMDO is designed and investigated for robustness against parameter variation and sensorless control. If

rotor position is measured, the observer can provide precise compensation of unknown disturbance caused by

mismatched parameters. In this case, its function is similar to that in [6], [15]. If rotor position needs to be

estimated, the position can be extracted from the estimated disturbance. In this case, its function is similar to

that in [22], [23], which can provide rotor position for coordinate transformation.

2) For compact representation and to facilitate theoretical analysis, complex-vector based state variables rather

than conventional scalar notations are used for stability and performance analysis of SMDO.

3) A complex-coefficient filter is inherently incorporated in the designed SMDO, which can preserve fundamental

components while suppressing harmonics. Neither low pass filter nor phase compensation is required.

4) Both robustness of control system and sensorless operation are experimentally evaluated on a two-level inverter

fed PMSM drive. The obtained results confirm that two functions can be achieved in one design.



II. MODEL OF PMSM AND BASIC PRINCIPLE OF DBPC

A. Mathematical Equations of PMSM

In the stationary α− β reference frame, the motor equation of a surface-mounted PMSM can be written in the

form of complex-vectors as

Ls
dis
dt

=
(
us −Rsis − jωrψrejθr

)
. (1)

where us = usα + j · usβ , is = isα + j · isβ are stator voltage and stator current vectors; Rs and Ls are stator

resistance and inductance; ωr is electrical rotor speed; ψr represents rotor flux magnitude of permanent magnet; θr

is rotor position; and j represents imaginary component of a complex variable. With a small sampling period Tsp,

(1) can be discretized by the following simple Euler method

dx

dt
≈ xk+1 − xk

Tsp
(2)

as

ik+1
s = iks +

Tsp
Ls

(uks −Rsi
k
s − jωkrψrejθ

k
r ). (3)

where the superscript k represents kth sampling instant.

B. Basic Principle of DBPC

To force stator current to reach its reference at the next sampling instant, i.e. ik+1
s = ik+1

ref , the applied stator

voltage uks should be

uks = Ls
ik+1
ref − iks
Tsp

+Rsi
k
s + jωkrψre

jθkr . (4)

In digital implementation, there is typically one-step delay between the actual applied voltage and the calculated

voltage [25]. This means that the calculated uks will be applied in the (k + 1)th instant in practical application

rather than the expected kth instant. In this paper, model based prediction is employed to compensate for digital

delay. By further shifting (4) one-step ahead, uk+1
s can be solved as

uk+1
s = Ls

ik+2
ref − ik+1

s

Tsp
+Rsi

k+1
s + jωk+1

r ψre
jθk+1

r (5)

where ik+1
s can be predicted based on (3) with stator voltage uks obtained from previous control period. ik+2

ref is

expressed as

ik+2
ref = (ik+2

dref + j · ik+2
qref )ejθ

k+2
r . (6)

As filed-weakening operation is not discussed here, idref is kept as zero and iqref is obtained from outer speed

control loop. Considering the bandwidth of outer speed control loop is generally much smaller than the sampling

frequency of the inner control loop, it is reasonable to assume that ik+2
qref = ikqref . And, θk+2

r can be extrapolated

as θk+2
r = θkr + 2ωk

rTsp assuming that ωr is constant within prediction horizons [13]. Hence, ik+2
ref can be simply

calculated according to (6) as

ik+2
ref = j · ikqrefej(θ

k
r+2ωk

rTsp). (7)

As can be seen from (5), the accuracy of calculated voltage depends on motor parameters. Any deviation in these

parameters will deteriorate control performance, which will be discussed in the next section.



III. IMPACT OF PARAMETER ERRORS ON DBPC

In practical application, the actual values of inductance and resistance are unknown and the output voltage uk+1
s

of DBPC can only be calculated based on the estimated motor parameters, measured/estimated position and speed.

According to (3) and (5), the final implementation of DBPC in a digital processor can be summarized by the

following two equations.

