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ABSTRACT

We consider coupling between free-space and rod-type photonic crystals using semi-analytic 2D methods, and
find that for frequencies in the second and third bands this coupling is almost perfect over a large range of angles.
We explain this remarkable property in terms of the scattering resonances of the individual inclusions and then
confirm the presence of this effect in fully 3D FDTD calculations.
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1. INTRODUCTION

Many of the key applications of photonic crystals (PCs) depend on their ability to tailor the propagation of light
at frequencies in a band. Examples are autocollimation, in which the light propagates with very small diffraction,
and the superprism, in which the direction of light propagation depends strongly on the incident angle or on
the wavelength of the light. However, in all applications of this type the light needs to be coupled into and out
of the PC and it is important that this be accomplished efficiently. Otherwise, not only does the optical power
decrease, but also the stray light may affect the device operation.

The coupling of light between free space and air-hole type photonic crystals has been studied previously by
different groups. They found the coupling efficiency to be generally insufficient and devised different interface
modifications to improve the coupling. These modifications either involve changing the size or shape of the air
holes,1»2? or adding an additional row of holes, which acts as an anti-reflection coating.® In contrast, here we
investigate the transmission into a rod-type photonic crystal, and show in Section 2, in a strictly two-dimensional
analysis, that for some wavelengths this transmission can be close to perfect for a very wide range of incoming
angles. We show in Section 5 that this property carries over to three-dimensional geometries. In the intervening
sections we investigate the highly efficient coupling and demonstrate that it is associated with resonances of the
individual inclusions: in Section 3 we review the properties of high-index cylinders in a low-index background,
while in Section 4 we link these, via the properties of diffraction gratings, with PCs. Our argument shows that
the high-coupling efficiency only occurs in rod-type PC, and not in PCs of the air hole-type.

2. PLANE WAVE REFLECTION AND TRANSMISSION PROPERTIES

We begin with the 2D structure Fig. 1, in which a plane wave is incident_at an angle ¢¢ onto a semi-infinite 2D
PC. The reflection of the incident field is characterized by the matrix R, defined as the reflection scattering
matrix for a plane wave incident from free-space onto a semi-infinite PC. In this notation, the (pq)*" element of
R, is the complex amplitude for reflection into grating order p for a plane wave incident in order ¢ with unit
amplitude. We calculate R, using a Bloch mode scattering matrix method (BMM})*5 derived from the solution
of a transfer matrix eigenvalue problem

Tf=nf L
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Figure 1. Geometry used to calculate the transmission of a plane wave incident on a semi-infinite PC at an angle ¢o.

for the Bloch modes of the bulk structure, where 7 is the transfer matrix for a single PC layer. The philosophy of
our treatment is that we consider the PC to consist of layers, each of which constitutes a grating. The properties
of these gratings can be calculated using standard techniques such as integral equation methods, differential
methods, modal theories and multipole methods (see, for example, the work by Maystre,® Neviere and Popov,”
or Botten et al.®). The PC properties are then determined by suitable combining the grating properties. Each of
the gratings is characterized by plane wave reflection and transmission scattering matrices and we may express
the transfer matrix in the form

_Tf—lRl T.r—l 3 (2)

where iR and T denote the reflection and transmission scattering matrices for a “padded” grating layer for
incidence from above, and R’ and T" being the corresponding quantities for incidence from below. In Eq. (1),

F=1sr f_f_"]T denotes the Bloch mode where fi are vector of plane wave coefficients that define the Bloch
mode on a line y = y; midway between each of the grating layers according to

_ -1 teprien 1
Tz(T RT™ R RT )

o
V(g y) = Z x;1/2 [fz(’j)*-e“ixp(y—yj) +fp(j)+eixp(y—yj)] gl (3)

p=—c0

Here, ap = oo + pK, xp = 1/k%2 — a2, K = 27/d and k = 27/\. Then, following the treatment by Botten et

al,* we may write Ro, = F}, F~!, where F_ and F, are matrices whose columns contain the forward (#~) and

backward (f*) propagating parts of the plane wave representations of the Bloch modes of the bulk structure.

Since we are interested in the reflected power, and no energy is carried away from the PC interface by the
evanescent states, R, Is truncated to contain only those elements corresponding to propagating plane wave
~orders. Thus, when only a single reflected order is supported, R _can be treated as a scalar and the total
reflected power is £g = |(Ho)oo|?- When multiple reflected orders are present, the total reflectance is calculated
as a sum over the reflectance into each order. For the purely 2D structures composed of lossless dielectrics
considered here, there are no additional loss mechanisms and so the transmitted power is simply g9 = 1 — £5.

