
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

A novel Hash-Based File Clustering scheme for

efficient distributing, storing and retrieving of large

scale Health Records

Thanh Dat Dang

School of Computing and

Communications, iNext

University of Technology Sydney,

Australia

Thanh.D.Dang@student.uts.edu.au

Doan Hoang

School of Computing and

Communications, iNext

University of Technology Sydney,

Australia

Doan.Hoang@uts.edu.au

Priyadarsi Nanda

School of Computing and

Communications, iNext

University of Technology Sydney,

Austraslia

Priyadarsi.Nanda@uts.edu.au

Abstract— Cloud computing has been adopted as an efficient

computing infrastructure model for provisioning resources and

providing services to users. Several distributed resource models

such as Hadoop and parallel databases have been deployed in

healthcare-related services to manage electronic health records

(EHR). However, these models are inefficient for managing a

large number of small files and hence they are not widely

deployed in Healthcare Information Systems. This paper

proposed a novel Hash-Based File Clustering Scheme (HBFC) to

distribute, store and retrieve EHR efficiently in cloud

environments. The HBFC possesses two distinctive features: it

utilizes hashing to distribute files into clusters in a control way

and it utilizes P2P structures for data management. HBFC

scheme is demonstrated to be effective in handling big health

data that comprises of a large number of small files in various

formats. It allows users to retrieve and access data records

efficiently. The initial implementation results demonstrate that

the proposed scheme outperforms original P2P system in term of

data lookup latency.

Keywords— clustering files; P2P systems; file distributions;

hashing scheme; cloud based P2P systems

I. INTRODUCTION

Cloud computing has become increasingly popular as an
efficient computing infrastructure for managing IT system [1]
with rapid migration of both services and applications from
users own infrastructures to cloud infrastructure. As a result,
more and more data is generated and stored within IT systems.
Electronic health record (EHR) systems store digitally
healthcare information about an individual’s lifetime with the
purpose of supporting continuity of care, education and
research, and ensuring confidentiality at all times [2]. The
process of provisioning healthcare involves massive healthcare
data which exists in different forms (structured files or
unstructured data) on disparate data sources (relational
databases, file servers, etc.) and in different formats (text,
images, sensor data, XML files, relational database records). A
patient often receives medical treatment from different health
professionals in various organizations over his/her lifetime and
their health data are stored in different HIS and can be shared

to health care providers, insurance practitioners, researchers
and family members. Efficient schemes for storing and
retrieving EHRs are thus extremely important as they allow
significant improvements in providing better healthcare
services particularly in the big health data distributed cloud
computing environments.

Various distributed storage systems such as Hadoop [3],
P2P systems [4, 5] have been widely deployed in cloud
environment. However, storing and retrieving a large number
of files with various data sizes and structures pose a big
challenge for current big data models. The work in [6] proved
that Hadoop is not efficient in managing a large number of
small files. Hadoop is designed to process large scale data in
data mining and machine learning. It uses Hadoop Distributed
File Storage (HDFS) (NameNode and DataNodes) as the
primary storage. Users’ request to access data from HDFS is
first submitted to NameNode for namespace services and the
data retrieval processes are performed at DataNodes based on
metadata obtained from the NameNode. However, these
systems that accommodate a large number of small files suffer
heavy overhead on the NameNode due to frequent accessing of
metadata more from the DataNodes. In fact, numerous
searching and hopping from DataNote to DataNote present
another inefficient data access pattern. Despite the fact that P2P
systems and mechanisms are generally efficient for data lookup
with low latency, they do not perform well in processing large-
scale data analytic jobs compared to Hadoop [7]. Alternative
infrastructures and access mechanisms are needed to handle
this type of data and applications. P2P search is efficient and
has been used in many real systems. However, for a system
with very large number of files relative to the number of
storage nodes and if the access pattern is skewed, the files will
be distributed to their nearest hashed ID nodes evenly with
some nodes heavily loaded and others extremely lightly loaded.
Thus, data is spread to various nodes resulting in less efficient
for retrieval and lookup process. Hence, distributing, storing
and retrieving large scale of data efficiently present a real
challenge for P2P systems.