î
k+1

s = iks +
Tsp

L̂s
(uks − R̂si

k
s − jωkr ψ̂rejθ

k
r ) (8)

uk+1
s = L̂s

ik+2
ref − î

k+1

s

Tsp
+ R̂sî

k+1

s + jωkr ψ̂re
j(θkr+ω

k
rTsp). (9)

where the hatˆdenotes the estimated variables. If T 2
sp related terms are not considered, the following equations can

be obtained according to (50) and (51) deduced in the Appendix.

Lsi
k+2
d = L̂si

k
dref + (

R̂s

L̂s
∆L−∆R)Tspi

k+1
d

+ (∆L− R̂s

L̂s
∆L · Tsp −∆R · Tsp)ikd

+ 2∆LωrTsp · ikq (10)

Lsi
k+2
q = L̂si

k
qref + Tsp(

R̂s

L̂s
∆L−∆R)ik+1

q

+ (∆L− R̂s

L̂s
∆L · Tsp −∆R · Tsp)ikq

− 2ωrTsp · (∆ψ + ∆Likd) (11)

where ∆L = Ls − L̂s, ∆R = Rs − R̂s and ∆ψ = ψr − ψ̂r are estimation errors of motor parameters. As

ik+2
d ≈ ik+1

d ≈ ikd and ik+2
q ≈ ik+1

q ≈ ikq during steady state, (10) and (11) can be simplified as

id ≈
L̂si

k
dref + 2∆LωrTspiq

L̂s + 2∆RTsp
(12)

iq ≈
L̂si

k
qref − 2ωrTsp(∆ψ + ∆Lid)

L̂s + 2∆RTsp
. (13)

It can be seen that error of inductance would introduce cross coupling between id and iq . With a small sampling

period Tsp, ∆RTsp is generally negligible and thus resistance variation usually has little impact on control per-

formance [7]. The error of rotor flux mainly influences tracking accuracy of q−axis current, especially at high

speed. Additionally, experimental results in some research [7] show that a over estimated inductance would cause

significant larger ripples in the current response. The reason can be explained as follows. When only inductance

error is considered, the transfer function (14) can be obtained based on (10) and (11) as

H(z) =
idq(z)

irefdq (z)
=

L̂s

Lsz2 − Rs

L̂s
∆LTsc · z −∆L+ Rs

L̂s
∆LTsc

. (14)

where z is delay operator in discrete-time domain. Fig. 1 shows bode diagram of H(z) with 10 kHz sampling

frequency when L̂s varies from 0.5Ls to 2Ls. It is clear that a overestimated L̂s would amplify high frequency
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Fig. 1. Bode plot of H(z) in (14) with L̂s varies from 0.5Ls to 2Ls

noises. In short, inaccurate motor parameters have side-effects on the control performance for conventional DBPC,

which needs to be compensated to improve tracking accuracy.

IV. SLIDING-MODE DISTURBANCE OBSERVER

A. Disturbance Estimation

From (1), the system model can be rewritten in terms of the estimated inductance L̂s and resistance R̂s as

L̂s
dis
dt

= us + ud − R̂sis. (15)

where ud is the disturbance voltage as shown in (16). In (15), ud is incorporated to compensate for the influence

of inaccurate model parameters so that the responses of (15) is exactly the same as (1).

ud = −∆L
dis
dt
−∆Rsis − jωrψrejθr . (16)

From (16), one can see that ud consists of disturbance resulted from parameter mismatches and back electromotive

force (EMF) jωrψrejθr . It is clear that the derivative of ud is dud/dt = jωrud when only fundamental component

is considered during steady state. Hence, the dynamics of ud can be expressed as

dud
dt

= jωrud. (17)

As ud is not directly available, a sliding-mode disturbance observer (SMDO) is designed based on (15) and (17)

as follows.

L̂s
dîs
dt

= us + ûd + usmo − R̂sîs (18)

dûd
dt

= jωrûd + ωcusmo (19)

where usmo is sliding-mode control function; ûd is estimation of the real disturbance voltage ud and ωc is

the adaption gain for ûd. Unlike conventional sliding mode observer, the estimated disturbance is not directly



reconstructed from switching function but extracted from sliding mode control function usmo as shown in (19).