As we shall see, the BMM is a powerful tool for understanding single interface properties as it allows semi-
infinite structures to be studied without the need for absorbing boundary conditions, allowing the effect of
interface reflection to be isolated from the coherent reflection effects observed in structures with a finite number
of PC layers. The BMM also provides a rigorous mathemnatical framework for studying how each component of
the PC contributes to the properties of the bulk structure. As already mentioned, in our treatment, the bulk PC
properties are calculated from the scattering properties of the individual grating layers which, in turn, are derived
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Figure 2. (a) Transmittance 7 versus dimensionless frequency d/X and incident angle ¢ for the 2D PC described in
the text. The dashed white curve indicates the maximum frequency for which a single diffracted grating order condition
exists (see Section 3). (b) Transmittance versus ¢o at d/A = 0.34, indicated by the dashed black line in {(a).

using a multipole method that implicitly includes the scattering characteristics of the individual cylinders. This
systematic breakdown of the structure into basic components is used in Sections 4.1 and 4.2 to explain the origin
of the highly efficient transmission illustrated in Figure 2.

Figure 2(a) shows the transmittance of an TM polarized incident plane wave (i.e., with the electric field
parallel to the cylinders) as a funetion of the angle of incidence ¢y and normalized frequency d/X for a square
lattice PC of rods with v, = 3.0 and . = 0.34d. Note the white high transmission “finger” crossing the diagram
at a dimensionless frequency of d/)\ =2 0.34 lying in the second band. At this frequency, indicated by the black
dashed line in Fig. 2(a), the transmittance into the PC exceeds 99.4% for incident angles 0° < ¢ < 80°, as shown
in Fig. 2(b). A high transmission region {(er > 99.5%) also exists-in-the third-band-near-d/A-== 0.58;-although

this only extends to incident angles of about 30°. In contrast, the transmittance into the first band does not
exceed 90%. Similar features to those shown in Fig. 2 occur in a wide range of rod-type PC structures, for both
T'E (magnetic field parallel to cylinders) and TM polarizations and for both square and triangular lattices. We
also observe that the transmission peaks depend only weakly on the lattice period and incident angle and are
almost identical for square and triangular lattices formed from the same rods. From this we are led to deduce
that the near-perfect transmission features observed in Fig. 2 follow from the properties of individual rods rather
than of the bulk lattice.

While in the remainder of this paper we present numerical results for the PC considered in this section,
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the results are generally applicable. In following sections, we show the high-transmission properties originate
from the individual scattering characteristics of the high-index rods, which influence the properties of a layer of
cylinders, and in turn the properties of the 2D lattice of rods. In Section 3, we discuss the relevant scattering
properties of a single dielectric cylinder: the scattering cross-section and the asymmetry parameter.

3. SINGLE CYLINDER SCATTERING

Although photonic crystals rely intrinsically on coherent scattering for many of their unique properties, the
individual scattering elements contribute to the detailed characteristics of the structure. For example the cor-
respondence between the position of bandgaps in three-dimensional (3D) PCs formed from dielectric spheres,
and the Mie resonances of the spheres has been demonstrated.®>1® To our knowledge, however, the relationship
between scattering resonances and PC transmittance has not been directly studied. Accordingly, we show here
that not only is there a correspondence between cylinder resonances and band position, but also a direct rela-
tionship between forward scattering and the transmittance of plane waves incident on a PC. While the results we
present in Sections 3, 4.1 and 4.2 are strictly 2D, we go on to show that the conclusions are generic and extend
to 3D. Here, we consider TM polarization only, noting that qualitatively similar results are also found for TE
polarization.