This paper addresses the two major concerns from a novel
perspective: clustering EHR files in a controlled manner into a
defined number of nodes to minimize the number of steps in
searching for a requested file and reduce the data lookup
latency among peers. The paper proposes a novel Hash-Based
File Clustering Scheme (HBFC) to distribute, store and retrieve
EHR efficiently in cloud environments. The HBFC possesses
two distinctive features: it utilizes hashing to distribute files
into clusters in a controlled way and it utilizes P2P structure for
data management. Specifically, we propose a scheme with two
hashing rounds, one specifically for efficient data clustering
and the other for leveraging the P2P search mechanism. Each
hashing round has its own specific hash function and distinct
ID space. The first round utilizes the “collision” property of the
hash function in a controlled way to gather data into virtual
clusters in a virtual ID ring (first ring), Virtual clusters since
they are not the real nodes where file are found but they are the
IDs where cluster of files are hashed to and the real cluster
nodes are in the second ring.. The second round hashes the
virtual IDs to hashed ID of real nodes of a P2P system and
leverages its P2P properties. Our Hash-Based File Clustering
(HBCS) scheme first reduces the searching space and then
leverages the P2P searching mechanism to achieve data lookup
efficiency. Due to the features of one way hash function, files
associated with virtual ID are stored in the same or closest
clusters. The requested files are mainly stored in these clusters.
Besides leveraging P2P file search, we design efficient search
schemes for files within a cluster. We are not aware of any
existing methods that use “collision” to control the formation
of clusters as designed in our scheme.

The rest of the paper is organized as follows. Section II
discusses related work on various distributed models. Section
III presents our HBFC scheme clustering and searching files.
Section IV describes the design of proposed scheme. Section V
presents the simulation results and evaluations of our proposed
scheme. The conclusion will be drawn in section VI.

II. RELATED WORK

Related work associated with different distributed models
has attracted recent research on improving the performance for
Hadoop.. [6] analysed issues with small file problem on
Hadoop and proposed a small file scheme for Hadoop using
index strategy including merging, prefetching and caching.
Although the metadata caching and index prefetching can
reduce access latency and improve access efficiency, the global
index file strategy results in additional overhead to NameNode.
ETL (extraction, transformation and loading) technique which
is responsible for the extraction of data from various
heterogeneous data sources has been adopted to achieve
processing the data in distributed environment more efficiently.
[8, 9] worked on ETL technique to reduce the latency in
querying data from databases.

Chen [7] presented BestPeer++, a system which delivers
elastic data sharing services for corporate network applications
in the cloud based on BestPeer – a peer-to-peer (P2P) system
based data management platform. This model was deployed in
cloud environment as a service that uses bootstrap peers as
monitors, normal peer as database engine and access control.
An adaptive query is proposed to switch between a P2P engine

for small scale data to leverage fast performance on the local
database engine and Map Reduce engine for large scale data in
order to exploit the benefits of the Hadoop model. [10]
proposed a hybrid P2P system as a combination of a structured
P2P called t-network and an unstructured P2P called s-network.
The t-network plays the role of a core transit network while the
s-network stores data in the system and each s-network is
attached to a peer in the t-network. The ps parameter is defined
to adjust the number of peers in each of the two networks.
Altmann [11] presented a P2P file sharing topology based on
social network allowing users to share resources with their
friends or family. The number of peers accessing the resources
based on their established relationship is, however, limited.
[12] presented a data replication approach to avoid overload of
some objects as hotspots by using multiple hash functions.
These hotspots are replicated to different nodes dynamically
resulting in improvements in access latencies and load
balancing. In [13], authors proposed a model to distribute
contents to users in an overlay network as a Constrained
Stochastic Graph Process (CSGP). The CSGP is modelled by
different architectures based on trees and meshes. The file
distribution is only considered to deliver the content in the
shortest possible time to users in the P2P systems while the
searching task is not a main focus.

