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Wind noise spectra caused by wind from fans in indoor environments have been found to be differ-

ent from those measured in outdoor atmospheric conditions. Although many models have been

developed to predict outdoor wind noise spectra under the assumption of large Reynolds number

[Zhao, Cheng, Qiu, Burnett, and Liu (2016). J. Acoust. Soc. Am. 140, 4178–4182, and the referen-

ces therein], they cannot be applied directly to the indoor situations because the Reynolds number

of wind from fans in indoor environments is usually much smaller than that experienced in atmo-

spheric turbulence. This paper proposes a pressure structure function model that combines the

energy-containing and dissipation ranges so that the pressure spectrum for small Reynolds number

turbulent flows can be calculated. The proposed pressure structure function model is validated with

the experimental results in the literature, and then the obtained pressure spectrum is verified with

the numerical simulation and experiment results. It is demonstrated that the pressure spectrum

obtained from the proposed pressure structure function model can be utilized to estimate wind noise

spectra caused by turbulent flows with small Reynolds numbers.
VC 2017 Acoustical Society of America. https://doi.org/10.1121/1.5012740
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I. INTRODUCTION

Wind noise is the pressure fluctuations caused by turbu-

lence around the microphone, which consists of the intrinsic

turbulence in the incoming flow and/or the wake generated

by the microphone, of which the former is dominant in

windy conditions (Morgan and Raspet, 1992). There has

been wide research on the pressure spectra in turbulent flows

and outdoor measurements of the wind noise spectra in the

past few decades (Hill and Wilczak, 1995; Raspet et al.,
2006). It is found that the Reynolds number based on the

Taylor microscale varies from 4250 to 19 500 in atmospheric

turbulence (Pearson and Antonia, 2001), and a pressure spec-

trum model has been proposed by the authors to predict the

wind noise spectra in such large Reynolds number turbulent

flows (Zhao et al., 2016). This paper investigates the wind

noise spectra in small Reynolds number turbulent flows such

as the wind from fans in indoor environments.

Turbulence spectra can be divided into three regions:

the energy-containing range where the eddy size is compara-

ble to the mean flow, the inertial range where the inertial

effect dominates the eddy motion, and the dissipation range

where the kinetic energy is dissipated to heat by viscous

effect (Pope, 2000). Previous theories focused on the inertial

range where the pressure spectrum was found to vary as k�7/3

(k is the wavenumber) (Batchelor, 1951; Hill and Wilczak,

1995), and the theories have been utilized to predict the wind

noise spectrum in the inertial range from the measured veloc-

ity spectrum in atmosphere (Raspet et al., 2006).

Raspet et al. (2008) extended the pressure spectra to the

low frequency region of the energy-containing range based

on the spectral model developed by George et al. (1984).

The infrasonic wind noise spectrum was measured under

both pine and deciduous tree canopies where the turbulence–

shear interaction is found to correspond to the low frequency

peak in the wind noise spectrum, while the turbulence–turbu-

lence interaction pressure with the �7/3 power law domi-

nates the higher frequency region in the inertial range

(Raspet and Webster, 2015; Webster and Raspet, 2015).

Recently, we proposed a pressure structure function model

that incorporates both the inertial and dissipation ranges so

that the pressure spectrum was extended to the dissipation

range (Zhao et al., 2016). The obtained pressure spectrum

follows the �7/3 power law in the inertial range and falls off

rapidly in the dissipation range in the higher frequency

region. The model was validated with the wind noise spec-

trum measured in an outdoor car park.

In summary, the existing research was devoted to the

inertial range and the extension to lower frequency (Raspet

et al., 2008) and higher frequency regions (Zhao et al.,a)Electronic mail: sipeizhao@sina.com
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2016), which were validated with wind noise spectra mea-

sured in outdoor environments. In addition to the above out-

door investigations, wind noise has also been measured in

indoor environments such as wind tunnels. Recent measure-

ments of wind noise in a small anechoic wind tunnel showed

that the noise spectrum does not change significantly in the

lower frequency region but decays much faster than the �7/3

power law in the higher frequency region, which is inconsis-

tent with wind noise measured outdoor (Alamshah et al.,
2015; Wang et al., 2012). This may be due to the smaller

Reynolds number of the wind tunnel flows than those found

in atmospheric flows.