We begin by considering the scattering of a plane wave by a single cylinder of radius r.. and refractive index
ve. Exterior to the cylinder the field is expanded in a cylindrical harmonic basis

Vir) = i [aan(kr) + anf(ll)(kr)} end @

n=—oo

where (r,8) = (z,y), with £ = rcos8 and y = rsinf. Note that in this geometry, the forward and backward scat-
tering are respectively # = = /2. The outgoing, scattered fleld is associated with the coefficients b = [b,,] while
the incident field is characterized by the coefficients @ = [a,,] = [(—1)?], for an incident field V; = exp(—ikr sin §).
The a and b coefficients are linked by the field continuity equations which impose the relationship® 12

1 . vod) (kvere)Ya(kre) — Ju(kvere) Yol (kre)
e with M, = 2520 n
15, " Tl kvt ) Takre) — Jn(kvere) ., (kre) (5)

b, = R,a,, where R, =

for ‘TM polarization. We may then deduce the far field form of the scattered field, based on the large argument
asymptotics of the Hankel functions!3:

Vo(r) = 1/%—2;8@(’“"”/ DT,(6) where T.(0) = anei“w—"/ 2, (6)

Two parameters that help to characterize the scattering are the scattering cross-section per unit cylinder
length

2 (7 4 &
= (B)2dE = = 12
o= [ OPA = 3 ol ™)
and the asymmetry parameter, the weighted average of —sin{6) with respect to the scattering intensity -
e T TR sin(By e
= —{gin(f)) = ——T— .

Here, [g| <1, and g > 0 (g < 0) corresponds to dominant forward (backward) scattering.

Figure 3(a) shows the normal incidence transmittance spectrum for the square PC lattice considered in
Figure 2. The curves in Figures 3(b) and 3(c} show the scattering cross-section and asymmetry parameter

_ respectively versus r./A for a single cylinder of radius r. and index v, = 3.0 in air. In both plots, the solid curve

is calculated for a multipole truncation order of Ny, = 3, where Eq. (6} is summed over n = —Np,, =N +
1, ..., Npn. The remaining curves correspond to truncation orders of Ny, = 0,1,2. Observe that the single
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Figure 3. (a) Normal incidence transmittance For the PC lattice considered in Fig. 2. (b) and (c): Single cylinder
scattering cross-section and asymmetry parameter respectively, plotted as a function of re/A for the same frequency
range as (a}. Both parameters are calculated for multipole truncation orders N, = 0,1,2,3, where the N = 3 curve
{solid) is converged to within graphical accuracy. (d) Multipole scattering coefficients tbp| plotted for n = 0,1,2,3.

- Shadedregions-in (a)~(d)-indicate the band-gaps-of the bulk PC..(e)=(i):- Scattering patterns given by |T'(9)|*/k for
ro/A = 0.034,0.085,0.116, 0.163 and 0.204 for light incident from above.

monopole term (N, = 0) describes accurately the single cylinder properties for frequencies up to the first PC
band, while the dipole approximation (Nem = 1) is sufficient for the second band. While additional multipole
terms are required in the field expansion for higher frequencies, the Ny, = 3 curves in Fig. 3(b) and (c) have
converged to graphical accuracy for the plotted frequency range. The relative importance of each multipole order
can also be inferred from Fig. 3(d) which shows the amplitudes of the first four multipole coefficients |b.}. In
Section 4.2 we use the dipole approximation to derive a semi-analytic result relating the single cylinder scattering
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Figure 4. Normal incidence grating (dashed curve) and PC {solid curve) transmittance spectra for the PC considered in
Section 2.

resonances to the transmission of a grating.

Figures 3(a} and (b) show a clear correspondence between the band position (indicated by non-zero transmit-
tance) and peaks in ¢y, as observed previously.1%14 This does not explain, however, why the transmittance
into the second and third bands exceeds 99%, whereas transmittance into the first band is less than 90%. To
understand this feature, it is necessary to consider the direction of the scattered fields, as measured by the asym-
metry parameter in Fig. 3(c) and the scattering patterns Figs 3(e)—(i) at various frequencies. The scattering
patterns are polar plots of |T,.(6)]? /k, such that the area enclosed by each diagram is proportional to ¢eeae. In the
second and third bands, where the transmittance is highest, the peak in cgca coincides approximately with a peak
in g, indicating a forward scattering resonance. In the first band g remains positive but approaches zero, despite
there being a small, broad peak in ¢y, Thus, although there is still significant scattering from each cylinder at
low frequencies, the scattering is almost isotropic, with Egs {5)—(7) being dominated by the by (monopole) term
as discussed above. This can also be observed in the scattering patterns in Fig. 3(e) and (f). As the frequency is
increased, higher-order scattering terms become significant and can result in strong directional scattering. For
example, the cscar peaks near dfA = 0.36 (r. /A = 0.112) and d/A = 0.60 {re/X = 0.204) correspond to maxima
in b; and by respectively, as seen in Fig. 3(d). Each of these resonances resulis in strong forward scattering as
indicated by the g curve of Fig. 3(c) and the scattering patterns in Figs 3(g) and {i).