In brief, these efforts focus mainly on structuring P2P
systems to deal with the dynamic of nodes joining and leaving,
the data distribution remains unchanged, relying on the
traditional DHT P2P approach. Besides that, searching
requested files is performed the same way as the original
system. Our proposed scheme focuses on efficient distributing
and retrieving data in two stages: file clustering and file
searching within a cluster. Through the first hashing round,
data is distributed into a certain number of defined clusters
which have appropriate size such as number of nodes to serve
for retrieving data efficiently. We propose to use the collision
property of a hash function in a designed and controlled way to
perform file clustering. Thus, files are hashed into defined
clusters and the default searching mechanism in intra-cluster is
employed for file searching.

III. THE COMBINATION OF CLUSTERING AND SEARCHING FILES

In overlay sharing files systems, data lookup process is the
most computationally expensive task while in file distribution
systems, if the locations of data clusters are well designed, and
the expensive task is the retrieval data. Good searching
algorithms enable speeding up the data lookup process.
Hashingis known as the fastest searching algorithm since its
complexity is O(1). P2P systems utilize the hash functions to
calculate data key in order to reach peers storing requested files
with low latency. To benefit from hash function features, we
utilize it in our proposed schemes in both clustering and
searching files. On the one hand, considering that it costs only
O(1) computation time, the searching performance of the
system is not affected. On the other hand, storing files at the
clusters in a controlled manner allows us to find requested files
in a shorter time frame. Next, we will detail how to control the
distribution of files into clusters.

In order to control clustering files, we treat the system’s
configuration as an adjustable parameter so that scaling up or

down can easily be achieved when the system’s configuration
changes. Parameters defined are the number of files in the
system, the expected average number of files stored in one
cluster, and the number of nodes in the system. The idea of
combining clustering files and searching files stems from two
considerations: 1) if we can store most files of the system in
defined clusters, the searching process is mainly performed at
these clusters; 2) distributing a certain number of files in a
controlled number of clusters enables retrieving data more
efficiently compared to retrieving it among a large number of
files in one cluster. Based on these, we adjust the parameters to
control the hashing of files into clusters to achieve the expected
file distribution.

Suppose that there are nf files. The number of real nodes
that form the P2P network is denoted by nn. The number of
defined cluster nodes is denoted by nc. The number of files per
node is denoted by fc. The number of nodes which are not in

defined cluster nodes is denoted by ̅̅ ̅. The average number of

files in ̅̅ ̅ nodes is denoted by ̅.

The expected number of nodes storing most of the files in
the system is derived as

 

where 0  α ≤ 1.

 ̅̅ ̅ 

The expected number of files distributed in nc nodes is
derived as

 

where 0  β ≤ 1

As a result, the computation formula for fc is derived as

 (

⁄)

  ̅ (

 ̅̅̅̅
)

As can be seen from the formulas (1) and (3), we are able to
control file distribution proportions given nf and nn as input

parameters of the system. By turning the and β parameters,
we can control the percentage of clusters and the percentage of
files distributed within these clusters. The first ring produces
expected distribution rates as following;

1. nodes that store most files of the systems.
As a result, the retrieval process is focused on these nodes
resulting in efficiency in lookup latency and access latency.

2. files are distributed across nc nodes and fc files
per cluster results from fast look up process since we reduce
the lookup space to fc

3. ̅ ̅̅ ̅ files are left over in small number of clusters. ̅̅ ̅

is designed to be much smaller than .

IV. SYSTEM OVERVIEW

In a normal structured P2P system, the Distributed Hash
Table (DHT) is built on top of an overlay network. Data lookup
and insertion processes are efficiently supported by the hash
table. Given the key of the file, the corresponding value of the
file can be inserted and searched by hashing the key to a value
with an appropriate hash function.

