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Abstract. Image fusion aims at exploiting complementary information in multimodal images to create a single
composite image with extended information content. An image fusion framework is proposed for different types
of multimodal images with fast filtering in the spatial domain. First, image gradient magnitude is used to detect
contrast and image sharpness. Second, a fast morphological closing operation is performed on image gradient
magnitude to bridge gaps and fill holes. Third, the weight map is obtained from the multimodal image gradient
magnitude and is filtered by a fast structure-preserving filter. Finally, the fused image is composed by using a
weighed-sum rule. Experimental results on several groups of images show that the proposed fast fusion method
has a better performance than the state-of-the-art methods, running up to four times faster than the fastest base-
line algorithm. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.6.063004]
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1 Introduction
Because different sensors have different imaging principles
and optical lenses are confined by focal lengths and capture
ranges, multimodal images of the same scene contain com-
plementary features, such as edges, shapes, textures, etc.
Image fusion aims to retain and integrate useful information
from multimodal images into a composite image for interpre-
tation, and a fused image with comprehensive details of the
scene can be perceived more appropriately by humans and
machines.

Filtering is the most fundamental process of image fusion,
and it is very important to exploit structures and details
within images for fusion. The basic image features contain
shape, edge, and texture. Shape and edge are determined by
its structures while texture is its details. Multiscale trans-
forms are usually applied to image fusion for basic image
feature extraction.1–4 To exploit these features, Laplacian
pyramid decompositions are first applied to image
fusion.5–7 Later, wavelet transforms and other multiscale
transforms are widely used to fuse images from different
sensing modalities.8–10 The transform coefficients are deter-
mined by the predefined decomposition levels, which results
in a few scales of details being represented with high-fre-
quency coefficients in the transform domain.11 These details
may not have a direct relationship with original semantic
features. What is more, fusion results of these transforms
usually suffer from ringing effects and “halo” artifacts
around the major structures because of using high-pass
filtering.12,13 In the spatial domain, the conventional spatial
domain low-pass filters, e.g., Gaussian filter, can smooth
texture but also structures. To prevent smoothing across
structures while still smoothing texture, many structure-
preserving filters have been developed recently, such as
anisotropic diffusion,14 bilateral filter,15 weighted least
squares filter,16 L0-smoothing filter,17 guided filter,18 etc.
These structure-preserving filters can be used to realize

multiscale decomposition as well as a Laplacian pyramid
decomposition.19–22 These methods combine structure-
preserving filters into multiscale transforms, but they have
a relatively high computational complexity and the original
intensities of source images are not preserved in fusion
results.1–4

Using anisotropic diffusion, a multiscale transform
method is proposed for multimodal medical image fusion,
and a data-specific multiscale geometrical analysis kernel
is formulated for the decomposition.20 However, anisotropic
diffusion-based methods have a high computational com-
plexity and tend to over-sharpen structures.19,20 Farbman
et al.16 use the weighted least squares filter to construct a
multiscale image decomposition for fusion multiexposure
images, and they have demonstrated the weighted least
squares filter is well-suited for progressive coarsening of
images for multiscale detail extraction. The weighted least
squares-based method requires the solution of a sparse linear
system, which limits the performance of the technique.23

Jointly using the bilateral filter and the nonsubsampled direc-
tional filter bank, Hu and Li24 construct a multiscale repre-
sentation for multisensor image fusion, and they mainly
leverage the edge-preserving characteristic of the bilateral
filter and the image directional feature extracted by the filter
bank. Bilateral filter-based methods usually involve artifacts
around the edge, e.g., a halo artifact. Zhao et al.25 utilize
L0-smoothing filter to construct a multiscale decomposition
method for image fusion, and the saliency extraction-based
visual weight map is decomposed by L0-smoothing filter.
The L0-smoothing filter-based method tends to lose small-
scale details since it is a global optimization algorithm,
which can preserve only the salient detail information.20