The results of Figs 3, while not conclusive proof that individual cylinder resonances enhance the transmittance
into a PC, nevertheless provide a plausible and physically intuitive explanation for the results in Fig. 2. In what
follows, we undertake a rigorous mathematical analysis to demonstrates the relationship between the transmission
properties of a grating and those of a bulk PC, and, in turn, the corresponding relationships between single
cylinder resonances and the grating transmission properties.

4. RIGOROUS ANALYSIS
4.1. Relationship between grating and.PC.transmission-properties =~ - -

We now build the link between the transmission properties of a the semi-infinite PC and its constituent gratings
in the long wavelength regime for which only a single plane wave order is propagating in either reflection or
transmission. For a PC consisting of dielectric rods in free-space, this corresponds to normalized frequencies of
dfA < 1/(1+ |sin(¢)|} which is satisfied below the dashed white curve in Fig. 2. Our treatment thus applies
to the first two bands for all incident angles, and in the the third band provided |#o] < 50°. We then see from
Fig. 4, which shows the normal incidence transmittance of both a semi-infinite PC and its constituent grating,
that their transmission maxima. coincide almost perfectly.
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To establish the link between the transmission of the grating and the PC, we return to the transfer matrix
equation (1) and reduce this to a 2 X 2 matrix eigenvalue problem by dropping all but the propagating specular
order. Proceeding formally, we are led to an eigenvalue equation which appears as a quadratic equation

T2 ~ RR' +1
p? - 2bp+1=0, where b=—-»-—-+—, (8)
2T
where R and T rtefer to the specular order elements oo and Tha of the respective grating scattering matrices.
By reciprocity, T = T, and for a square lattice geometry, up-down symmetry requires that R = R’. This allows
b to be written in the simplified form b = cos(arg |T])/{T{—a consequence of the energy conservation properties
|R]Z + |72 = 1 and arg(T) — arg(R) = =m/2. In a similar manner, we may derive a quadratic equation in
Reo = f+/f-, that links directly the reflection characteristics of the semi-infinite PC and the transmission and
reflection properties of the grating, namely,
T2 - R2-1 cos(arg | R|)
Rio—QcRoo+1=O, where C=———pp—— = _—_W(]Rgll | ,

i which b and c are related by ¢2 — 1 = (1—b?}|T|2/|R|?. Note that in a pass band, [b| < 1, and correspondingly,
e > 1lorc < —1, yielding two real solutions for Reo that are reciprocals of one another, with the physical solution
chosen according to |Reo! < 1. The low reflectance of the bulk PC then follows from the correspondingly low
reflactance of the grating since
1 |R
— = _,_.i_ (9)
2¢  2cos(arg|R))

This is consistent with the results in Fig, 4, which clearly illustrates the coincidence of the near-zero reflectance
features in the grating and the semi-infinite PC transmission spectra. Having now linked the properties of the
bulk crystal to those of its gratings, we now turn to the final task of linking the properties of the grating to the
resonant properties of its constituent cylinders.

Ry ™=

4.2. Relationship between single-cylinder scattering and grating transmission properties

To establish a direct link between the cylinder scattering resonances and the concomitantly high transmittances
of both the grating and the bulk PC, we need to consider the multipole formulation for diffraction of a plane
wave by a grating composed of cylinders. The incident field is a plane wave § which impinges from above at an
angle ¢, giving rise to plane wave fields above and below the grating composed of a superposition of propagating
and evanescent grating orders. As in Section 3, the field in the vicinity of each cylinder is expanded in terms of a
cylindrical harmonic basis in the form of Eqg. (4) where the by, coeflicients are again associated with the scattered
field. This time, however, the a, coefficients, which characterize the regular (non-singular) part of the field, are
due to the outgoing field sourced on all other cylinders plus fields generated by exterior sources which, here, is
the incident plane wave. We thus derive the matrix field identity*2

a=8b+Jx"% (10)
in which § = [Sin] = [Si-.m), with the S, denoting the lattice sums
Su = 5 HU (k|sld)e 208 () gioos? a
5520

that characterize the scattering contributions associated with a particular multipole order due to the entire
grating. The matrix J~ = [J,], where Jo, = (-1)" exp(—ingp) and exp(idp) = (xp + iop)/k, performs a
coordinate transformation from the plane wave basis to the cylindrical harmonic basis. Combining the single
cylinder boundary conditions of Eq. (5) and the field identity in Eq. (10), we deduce the form of the cutgoing
scattered field

b=— (S +iM) I x5 (12)

where §' = S+ I and I is the unit matrix. From this, the reflected and transmitted plane wave coefficients may
be reconstructed?:

2 2
7o Ex“1/2K+b, t=46+ ‘d'X_I/ZK_ba (13)
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where K+ = [K1 ], with K, = exp(—ing,}, and K~ = [K_,|, with K, = (—1)®exp(ing;). In the long
wavelength case with only a single propagating order, these simplify, for normal incidence to,

2
o = ——Sb, (14
x5 :
2
to = 1+—1ﬂ2(—1)nbm (15)
d’xﬂ n

s - with b.., = b,, by symmetry. Thus, the respective amplitudes of the backward and forward scattered fields are
proportional to by + 2b; 4+ 2b2 + ... and by — 2b; + 2By — ..., where the expression may be satisfactorily truncated
to a given multipole order that depends on the frequency of the light.

;; We can now verify the empirical results of Section 3 that indicated a strong correlation between forward
§f§ scattering by each cylinder and efficient transmission into the PC. To do so, we consider 2 modified form of the
asymmetry parameter g {8) that allows us to directly compare results obtained through the grating and a single
E cylinder scattering theories, We need to do so because while in the case of a cylinder T is defined for all angles
8, the corresponding grating quantity is defined only for the directions of the grating spectral orders. We thus
introduce a new asymmetry parameter for the single cylinder,
Tulw/2)

_ L/ = T2 L] .

€ e = TP+ Tln /2P ~ | Tt

e To(—n/2)

which extends easily to a grating. Figure 5 compares the two parameters g and §. and shows good qualitative
agreement with respect to the forward scattering peaks and the shape of the curves. There are discrepancies
between g and §. when there is significant scattering into the backward half-plane (0 < 8 < 7) but To(n/2) = 0
at the high-frequency end of Fig. 5. Nevertheless, the qualitative agreement between the curves is good at lower
frequencies when the scattering is dominated by monopole and dipele terms. Accordingly, in the first and second
bands, in which it was shown in Sec. 3 that a dipole approximation for T.(#) (6) is valid, we derive a simplified
form for the ratio of the scattering amplitudes in Eq. (16)

To(r/2)  —1+4(My — 2My)
To(—m/2) — 3+i(M; +2Mp)

(17)

Since the M, (5) are real, even when there is strong forward scattering, as in Fig. 3(g), a small, but finite,
backscattered field remains, so that §. < 1. However, we have observed from Fig. 4 that the transmission
spectrum of the grating exhibits almost zero reflectance at approximately the same frequency.

To understand the difference that additional (phased) cylinders in the form of a grating can make, we must
consider the grating equivalent of Eq. (16), namely

(W/ 2)
—T 2

(W/ 2)
Tgl~n/2

gg = (18)

1+

" “where Ty(—n/2) = rg and T, (7 /2) =t — 1 arc the amplitudes of the scattered field components in the backward
and forwards directions. Plotted on the same axes as g and g. in Fig. 5is §,. Note that while the §; and g,
curves have significantly different shapes, the locations of the forward scattering peaks are quite similar, with
excellent agreement between all three curves close to the second peak at d/A = 0.6. This demonstrates that
forward scattering by each cylinder in a grating manifests itself as forward scattering by the grating, and hence
to high transmission into the spectral grating order. What remains, however, is for us to demonstrate that a
grating can effectively nullify, rather than just reduce, the reflectance.

To establish this connection we need to derive the grating equivalent of Eq. (17) which follows directly
from a dipole order approximation for Ty(m/2) = b + 2b; = K+ (8" + IM) ' J- and To(m/2) = bg — 2By =
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Figure 5. Comparison of single cylinder scattering parameters g (solid) and §. (dashed} for a cylinder of index v, = 3.0
and radius r, = 0.34d, and g, (dotted) for a grating of peried d formed from identical cylinders. The horizontal axis is
expressed in units of the normalised grating frequency, d/A.