Recent numerical simulation and experiment results

also showed that the inertial range with the �7/3 power law

cannot be observed in small Reynolds number flows but only

exists in the turbulent flows with sufficiently large Reynolds

numbers (Gotoh and Fukayama, 2001; Tsuji and Ishihara,

2003). The numerical simulations by Gotoh and Fukayama

(2001) showed that the �7/3 power law can only be

observed when the Taylor microscale Reynolds number is

larger than 284, while the experiment results in wind tunnels

by Tsuji and Ishihara (2003) confirmed the �7/3 power law

when the Taylor microscale Reynolds number was larger

than 600. Meldi and Sagaut (2013) argued that a Taylor

microscale Reynolds number larger than 104 is necessary to

observe the �7/3 power law in the pressure spectrum.

Although wind noise spectra measured in outdoor atmo-

spheric turbulence with a sufficiently large Reynolds number

can be described with the existing model in the inertial and dis-

sipation ranges, no theory exists to predict the pressure spec-

trum in small Reynolds number turbulent flows where the

inertial range is absent. To better understand the wind noise

measured in indoor environments with small Reynolds num-

bers, such as that under fans or air conditioner outlets, this

paper proposes a pressure structure function model that incor-

porates the energy-containing and dissipation ranges to predict

the pressure spectrum for small Reynolds number turbulent

flows. Existing literature data and measurement results from

indoor fan tests are used to validate the proposed pressure

structure function model and the obtained pressure spectrum.

II. THEORY

The pressure structure function describes the spatial

relationship between pressures at two locations and is

defined as (Hill and Wilczak, 1995)

Dp rð Þ ¼ 1

q2
h p xð Þ–p xþ rð Þ
� �2i; (1)

where p(x) is the pressure at position x, r is the separation

distance between two spatial locations, and h�i denotes the

ensemble average. Eddies with dimensions much larger than

the separation distance r do not affect the pressure difference

significantly; thus the pressure structure function is mainly

determined by eddies with dimensions comparable to r
(Tatarski, 1961).

Hill and Wilczak (1995) proposed a theoretical model to

relate the pressure structure function to the fourth-order

velocity structure function from the Poisson equation, and

obtained an asymptotic form pressure structure function in

the energy-containing range, the inertial range and the dissi-

pation range. In the energy-containing range with sufficiently

large separation distance, the pressure structure function is

twice the pressure variance for the homogeneous and isotropic

turbulence, as given in Eq. (2). In the inertial range where the

separation distance r is much smaller than the size of the largest

eddy but much larger than the size of the smallest eddy, the

eddy motions are solely determined by the energy dissipation

rate. The pressure structure function in this range increases

with the separation distance according to an exponent of 4/3,

which can be written in a universal form as in Eq. (3). In the

dissipation range where the separation distance r is comparable

to the Kolmogorov scale g, the square of the pressure differ-

ence at two spatial locations increases with the squared separa-

tion distance which is faster than that in the inertial range.

Equation (4) gives the pressure structure function in this range:

Dp rð Þ � 2rP
2 ¼ 2

hP2i
q2

; (2)

DpðrÞ � Cpe
4=3r4=3; (3)

Dp rð Þ � 1

3
Ar2; (4)

where the pressure variance rP
2 is a constant for a certain

turbulent flow, Cp is a constant, e is the energy dissipation

rate, A ¼
Ð1

0
r�3D1111ðrÞdr is independent of r (Ould-Rouis

et al., 1996). D1111(r)¼h(u(x) � u(xþ r))4i is the fourth

order longitudinal velocity structure function, u is the longi-

tudinal velocity and the subscript number 1 denotes the lon-

gitudinal direction (Hill and Wilczak, 1995).

The pressure spectrum can be calculated from the pres-

sure structure function by (Lohse and Muller-Groeling, 1995)

P kð Þ ¼ � 1

2p

ð1
0

Dp rð Þsin krð Þkrdr; (5)

where k is the wavenumber. In the previous research focused on

the inertial range, Eq. (3) was substituted into Eq. (5) to obtain

the pressure spectrum that varies as k�7/3 in the inertial range

(Hill and Wilczak, 1995). Zhao et al. (2016) proposed to com-

bine the pressure structure function in the inertial range in Eq.