This can help to attenuate harmonic ripples which will be discussed later. In this paper, sliding-mode surface is

chosen as current tracking error, i.e.,

S = is − îs. (20)

To improve dynamic performance and reduce high frequency chattering, the following exponential law (21) is used

to design sliding-mode control function [26].

dS

dt
= −λ · sgn(S)− l · S (21)

where λ and l are positive parameters and

sgn(S) =
S

|S|
. (22)

Subtracting (18) from (15) results in the following error dynamics

L̂s
dei
dt

= eu − usmo − R̂sei. (23)

where ei = S = is − îs and eu = ud − ûd. From (21) and (23), equation (24) can be deduced.

−L̂s(λ · sgn(S) + l · S) = eu − usmo − R̂s · S. (24)

Considering eu as disturbance, the sliding-mode control function usmo can be derived from (24) as

usmo = L̂sλ · sgn(S) + (L̂sl − R̂s) · S. (25)

B. Analysis of SMDO

To investigate stability of SMDO, the following Lyapunov function is defined.

F =
|S|2

2
=

S � S

2
(26)

where � represents dot product of two complex variables. The time derivative of F is

Ḟ = Ṡ � S (27)

The error of estimated current ei will always approach zero if

Ḟ = Ṡ � S = ėi � ei < 0. (28)

To ensure stability of SMDO, the parameter λ, l and ωc must be properly designed so that (28) is always satisfied.

Based on (23) and (25), the condition (28) can be written as

Ḟ =
eu � ei

L̂s
− λ · |ei| − l |ei|2 < 0. (29)

As eu � ei < |eu| · |ei|, to ensure Ḟ < 0, λ and l can be selected as

λ >
|eu|
L̂s

(30)

l > 0. (31)
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Fig. 2. Bode plot of G(s) in (33) when ωc increase from 0.1ωr to 0.4ωr .

With parameters chosen based on (30) and (31), the stability of SMDO can be guaranteed.

After stability study, the equivalent relationship between ûd and ud when state variables move along sliding

surface is derived for analysis of steady-state performance. As S = 0 when SMO stays on sliding surface, (24) can

be simplified as

usmo = eu = ud − ûd (32)

Based on (19) and (32), the following transfer function can be obtained

G(s) =
ûd(s)

ud(s)
=

ωc
s− jωr + ωc

(33)

As G(jωr) = 1, ûd can track the fundamental component of ud without any phase or magnitude error during

steady state. The bode diagram of G(s) is shown in Fig. 2. It is seen that low order and high frequency harmonics

can be well attenuated. Hence, a smooth estimation of disturbance can be obtained through designed observer.

C. Discrete-time implementation

By employing first-order Euler method, the aforementioned SMDO as described by equations (18), (19) and (25)

can be written as

uksmo = L̂sλ · sgn
(
iks − î

k

s

)
+ (L̂sl − R̂s) ·

(
iks − î

k

s

)
(34)

î
k+1

s = î
k

s +
Tsp

L̂s
(uks + ûkd + uksmo −Rsî

k

s) (35)

ûk+1
d = ûkd +

(
jωrû

k
d + ωcu

k
smo

)
Tsp. (36)

It can be seen that the final implementation of SMDO in digital processor is relatively simple. To ensure condition

(30) is satisfied, λ must be selected large enough on one hand but may increase chattering level in the estimated

current on the other hand. To solve this dilemma, λ can be adapted online as

λ = λmin +
|eu|
L̂s

(37)



In this way, not only stability condition is satisfied but also λ will approach to a smaller value λmin during steady

state when eu converges to zero. |eu| can be estimated based on (23) as

eu = L̂s
eki − ek−1i

Tsp
+ uk−1smo + R̂se

k−1
i (38)

Additionally, switching function sgn(•) can be approximately rearranged as follows to reduce noise sensitivity and

high frequency chattering.

sgn
(
iks − î

k

s

)
=

iks − î
k

s∣∣∣iks − î
k

s

∣∣∣ + ρ
(39)

where ρ is a small positive value. To attenuate chattering during steady-state operation, it can be set slightly larger

than peak value of sampling noises. In this paper, it is set as ρ = 0.2. With (23), (25) and (39), the following

transfer function can be obtained.