K~ (8" +IM)~"J~. This leads to

Ty(n/2) _ (Sh— 85) +i(My — 2My)
Ty(—w2) (355 + 54 + i(My + 2Mo)”

(19)

which is similar in form to its cylinder analogue (17), particularly in the terms M, involving the material
properties. However, there are subtle, but important, differences in the form of the lattice sums S}, introduced
by the addition of an array of periodically phased cylinders.

The lattice sums have explicit forms that have been derived by Twersky!® and by Nicorovici et al.,'®:

Sg = i +1iSy, Sy =185_; — S5, (20}
where 2 (21,) 2 sin((2 —1)4,)
cos sin((2l —
o2y o) gy 25 (@) o
PEQ, Xp pEf, Xp

with 2, denoting the set of propagating plane wave orders with propagation angles ¢, and where the quantities
S8 and SIY are real. For normal incidence and a single propagating order, S§' = 547 = 2/(xod) = 2/(kd), thus
further simplifying Eq. (19) to

To(/2) _ i(Sy — 5§ + My — 2Mp) (22)

T,(—7/2)  (3Sh+ Sh) + i(M) + 2Mp)

What distinguishes Eq. (22) from Eq. (17) is that the numerator of the former is purely imaginary, rather
than being complex. This simple transformation introduces the possibility of a null reflectance since a zero of
ro & Ty(%/2), corresponding to §g = 1, can be more easily realized through the solution of a single equation, than
through the solution of two simultaneous equations. It is clear from Fig. 6(a} that such a zero can be realized
and that it exactly predicts the location of the null reflectance of the grating, and in turn of the semi-infinite
crystal.

The procedure can be generalized to the case of off-normal incidence, provided that only a single order
is propagating and we adjust the formulation so that for an incident angle of ¢y, the backward scattering
amplitude is defined as T,(n/2 — ¢o) and the forward scattering amplitude is Tg(—(7/2 — ¢o)). This procedure
can also be generalized to quadrupole accuracy and beyond. However, we do not discuss this here as the analysis
is substantially more complicated. Nevertheless, to the same dipole order accuracy, one can show that the
numerator of To(mw/2 — ¢o)/T,(—(7/2 — ¢o)) can again be rendered either purely real or purely imaginary, thus
admitting the possibility of a genuine null reflectance. This is illustrated in Fig. 6(b)-(h) for a wide range of
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Figure 6. Plots of the numerator of the back scattering amplitude, T4(7w/2 — o) (dotted), the reflectance of a single
grating {dashed) and the semi-infinite PC (solid) as a function of normalised frequency d/A for ¢y = 0° - 70° in 10°

increments. Calculations are to dipole order accuracy.

angles of incidence, from which it is apparent that the reflection null is remarkably insensitive to the incidence
direction. This insensitivity to the angle of incidence can be understood by considering the five key guantities
involved in the dipole order approximation—three lattice sums 53, 57 and 83, all of which are only slow functions
of the angle of incidence and frequency, and the boundary condition terms Mp and M. Figure 3{d) shows that
b; passes through a resonance close to the reflection null, and hence it is clear that M) is the critical term, with
its rapid change dominating the calculation and rendering the location of the reflection null largely insensitive
to the angle of incidence, and close to the single cylinder resonance.

For shorter wavelengths, however, for which there can be more then one propagating order, Ty{m/2) cannot
be simplified so that it has a real nwmerator, even for the simplest, most highly symmetric cases. The need to
solve two independent simultaneous equations to locate a zero of Ty{m/2) is much more complicated and from
our computational-studies; we believe that there is-no zero that can be deduced for-real incidence-parameters.
Accordingly, the near-perfect transmission into a photonic crystal thus appears limited to the case of long
wavelengths (i.e., single propagating orders in reflection and transmission). As we discuss in the next section,
this result has significant implications for coupling to hole-type PCs.