The hash value is the index of the file and all the hash
values form the ID space. In DHT, peers are delivered in the ID
space. Each peer is responsible for one partition of the ID
space. Peers are connected by an overlay network through
which the requests for data insertion and lookup are delivered.
Basically, there is only one hashing round using the data key
such as filenames or file content to obtain the value
corresponding to the file. Files might be distributed relatively
evenly based on hash functions in the original P2P systems.
However, for a system with very large number of files relative
to the number of storage nodes and if the access pattern is
skewed, the load files will be distributed to their nearest hashed
ID nodes may not be evenly with some nodes heavily loaded
and others extremely lightly loaded. In other words, there may
be some nodes storing large amount of files in the system while
others have few files or no files. Consequently, load balancing
is not achieved and data retrieval is not efficient. Firstly, peers
still perform the lookup process in the same ID space but the
destinations nodes tend to access several nodes in the systems.
In addition, storage space of peers is not used efficiently
causing not only unbalanced distribution but also lots of unused
storage in peers.

We propose a new scheme namely the Hash-Based File
Clustering scheme to address these issues. The basic idea is
based around hash functions since they return the lookup
results quickly and have lowest computational complexity of
O(1). The new contribution of our design is based on both
benefits and weakness of hash function features when applied
to P2P systems. Specifically we propose to use the collision
property of a hash function in a designed and controlled way to
perform file clustering. Our scheme focuses on efficient
distributing and retrieving data from P2P based on two hashing
rounds in order to enhance the performance of P2P systems in
two stages: file clustering and file searching within a cluster.
Details of the design of each ring are presented in the next
section.

A. The design of HBFC

In the HBFC, we use two different ID spaces to store the
hash values of each hashing round. The first ID space has a
small ID range representing file distributions on cluster nodes.
Different files may be mapped to the same ID on the first ring
as the result of hash collisions. We call a “collision” a “hit” and
the number of hits per cluster can be controlled. We call this
ring a virtual ID space; an ID on this ring represents a virtual
cluster as it only contains a cluster of IDs, not a real cluster that
contains files. This ID will be hashed into an ID of a real
cluster in the second ring where files are found. The second ID
space is designed with a large ID range as often the case in
many existing P2P systems. Large P2P’s ID space and proper
hash functions allow keys to be hashed into unique IDs in an
uniform distribution. An additional feature of our scheme is

that only the cluster ID is used in the second hash round and
the (file) data key is preserved so that searching for the data file
within a file cluster can be performed. Figure 1 depicts the
design of HBFC. As can be seen from the figure, there are two
rings used to store hash values for each round. The first ring is
designed as a virtual ring to gather hits from hash function (h1)
when hashing different data keys to s_id in the first ID space.
The aim is to control the expected number of files distributed
into the same cluster. The second ring follows the original
P2P’s ring which hashes the s_id to l_id in the second ID
space. Based on the feature of one way hashing that is the hash
function only produces the same hash value for each data key.
Therefore, if data keys are hashed with a value s_id, then this
ID is definably hashed into the corresponding l_id. In order to
obtain this design, we also modify the second hash function
and attach the data keys for the second hashing round. By
doing this, the requested files can be found at the destination
node. The details of this design are presented in following
subsections.

Fig. 1. The design of HBFC

A data item such as a file or a group of files is represented

by a (key, value) pair. A key is a label or name of the data,

such as a file name, while a value represents the content of the

file. The pair (key, value) is inserted into the system by peers

and key is used for lookup process in order to retrieve the

corresponding value. To start searching a file, the peer first

hashes the key to s_id which is a defined hit in the first ID

space. Following that, s_id is used as the data key for the

second hash function. It is noted that we attached the data key

into s_id to keeep the identity of the data. In the second

hashing round, the s_id is hashed to l_id which is an unique ID

in the second ID space. In other words, hashing different data

keys may produce the same ID, this means that these files are

stored in the same cluster. The next subsections will detail the

design of each ring.