H(s) =
ei(s)

eu(s)
=

1

L̂s

1

s+ λ
|ei|+ρ + l

(40)

where s is Laplace operator. From (40), it can be seen that estimation error of stator current is low-pass filtered

value of estimation error of eu. The bandwidth of H(s) is

ωH =
λ

|ei|+ ρ
+ l. (41)

In conventional SMDO, ρ is zero. This leads to an extremely large ωH when |ei| ≈ 0. The system is thus very

sensitive to high frequency noises during steady-state. In reaching law (21), parameter l related proportional rate

reaching term is employed for faster converging rate when |ei| is large. It can be seen that the minimum bandwidth

of H(s) is ωH = l. When |ei| gets smaller, the constant rate reaching term λ · sgn(ei) gradually dominates error

dynamics. Considering |ei| ≈ 0 and λ ≈ λmin during steady-state operation, the maximum bandwidth would be

approximately l + λ/ρ. For a trade-off between dynamic performance and noise immunity, l and λmin are chosen

as 1200 and 800 respectively in this paper. With the selected parameters, it is shown in the Section VI that the

proposed SMDO achieves satisfactory steady and dynamic performance.

V. DEADBEAT CURRENT CONTROL WITH SMDO

Fig. 3 shows the control diagram of DBPC based on the proposed SMDO. The rotor speed is regulated by a PI

controller, from which the q−axis current reference iqref is obtained. The rotor position can be either measured or

estimated. If rotor position is directly measured, a robust DPBC with satisfactory current tracking performance can

be constructed in spite of mismatched motor parameters. If position-sensorless control is required, the proposed

SMDO can be used as a position estimator. The details will be explained below.

A. Robust DPBC Based On SMDO

Similar to the deduction of (5), the deadbeat solution of output voltage uk+1
s can be derived based on (15) as

uk+1
s = L̂s

ik+2
ref − ik+1

s

Tsp
+ R̂si

k+1
s − uk+1

d . (42)
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As ik+1
s and uk+1

d are unknown variables, they are replaced by the estimated î
k+1

s and ûk+1
d shown in equations

(35) and (36) respectively. Analysis in the previous section has proven that the designed SMDO can track actual

current and disturbance voltage accurately and thus the solution of (42) would be more robust against parameter

mismatches than conventional solution (9).

B. Position Estimation Based On SMDO

With sophisticated offline commissioning, such as the method presented in [27], prior knowledge of stator

resistance and inductance can be obtained with good accuracy. Assuming that ∆L = 0 and ∆R = 0, then the

disturbance voltage ud only contains Back EMF as can be seen from (16), namely

ud = −jωrψrejθr = ωrψr (sin(θr)− j cos(θr)) (43)

According to (43), the rotor position can be estimated based on ûd as

θ̂r = arctan

(
ûdα
−ûdβ

)
(44)



(a) (b)

(c) (d)

Fig. 5. Responses of conventional DBPC with mismatched parameters: (a) L̂s = 0.5Ls, (b) L̂s = 2Ls, (c) ψ̂r = 0.5ψr and (d) ψ̂r = 2ψr .

where ûdα and ûdβ are real and imaginary part of ûd respectively. As explained previously, ûd is the result of ud

passing a complex coefficient, which can attenuate noises and harmonics. Hence, phase-locked loop (PLL) is not

compulsory for the proposed SMDO. After obtaining rotor position, rotor speed can be directly calculated as

ω̂kr =
θ̂kr − θ̂k−1r

Tsp
(45)

To reduce noise-sensitivity, ω̂kr can be filtered by a low-pass filter (LPF) in practical application.