(3) and the dissipation range in Eq. (4) so that the pressure spec-

trum can be extended to the dissipation range. However, this

model is only valid for turbulent flows with sufficiently large

Reynolds numbers such that the inertial range always exists.

For turbulent flows with small Reynolds numbers, there is

no inertial range (Gotoh and Fukayama, 2001; Tsuji and

Ishihara, 2003). To accurately describe the pressure spectrum

in such flows, this paper proposes an alternative pressure struc-

ture function model that incorporates the energy-containing

range in Eq. (2) and the dissipation range in Eq. (4), namely,

Dp rð Þ � 1

3

Ar2

1þ r=rLð Þ2
h i ; (6)

where rL¼ (6rP
2/A)1/2 denotes the transition from the dissi-

pation range to the energy-containing range, and can be
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obtained by equating Eqs. (2)–(4). For r � rL, Eq. (6)

approaches Eq. (2) in the energy-containing range while for

r� rL, Eq. (6) approaches Eq. (4) in the dissipation range.

Substitute Eq. (6) into Eq. (5), the pressure spectrum

can be obtained:

P kð Þ ¼ ArL
3

6p
e�krL : (7)

The transition between the energy-containing range and the

dissipation range occurs at 1/rL in the wavenumber space. In

the energy-containing range (krL� 1), the exponential term

approaches to 1 so the proposed pressure spectrum model

approaches a constant and does not vary with the wavenum-

ber (or equivalently frequency), which is consistent with the

measurement results of the wind noise spectra in a small

anechoic wind tunnel (Alamshah et al., 2015; Wang et al.,
2012). In the dissipation range (krL� 1), the pressure spec-

trum falls off rapidly as the exponential decay, which is con-

sistent with the dissipation range spectrum in the previous

model developed by Zhao et al. (2016). The value of rL

depends on the constant A and the pressure variance rP
2 by

rL¼ (6rP
2/A)1/2. The pressure variance can be calculated

from the measured pressure fluctuations. The constant A is

determined by the fourth order longitudinal velocity struc-

ture function. Therefore, the calculation of the exact value of

the constant A needs accurate measurement of the longitudi-

nal velocity at two spatial locations with various separation

distances.

The main contribution of this paper is the proposed pres-

sure structure function model in Eq. (6) and the derivation of

the pressure spectrum in Eq. (7), which can be used to pre-

dict the pressure spectra in turbulent flows with small

Reynolds numbers, such as the wind noise spectra caused by

wind from fans and those measured in small anechoic wind

tunnels. This is different from previous models for outdoor

wind noise spectra that focus on the inertial range (Raspet

et al., 2006), or the combination of the inertial range and the

dissipation range (Zhao et al., 2016), both of which assume

that the Reynolds number is so large that the inertial range

always exists.

The physical meaning of the obtained turbulent pressure

spectrum for small Reynolds number turbulent flows can be

explained based on the energy cascade theory (Pope, 2000).

In turbulent flows, the largest eddies contain most of the

kinetic energy whereas the smallest eddies convert the

kinetic energy to thermal energy via the viscous dissipation.

The intermediate size eddies in between are responsible for

the kinetic energy transfer from the largest eddies to the

smallest eddies, which is called the inertial range. The width

of the inertial range depends on the difference between the

size of the largest and smallest eddies. For the turbulent

flows with very large Reynolds number, such as the atmo-

spheric turbulence, the largest eddies in the energy-

containing range can be in hundreds of meters while the

smallest eddies in the dissipation range is the order of milli-

meters, therefore a wide inertial range can be observed in the

pressure spectrum (Zhao et al., 2016). However, for the tur-

bulent flows with small Reynolds number, such as the wind

from fans used in this paper, the largest eddies is the order of

centimeters (determined by the fan blade length �10 cm),

which is much smaller than the atmospheric turbulence. In

this case, the kinetic energy transfer to the smallest eddies

and is dissipated into heat quickly, so there is no inertial

range with the k�7/3 law in the pressure spectrum.

The limitation of the proposed model is that it is only

valid for turbulent flows with small Reynolds numbers where

the inertial range is absent, and the effect of the Reynolds

number is not explicitly expressed in the model. The proposed

pressure structure function model in Eq. (6) and the obtained

pressure spectrum in Eq. (7) will be validated with both exist-

ing numerical and experimental data from the literature as

well as our own simple indoor fan test results in Sec. III.