1) The first ring
The first ring is a virtual ring providing a small ID space for

hash function in order to obtain the balance distribution when
many data keys are hashed to one ID. Figure 2 depicts the
design of first ring.

 Let h1 denotes the hash function of the first ring, the
computation of h1 is derived as follows.

h1(key) = ID1

Fig. 2. The design of first ring

As can be seen from the figure, different data keys are
hashed to the same ID. For example, key1, key2, key4 and key6
are hashed to ID11 while key3, key5 and key7 are hashed to
ID22. The hash values such as ID11, ID22 then are used as data
keys for the second hash function. As a result, we are able to
achieve our design in distributions due to controlling a certain
number of files stored in one cluster. Firstly, many data keys
hashed to the same ID and that implies that multiple files are
stored in the same cluster. In fact, the number of data keys
mapped to the same ID is controllable. However, there is an
issue of losing the identity of the requested files when we hash
the data keys with two hashing round. Since ID11 are ID22 are
virtual data keys or temporal keys, they do not provide the
identification of requested files which are searched on the real
nodes. Their values are only used to reach the nodes that stored
requested files in the second ring representing real P2P
nodes/systems. In order to mitigate this issue, we propose the
attached keys within the hash function to search the files at real
nodes in original P2P systems. Details of the attached key are
presented in the next section.

2) The second ring
In the second hashing round, the second ring provides a

large ID space so that no collision of nodes is expected. It
follows exactly original P2P hash functions. The mapping 1-1
is performed between the small ID spaces to the large ID
spaces. In this stage, ID obtained from the first hashing round
is used as the data keys for the second hash function (h2).
Figure 3 depicts the design of second ring.

Fig. 3. The mapping 1-1 between the first ID space and the second ID space

In P2P systems, a requested file is hashed into the ID space
in order to reach the peer that stores the intended file. In this
process, a real node may not exist at the hashed ID (figure 4

below) and hence from this hashes ID, the lookup process is
continuously performed in order to access closest real nodes.
The range of lookup is determined by searching radius over the
ring.

Fig. 4. Find closest node in P2P system

Despite the fact that our scheme is able to gather many files
into one virtual node, we still have to deal with the problem
finding individual file in a real node. We identify the lookup
space of searching individual file in a real node to evaluate the
HBFC.

The lookup space of closest node to the real node for an
individual file may fall into the following scenarios: the real
node may store a variable number of requested files as their
IDs are closest to the real node ID; the node may store a
random number of files and/or a variable number of small
clusters not in the defined hits as the individual file IDs and the
ID of these clusters are closest to the real node ID; the node
may store individual files and/or files in small clusters and/or
files in defined clusters. Generally, if the requested files fall
within a defined clusters, HBFC will return results more
efficiently due to the small lookup space. In other cases, HBFC
cost approximately the same as the original P2P system since
they execute the same lookup mechanism.

V. SIMULATION RESULTS

 We run the HBFC on P2P systems with different
parameters to validate our design. The results of HBFC are
then compared with the original P2P system to determine the
performance. For the virtual ring, the djb2 hash function [14] is
used to hash data keys into the first ID space. we apply the
HBFC in P2P system based on Chord [15, 16] and modified as
our design scheme and compare its performance to the original
P2P system which is also followed Chord without
modifications. The experiment programs are coded using the
Java programming language. The results of HBFC are
compared to that of original P2P system in terms of scalability
and system performance. Parameters of Chord’s hash function
are also processed as normal to hash only the s_id to the second
ID space. However, we modify the process to attach the file’s
data key with the ID to allow the lookup process for the
requested files in peers. The simulations are based on following
parameters: the number of nodes, the number of files in the
systems and the number of requested files.