VI. EXPERIMENTAL RESULTS

Experimental tests were carried out on a 2.4 kW PMSM test bench. Motor and control parameters are listed

in table I. The developed algorithm is implemented on a 32-bit floating point DSP TMS320F28335. All the data

of waveforms are acquired by a Yologawa’s DL850E scopecorder. During experimental tests, a magnetic powder

brake is used to apply external load to the tested motor. Detailed experimental setup is shown in Fig. 4.



TABLE I

MACHINE AND CONTROL PARAMETERS

DC-bus voltage Udc 540 V

Rated power PN 2.4 kW

Rated voltage UN 380 V

Rated frequency fN 100 Hz

Number of pole pairs Np 4

Stator resistance Rs 2.25 Ω

Inductance Ls 23.45 mH

Rotor flux ψr 0.4 Wb

Control period Tsp 100 µs

SMDO parameter 1 λmin 800

SMDO parameter 2 l 1200

SMDO parameter 3 ωc 1500

(a)

(b)

Fig. 6. Robust DBPC with mismatched parameters: (a) L̂s = 2Ls and (b) L̂s = 0.5Ls.



A. Roubstness Test of SMDO based DBPC

Figs. 5 and 6 illustrate performance comparisons of conventional DBPC and robust DBPC under different

parameter errors. In those tests, the motor is initially running at 75 rpm. Then, the speed command steps to

rated value 1500 rpm.

Fig. 5 shows the responses of conventional DBPC with inaccurate inductance and rotor flux. The stator inductance

L̂s and rotor flux ψ̂r used in the controller are set as 0.5Ls, 2Ls, 0.5ψr and 2ψr respectively. With a underestimated

inductance, id would deviate from its reference when iq is not zero, as seen in Fig. 5(a). With a overestimated

inductance, significant ripple components can be seen in both waveforms of id and iq , as shown in Fig. 5(b). With

inaccurate rotor flux, the tracking error of iq gradually gets larger along with the increase of rotor speed, as seen

in Figs. 5(c) and 5(d). These results confirm performance deterioration of conventional DBPC under mismatched

parameters.

By comparison, DBPC based on the proposed SMDO can still track current references accurately despite

inaccurate motor parameters. It is seen in (42) that the proposed DBPC doesn’t rely on the knowledge of rotor flux.

Additionally, stator resistance has less impact on control performance. As a result, inductance is only concerned

parameter in the proposed DBPC and its robustness are tested by setting L̂s = 0.5Ls and L̂s = 2Ls. The result is

shown in Fig. 6. When inductance is underestimated, id can still be kept at zero without being influenced by iq . For

a overestimated inductance, there is no large ripples like that in Fig. 5(b). The test result validates that satisfactory

tracking performance can be guaranteed under mismatched parameters by the proposed DBPC.

B. Position-Sensorless Operation

As explained in section V-B, the proposed SMDO can be used for position-sensorless control with refined

estimation of motor parameters. In the following tests, actual position and speed are acquired through an optical

encoder. They are not used in the controller or observer, but only displayed in the scope for checking the accuracy

of the estimation. Fig. 7 shows steady state responses with rated load at 1500 rpm (100% rated speed) and 75

rpm (5% rated speed). It is seen that the estimated position almost coincides with the actual position. There is no

chattering phenomenon or significant ripples though the position is directly calculated through arc-tangent function.

This test show that the designed observer can work well at both low speed and high speed.

Fig. 8 shows experimental results when a rated external load is applied and then released at rated speed. In the

figure, ∆ωr = ωr − ω̂r is estimation error of rotor speed and ∆θr = θr − θ̂r is estimation error of rotor position.

It is seen that ∆θr is small and there is no large speed error during dynamic process. The actual rotor speed can

return to its reference quickly after load change, indicating good robustness against load variation.