III. VALIDATIONS AND DISCUSSIONS

The proposed pressure structure function model for

small Reynolds number turbulent flows in Eq. (6) is com-

pared here with that from the experiment results by Ould-

Rouis et al. (1996) in Fig. 1. The values of g and rL were not

given in the literature with the experiment results, so the pro-

posed pressure structure function model in Eq. (6) was fitted

to the experiment results in Fig. 1 with rL¼ 30g. It can be

observed from Fig. 1 that for small Reynolds number turbu-

lent flows, existing theories that assume Dp(r) � r4/3 cannot

describe the pressure structure function, whereas the pro-

posed pressure structure function model in Eq. (6) shows

good agreement in both the dissipation range with Dp(r) � r2

for small separations and in the energy-containing range

where Dp(r) tends to constant for large separations. It is note-

worthy that there is no inertial range with Dp(r) � r4/3 in the

experiment results because the Reynolds number is small.

The pressure spectrum obtained from the proposed

model in Eq. (7) is compared with the existing direct numeri-

cal simulation (DNS) results in Fig. 2 (Gotoh and Fukayama,

2001; Kim and Antonia, 1993; Pumir, 1994). The pressure

spectrum refers to the power spectral density of the pressure

fluctuation and has a unit of Pa2/Hz in this paper. The pres-

sure spectrum normalized by the energy dissipation rate e

FIG. 1. (Color online) Comparison of the proposed pressure structure func-

tion model in Eq. (6) with the experiment results from Ould-Rouis et al.
(1996). The abscissa is normalized with the Kolmogorov scale g.
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and the air viscosity �, i.e., P(k)/e4/3��7/3, is read from the

figures in the source literature, as shown in Fig. 2. The val-

ues of the energy dissipation rate, the Kolmogorov scale g
and the transition constant rL were not given in the literature

with the simulation results, so the pressure spectrum model

in Eq. (7) was fitted to the simulation results in Fig. 2 with

rL¼ 10g. Figure 2 shows that the simulated pressure spec-

trum tends to be constant in the lower frequency region

while it decays rapidly in the higher frequency region. The

pressure spectrum obtained from the proposed model in Eq.

(7) agrees well with the simulation results, where the lower

frequency region corresponds to the energy-containing range

and the higher frequency region corresponds to the dissipa-

tion range. There is no inertial range in the simulation results

due to the small Reynolds number, so the traditional k�7/3

model is not valid in this case. The pressure spectra in the

turbulent flows with small Reynolds numbers are predicted

by the pressure spectrum obtained from the proposed pres-

sure structure function model in Eq. (6), which cannot be

obtained with the traditional asymptotic form pressure struc-

ture function.

To further validate the pressure spectrum obtained from

the proposed pressure structure function model, the wind

noise spectra from a fan were measured in the SIAL sound

pod at RMIT University. The SIAL sound pod is a small

room where the walls and floor are finished with sound

absorptive material. The fan and the microphone were about

0.8 m above the floor, with a separation distance of 0.5 m.

The diagram and the photo of the experimental setup are

shown in Fig. 3. The wind noise was measured with a B&K

type 4189 prepolarized free field 1
2

in. microphone whose fre-

quency response is 2.8 Hz–20 kHz, and a G.R.A.S Type

40BF 1
4

in. free field microphone, whose frequency response

is 10 Hz–40 kHz, respectively. The 1
2

in. microphone was

connected to the B&K type 2270 Analyser via a B&K Type

ZC 0032 Preamplifier. The system was calibrated with a

B&K type 4231 calibrator. The 1
4

in. microphone was con-

nected to a ZOOM H6 recorder via a G.R.A.S. Type 26AC

preamplifier and a G.R.A.S. Type 12AA power module. The

system was calibrated with a G.R.A.S. Type 42AA

Pistonphone. The mean wind speed was measure with a

DIGITECH QM1646 Hand-held Anemometer.