The idea is to identify the performance efficiency of HBFC
scheme in distributing and searching a number of files
compared to original P2P systems. We run the simulations with
different parameters. In the first simulation, we select a fixed
number of nodes and number of files but input various number
of requested files to evaluate the performance of the systems.
In the second simulation, we increase the number of files in the
systems with the same number of nodes and the same number
of requested files. In the third simulation, we increase the
number of nodes with the same number of files in the systems
and the number of requested files.

Test case 1. The number of nodes and the number of files
are fixed; the number of requested files is changed.

We initialized two sets of tests in which the number of files
(10000000 files) and the number of nodes (5000 nodes) are
unchanged. The number of requests in the system increases
from 1500 to 10000 requested files. Figure 5 illustrates the
execution time of data lookup process for different number of
requested files. The x-axis represents the number of requested
files, and the y-axis represents the execution time. As can be
seen from the figure, the time cost of original P2P (T2) is
approximately double compared to that of HBFC (T1). It
demonstrates that within the same number of requests, the
HBFC performs more efficient than original P2P since many
files are distributed in one or several clusters.

Fig. 5. Time cost of HBFC and original P2P for data lookup process within

different number of requested files

Test case 2. The number of nodes and the number of
requested files are fixed; the number of the files is changed

In this experiment, we initialized two sets of tests in which
the number of requests (1500 requests) and the number of
nodes (5000 nodes) are unchanged. The number of files in the
system is increased from 10000000 to 30000000 files. Figure 6
illustrates the execution time of data lookup process for
different number of files. The x-axis represents the number of
files, and the y-axis represents the execution time. As we can
observe, In fact, along with the increasing of the number of
files in the system, the time costs in searching files remain
approximately the same for both schemes namely T1 (123 ms),
T2 (229 ms) respectively. However, T2 (229 ms) is still twice
longer than T1 (123 ms) despite the fact that data lookup space
is increased in terms of the number of files. It is concluded that
the HBFC is more efficient than original P2P system in terms
of scalability.

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

Number of requested files

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

Fig. 6. Time cost of HBFC and original P2P for data lookup process within

different number of files in the system

Test case 3. The number of the files and the number of
requested files are fixed; the number of nodes is changed.

In the third case, we initialized two sets of tests in which
the number of requests (1500 requests) and the number of files
(10000000 files) are unchanged. The number of nodes in the
system is increased from 5000 to 10000 nodes. Figure 7
illustrates the execution time in data lookup process for
different number of nodes. The x-axis represents the number of
nodes, and the y-axis represents the execution time. Generally,
the execution time grows linearly with the increase of nodes in
the system but in our proposed scheme there is a slight increase
from 120 ms to 166 ms compared to original P2P system from
230 ms to 349 ms. Similarly, T2 (322 ms) is still
approximately twice longer than T1 (154.5 ms) in this case.

Fig. 7. Time cost of HBFC and original P2P for data lookup process within
different number of nodes in the system

Overall, it is demonstrated that our proposed scheme is
more efficient than the original P2P in all cases. Specifically,
when the size of system is increased together with the increase
in the number of requests, the executing time of original P2P
system increases rapidly in comparison with that of HBFC.

VI. CONCLUSIONS

This paper discussed a novel approach to distribute and

search data in P2P systems based on the specific utilization of

hash functions. We proposed the HBFC to cluster most of the

files in the system into defined nodes and enhance the

searching process. Taking advantage of the hash functions,

searching and accessing files are performed mainly on the

defined number of peers rather than in the whole networks. The

low computational complexity of hash functions enables us to

achieve the performance efficiency in searching for requested

files. Hence, the expected file distributions is achieved by

hashing data keys with selected hash function to collided ID of

the first designed ID space and then storing these files at a

certain number of clusters through the one-to-one mapping

between the first ID space and the second ID space. The

simulation results demonstrate better feasibility, efficiency of

the proposed scheme than the default schemes in original P2P

systems. More importantly, the proposed scheme allows us to

cluster files in a controlled way to suit the specifications of a

real system.