Fig. 9 shows tested responses during speed variation. Initially, the motor is rotating at 150 rpm. After a moment,

speed reference steps to 1500 rpm and then returns to 150 rpm. It can be seen that the actual speed can track the

reference quickly and the controller can work stably during fast speed change (4500 rpm/s). As back-EMF is small

during low speed operation, the observer is more sensitive to non-ideal factors, such as deadtime, noises and DC

bias in the measurement. As a result, the harmonic errors get larger as speed decreases. Nevertheless, the average



(a)

(b)

Fig. 7. Steady state responses of position-sensorless control with rated load at (a) 1500 rpm and (b) 75 rpm.

Fig. 8. Responses to step load disturbance at 1500 rpm.



Fig. 9. Responses during speed variation from 150 rpm to 1500 rpm and then to 150 rpm.

estimation error of rotor speed is zero during stead state and there is no excessive position error during fast speed

variation.

VII. CONCLUSION

A multipurpose SMDO is designed and verified by experimental tests in this paper, which can achieve either

robust current control or position-sensorless control. Theoretical analysis based on the concept of complex vector

shows that the proposed SMDO can accurately estimate disturbance resulting from mismatched parameters and back-

EMF. As a complex-coefficient filter is inherently embedded in the proposed SMDO, there is no high frequency

chattering problem and a smooth estimation of disturbance voltage can thus be obtained. Based on the proposed

SMDO, the developed DBPC is non-sensitive to inaccurate knowledge of stator inductance and rotor flux when

position information is available. Additionally, with sophisticated offline-commission, the proposed SMDO can be

used as a position estimator for sensorless control. Experimental results on both robustness test and sensorless

operation validate the analysis and effectiveness of the proposed control system.

APPENDIX

Subtracting (8) from (3) yields

î
k+1

s =
Lsi

k+1
s + (∆R · Tsp −∆L)iks + jωkrTsp ·∆ψejθ

k
r

L̂s
(46)

According to (3) and (9), actual stator current at (k + 2)th instant can be expressed as

Lsi
k+2
s = L̂si

k+2
ref + Lsi

k+1
s − L̂sî

k+1

s

+ Tsp(R̂sî
k+1

s −Rsik+1
s )− jωkrTsp ·∆ψejθ

k+1
r (47)



Substituting (46) into (47) yields

Lsi
k+2
s = L̂si

k+2
ref + (

R̂s

L̂s
∆L−∆R)Tspi

k+1
s

+ (∆L− R̂s

L̂s
∆L · Tsp −∆R · Tsp)iks

− jωkrTsp ·∆ψ(ejθ
k
r + ejθ

k+1
r )

+
R̂s

L̂s
(∆Riks + jωkr∆ψejθ

k
r ) · T 2

sp (48)

Neglecting T 2
sp related terms, and multiplying (48) by e−jθ

k+2
r to transform stator current into synchronous reference

frame, the following equations can be obtained

Lsi
k+2
dq = L̂si

ref
dq + (

R̂s

L̂s
∆L−∆R)Tspi

k+1
dq · c

+ (∆L− R̂s

L̂s
∆L · Tsp −∆R · Tsp)ikdq · c2

− jωkrTsp ·∆ψ(c2 + c) (49)

where c = e−jωrTsp ≈ 1− jωrTsp. Rewriting (49) into scalar components yields

Lsi
k+2
d = L̂si

k
dref + Tsp(

R̂s

L̂s
∆L−∆R)(ik+1

d + ωrTsp · ik+1
q )

+ (∆L− R̂s

L̂s
∆L · Tsp −∆R · Tsp)(ikd + 2ωrTsp · ikq )

− 3(ωrTsp)
2∆ψ (50)

Lsi
k+2
q = L̂si

k
qref + Tsp(

R̂s

L̂s
∆L−∆R)(ik+1

q − ωrTsp · ik+1
d )

+ (∆L− R̂s

L̂s
∆L · Tsp −∆R · Tsp)(ikq − 2ωrTsp · ikd)

− 2ωrTsp ·∆ψ (51)
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