5. APPLICABILITY OF THE RESULTS FOR 3D SLABS

We now extend the results derived in 2D, showing that they are generic and applicable to a 3D PC slab geom-
etry.!? Figure 7 illustrates the geometry that we consider, where appropriate boundary conditions are used to
simulate a semi-infinite cladding extending above and below the core slab, and in the zz-plane. This geometry
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is similar to that proposed by Martinez et ol.1® with cylinder radius r. = 0.35d and slab height h = 3d. Three-
dimensional finite difference time domain (FDTD) results are presented in addition to 2D Bloch mode matrix
method (BMM) calculations® outlined earlier. In the FDTD simulations, an elliptical Gaussian beam with full
widths at half maximum (FWHM) of wy, = 5d and wy = 2.5d is launched with T'M polarization (electric field
along the y-axis) at an incident angle ¢p relative to the normal of the PC interface. The crystal is oriented such
that the normal is parallel to the I'-M axis of the hexagonal Brillouin zone. The 2D calculations, with rods
of index v, = 3.4 in a background of index vy = 1.458, are a good approximation to the 3D simulations, thus
providing an efficient tool for optimizing parameters before launching computationally intensive 3D simulations.

Figure 7. Geometry of the PC slab with core and cladding index vgap = 1.460 and veaq = 1.458. The upper cladding
is lifted to show the interior structure. The triangular PC lattice is formed by cylinders of height A = 3d, index 1o = 3.4
and radius r. = 0.35d, where d is the lattice period.

Figure 8 shows the reflectance spectra for Gaussian beams with ¢g = 0° (solid curve) and ¢g = 22.5° (long
dashed curve) incident on 16 layers of the PC in Fig. 7. These results were calculated with the 3D FDTD software
FullWAVE with perfectly matched layer boundary conditions on all sides of the computational domain. Also
shown are the equivalent reflectance (| R }?) spectra for plane waves incident on a 2D semi-infinite PC, calculated
using the Bloch mode matrix method.4 On all curves, the minimum reflected power occurs for scaled frequencies
0.29 < d/A < 0.295, with bandwidths of more than 15% of the central frequency where the reflectance is below
10%. The 3D simulations show a minimum reflectance of 0.2% and 1.4% for ¢g = 0° and ¢b¢ = 22.5° respectively,
compared to less than 0.1% in the 2D results, a variation attributed to the angular spread of the Gaussian beam
in the 3D calculations. The Fabry-Perot fringes in the FDTD results are weak at oblique incidence because of
finite beam effects.

Such efficient coupling over a wide range of angles is far superior to the published results for air hole PCs and
is a generic feature of high index PCs that occurs under two conditions. Firstly, as deduced in our 21D analysis,
most of the incident light must be forward scattered by each cylinder. Secondly, when each layer of cylinders is

- considered-as a grating; only a-single- propagating grating order-exists. The first condition is not satisfied in the

first band or for low index contrasts, since in these cases light is scattered almost isotropically by the cylinders.??
If the frequency d/A > 1/w,, (in the case of normal incidence) multiple diffracted orders appear, with interference
between orders reducing the efficiency. There is thus a limited frequency range in which almost perfect coupling
can oceur. We have found that in most realistic 2D rod-type PCs, the second and sometimes the third band can
exhibit this property in both triangular and square lattices, and for TE and TM polarization.

6. DISCUSSION AND CONCLUSIONS

Since efficient coupling relies on the properties of the individual inclusions, it occurs for a wide range of rod-
type photonic crystals. We analyzed the case of TM polarized light here in detail, and have observed similarly
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Figure 8. 2D plane wave reflectance spectra (Bloch mode matrix method) for a semi-infinite PC and 3D FDTD reflectance

spectra for a Gaussian beam of width w=: = 5d and w,, == 2.5d incident on 16 layers of cylinders. Results are shown for
do = 0° and ¢p = 22.5°.

efficient coupling for TE polarization, although we have not analyzed this case to the same extent. It would
be interesting to study whether similar effects occur for air hole PCs. As a first comment, note that in such
PCs, it is much more difficult to satisfy the simultaneous conditions of the occurrence of a single grating order
and a forward scattering resonance of the inclusions. This is so because non-isotropic scattering from air holes
only occurs at relatively high frequencies but at the same time the high index background material reduces the
frequency at which multiple plane wave orders appear. We analyzed air-hole type PCs with polarized light for
a range of refractive index contrasts, and found that the two conditions are never simultaneously satisfied. For
TE polarization we analyzed a air-hole type PC with index contrast of 3 and did not find a wavelength where
efficient coupling occurs. However, we have not considered lower index rontrasts for this polarization yet.

In conclusion, efficient coupling into rod-type has been demonstrated theoretically and numerically. The
effect is associated with the scattering resonance of the individual conclusions. We linked these properties to

those of the full PC via the properties of the gratings that make up the PC. Though the effect is clearest in 2D
systems, it carries over to fully 3D systems as well.
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