To confirm the measured noise spectra is caused by

wind from the fan when the microphone is placed inside the

air flow, the 1
2

in. microphone was placed in front of the fan

(inside the flow) and behind the fan (outside the flow) to

measure the wind and mechanical noise of the fan, respec-

tively. In the experiment, the fan ran at its highest speed and

the average wind velocity around the microphone was about

4.2 m/s. The Reynolds number based on the dimension of the

fan can be estimated as Re¼UD/�¼ 2.8� 104 (U is the

wind velocity, D¼ 0.1 m is the length of the fan blade and �
is the air kinematic viscosity). The Taylor Reynolds number

Rek is proportional to the square root of the Reynolds num-

ber, i.e., Rek � (20Re/3)1/2¼ 432 (Pope, 2000). The wind

noise spectra were measured for 30 s with the 1
2

in. and 1
4

in.

microphones, respectively. The distance between the fan and

the 1
2

in. microphone was 0.5 m in both cases.

The measurement results in Fig. 4 indicate that the over-

all noise level is much lower when the 1
2

in. microphone is

outside the flow, hence the measurement results with the

microphone placed inside the air flow were primarily due to

the turbulence in wind from the fan. The vertical axis in

Fig. 4 is the sound pressure level (SPL) in dB scale with a

reference pressure of 20 lPa. Figure 4 also shows the wind

noise spectra measured with the 1
2

in. microphone parallel

with the air flow direction, which is almost the same as that

measured with the microphone perpendicular to the air flow

direction. The following results were all measured with the

microphone perpendicular to the air flow.

The measurement results with the 1
2

in. and 1
4

in. micro-

phones placed inside and perpendicular to the air flow are

compared with the proposed model and the conventional

k�7/3 model in Fig. 5. The wind noise spectra are measured

at wind speeds U¼ 1.0 m/s and U¼ 3.8 m/s, which corre-

spond to the Taylor microscale Reynolds number of 210 and

410, respectively. The frequency response of the 1
4

in. micro-

phone is 10 Hz–40 kHz so the measurement results below

10 Hz are not accurate and not shown in Fig. 5. The fre-

quency response of the 1
2

in. microphone is 2.8 Hz–20 kHz,

therefore the measurement results with the 1
2

in. microphone

are assumed to be accurate from 2.8 to 10 Hz. In the fre-

quency range above 10 Hz, the pressure spectrum measured

FIG. 2. (Color online) Comparison of the pressure spectrum obtained with

the proposed model in Eq. (7) with the existing DNS simulation results from

(a) Gotoh and Fukayama (2001), and (b) Kim and Antonia (1993) and

Pumir (1994). The abscissa is normalized with the Kolmogorov scale g.
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with the 1
2

in. microphone deviates from that measured with

the 1
4

in. microphone due to the interaction of the microphone

with the air flow. The presence of the microphone has two

effects on the measured pressure spectrum of the turbulent

flow. The first is the wake generated behind the microphone

(Strasberg, 1988) and the second is the averaging effect due

to the finite size of the microphone diaphragm (Corcos,

1963).

The wake generated by the microphone is usually much

smaller than the intrinsic turbulence in the incoming flow,

hence it can be neglected according to Morgan and Raspet

(1992). To confirm this claim, the wind noise was measured

with the 1
2

in. microphone parallel to the air flow direction so

that the wake was far from the diaphragm and had little

influence on the measured wind noise spectrum. The mea-

surement results with the 1
2

in. microphone parallel to and

perpendicular with the airflow direction are compared in

FIG. 3. (Color online) (a) The diagram and (b) the photo of the experimental

setup.

FIG. 4. (Color online) Comparison of the measurement results with the 1
2

in.

microphone perpendicular and parallel to the air flow direction where the

black dash-dot line denotes the mechanical noise of the fan with the micro-

phone placed outside of the air flow.

FIG. 5. (Color online) Comparison of the obtained pressure spectrum in Eq.

(7) with the indoor fan test results with a 1
2

in. microphone and a 1
4

in. micro-

phone at (a) U¼ 1.0 m/s (Rek � 210) and (b) U¼ 3.8 m/s (Rek � 410).

J. Acoust. Soc. Am. 142 (5), November 2017 Zhao et al. 3231



Fig. 4, which shows that the measurement results were

almost the same, hence we can conclude that the wake is

negligible compared with turbulence in the incoming flow.