REFERENCES

[1] L. Schubert and K. Jeffery, "Advances in clouds," Report of the Cloud
Computing Expert Working Group. European Commission, 2012.

[2] I. Iakovidis, "Towards personal health record: current situation,
obstacles and trends in implementation of electronic healthcare record in
Europe," International Journal of Medical Informatics, vol. 52, pp. 105-
115, 1998.

[3] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson, and R. B.
Ross, "On the duality of data-intensive file system design: reconciling
HDFS and PVFS," presented at the Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, Seattle, Washington, 2011.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, "Dynamo:
amazon's highly available key-value store," SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 205-220, 2007.

[5] A. Lakshman and P. Malik, "Cassandra: a decentralized structured
storage system," SIGOPS Oper. Syst. Rev., vol. 44, pp. 35-40, 2010.

[6] B. Dong, Q. Zheng, F. Tian, K.-M. Chao, R. Ma, and R. Anane, "An
optimized approach for storing and accessing small files on cloud
storage," J. Netw. Comput. Appl., vol. 35, pp. 1847-1862, 2012.

[7] G. Chen, T. Hu, D. Jiang, P. Lu, K. L. Tan, V. Hoang Tam, and S. Wu,
"BestPeer++: A Peer-to-Peer Based Large-Scale Data Processing
Platform," in Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, 2012, pp. 582-593.

[8] C. R. Valencio, M. H. Marioto, G. F. Donega Zafalon, J. M. Machado,
and J. C. Momente, "Real Time Delta Extraction Based on Triggers to
Support Data Warehousing," in Parallel and Distributed Computing,
Applications and Technologies (PDCAT), 2013 International
Conference on, 2013, pp. 293-297.

[9] P. Xishui, Z. Xuezhong, S. Hongmei, Z. Runshun, and Z. Tingting,
"Enhanced data extraction, transforming and loading processing for
Traditional Chinese Medicine clinical data warehouse," in e-Health
Networking, Applications and Services (Healthcom), 2012 IEEE 14th
International Conference on, 2012, pp. 57-61.

[10] Y. Min and Y. Yuanyuan, "An Efficient Hybrid Peer-to-Peer System for
Distributed Data Sharing," Computers, IEEE Transactions on, vol. 59,
pp. 1158-1171, 2010.

[11] J. Altmann and Z. B. Bedane, "A P2P File Sharing Network Topology
Formation Algorithm Based on Social Network Information," in
INFOCOM Workshops 2009, IEEE, 2009, pp. 1-6.

[12] M. Yuqi, Y. Cuibo, M. Tao, Z. Chunhong, Z. Wei, and Z. Xiaohua,
"Dynamic Load Balancing with Multiple Hash Functions in Structured
P2P Systems," in Wireless Communications, Networking and Mobile
Computing, 2009. WiCom '09. 5th International Conference on, 2009,
pp. 1-4.

[13] D. Carra, R. Lo Cigno, and E. W. Biersack, "Stochastic Graph Processes
for Performance Evaluation of Content Delivery Applications in Overlay
Networks," Parallel and Distributed Systems, IEEE Transactions on, vol.
19, pp. 247-261, 2008.

[14] D. J. Bernstein. (2015). D. J. Bernstein. Available:
http://cr.yp.to/djb.html. [Accessed: 02- Dec- 2015].

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

Number of nodes

Number of files (nf)

Number of nodes

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

http://cr.yp.to/djb.html

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
"Chord: A scalable peer-to-peer lookup service for internet
applications," presented at the Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer
communications, San Diego, California, USA, 2001.

[16] JChord. (2016). JChord. Available:
https://code.google.com/archive/p/joonion-jchord/downloads.
[Accessed: 01- Jan- 2016].

https://code.google.com/archive/p/joonion-jchord/downloads