In contrast, the averaging effect of the finite size of the

microphone diaphragm can introduce undesirable errors in

the measurements, especially in the higher frequency range

with small eddies (Corcos, 1963). Therefore, the measure-

ment results with the 1
4

in. microphone are considered to be

more accurate than those from the 1
2

in. microphone in the

higher frequency range above 10 Hz.

It can be observed from Fig. 5 that the pressure

spectrum obtained from the proposed pressure structure

function model agrees with the wind noise spectra measured

with the 1
2

in. microphone below 10 Hz and that measured

with the 1
4

in. microphone above 10 Hz, which is reasonable

according to the above discussions. In contrast, the conven-

tional k�7/3 model fails to predict the wind noise spectra,

especially in the lower frequency range. It is noteworthy that

the calculation of the exact values of the constants rL and A
in Eq. (7) needs accurate measurements of the longitudinal

velocity at two spatial locations with various separation dis-

tances, which requires two channel hot wire anemometers.

However, no such hot wire equipment is available to us at

the present, so the longitudinal velocity cannot be obtained.

In Fig. 5 the proposed model is fitted to the measured wind

noise spectra with rL¼ 1.67� 10�2 and A¼ 4.0� 105.

It is worth noting that the wind noise spectrum measured

with the 1
4

in. microphone in Fig. 5 shows an inertial range

with the k�7/3 law: 30–100 Hz in Fig. 5(a) and 50–300 Hz in

Fig. 5(b). This is because the frequency range of the inertial

range with the k�7/3 law depends on the Reynolds number.

When the Reynolds number is very small, the inertial range is

very small and even vanishes so that it cannot be observed in

the pressure spectrum, such as the pressure spectrum in Fig. 2

where the Taylor microscale Reynolds number Rel is less than

77. This is the ideal case that can match the proposed pressure

spectrum model. As the Reynolds number increases, the iner-

tial range extends to a larger range which is observable in the

pressure spectrum, the frequency range of the k�7/3 law

increases with the Reynolds number, such as the wind noise

spectrum in Fig. 5 where the Taylor microscale Reynolds

number is about 210 or 410, respectively. When the Reynolds

number is such large as that in the atmospheric turbulence

where the Taylor microscale Reynolds number is over 4250,

the inertial range is so large that the pressure spectrum

becomes dominant by the k�7/3 law (Raspet et al., 2006).

A good wind noise spectrum model should include all

the energy-containing range, the inertial range, and the dissi-

pation range in the pressure spectrum. Unfortunately, the

mathematical derivation becomes too complicated to obtain

an explicit expression of the pressure spectrum if the pres-

sure structure functions of all three ranges from Eq. (2) to

Eq. (4) are combined into a single function and substituted

to the integral equation in Eq. (5). Because of this difficulty

and for the sake of simplicity, the inertial range is omitted in

the proposed pressure structure function model in Eq. (6), so

that an analytical form of the pressure spectrum could be

obtained as Eq. (7). Although the effect of finite Reynolds

number is not accounted for in this model, it provides an

explanation that the pressure spectrum in small Reynolds

number turbulent flows approaches a constant in the lower

frequency range and decays rapidly in the higher frequency

range, which cannot be deduced from the conventional k�7/3

model. The quantitative relationship between the finite

Reynolds number and the frequency range with the k�7/3 law

in the pressure spectrum needs numerical integral of Eq. (5)

and detailed measurements of wind noise spectra in turbulent

flows with controlled Reynolds numbers, which will be

investigated in the future.

IV. CONCLUSIONS

This paper proposes a pressure structure function

model that combines the energy-containing and dissipa-

tion ranges, based on which the pressure spectra can be

obtained for small Reynolds number turbulent flows where

the inertial range is absent. The results show that the pres-

sure spectra approach a constant in the lower frequency

range in the energy-containing range but decay rapidly in

the higher frequency range for the dissipation range. The

proposed pressure structure function model and the

obtained pressure spectra have been validated with both

existing numerical and experimental results in the litera-

ture as well as indoor fan test measurement results. The

pressure spectra obtained from the proposed pressure

structure function model can be utilized to predict wind

noise measured in indoor environments such as that from

fans and wind tunnels. Future work will investigate the

effect of the Reynolds number and the presence of micro-

phone on the pressure spectrum.
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