The guided filter is applied to refine the weight map obtained
by a two-scale decomposition, and images are fused by a
weight-averaging rule.22 The challenge of the guided fil-
ter-based method is the structure inconsistency between
the guidance image and the target image.26 These methods
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combine the structure-preserving filter into multiscale trans-
forms, and the major advantage of these kinds of methods is
the ability to accurately separate fine-scale texture details,
middle-scale edges, and large-scale spatial structures of an
image. Because of the multiscale decomposition framework,
they have a relatively high computational complexity, and
the original intensities of source images are not preserved
in fusion results.1–4

In this paper, we use fast filtering for image fusion in the
spatial domain. In the spatial domain, most scales within
images are processed by these structure-preserving filters
simultaneously, i.e., details information is smoothed while
structures are preserved. Due to the property, even the
semantic information can be extracted from the low-level
image.27 Spatial domain fusion methods are different from
fusing in the transform domains because multiscale trans-
forms capture only limited image scales determined by
the decomposition levels. In the spatial domain, we can
directly process pixels rather than processing the transform
domain coefficients. We mainly develop a fast structure-pre-
serving filter and a fast morphological filtering to exploit the
intrinsic structures in multimodal source images. Intrinsic
structures have large scales and details have small scales.
Because of the development of structure-preserving filters,
the scales can be well processed by them. The proposed
method is compared to the state-of-the-art methods, such
as methods based on nonsubsampled contourlet transform
(NSCT),28 guided filter fusion (GFF),22 multiscale transform
using sparse representation (MSSR),29 gradient transfer
fusion (GTF),30 and cross bilateral filter (CBF).31 The exper-
imental results indicate that the performance of the proposed
fast filtering scheme is better than the state-of-the-art meth-
ods in terms of four performance measures and it is the fast-
est algorithm.

2 Fast Filtering

2.1 Structure-Preserving Filtering
Suppose that an input image is denoted by Ip ∈ Rm×n, where
p is the pixel index and the image Ip has a mean of μk in a
sliding window Ωk centered at the pixel k, then, a zero-mean
signal Jp is defined in Ωk by

EQ-TARGET;temp:intralink-;e001;63;291Jp ¼ Ip − μk; p ∈ Ωk: (1)

As shown in Fig. 1, the texture Tp is usually a zero-mean
signal. Then, the main structure of the image Sp is given by

EQ-TARGET;temp:intralink-;e002;326;730Sp ¼ Jp − Tp: (2)

The structure Sp can be approximated from the input image
Jp using a linear estimator32

EQ-TARGET;temp:intralink-;e003;326;677Ŝp ¼ hp ⊗ Jp; (3)

where⊗ denotes the convolution and hp denotes the transfer
function of the linear system while Jp is its input signal and
Ŝp is its output signal.

In a linear shift-invariant system, the signal estimation
problem can be solved using the orthogonality principle,32

i.e., the error ep ¼ Sp − Ŝp is perpendicular to Jp

EQ-TARGET;temp:intralink-;e004;326;577EðepJqÞ ¼ 0: (4)

Then
EQ-TARGET;temp:intralink-;e005;326;534

EðSpJqÞ ¼ EðŜpJqÞ
¼ Eðhp ⊗ JpJqÞ

¼
Z

∞

−∞
hτEðJp−τJqÞdτ: (5)

The above equation can be rewritten by

EQ-TARGET;temp:intralink-;e006;326;449Rsj
p ¼ hp ⊗ Rj

p; (6)

where Rsj
p is the cross correlation of Sp and Jp, and R

j
p is the

autocorrelation of Jp.
Suppose that Sp is uncorrelated with Tp,

32 then, we have

EQ-TARGET;temp:intralink-;e007;326;388Rst
p ¼ 0: (7)

Considering Eqs. (2) and (7), we have

EQ-TARGET;temp:intralink-;e008;326;345Rsj
p ¼ Rs

p ¼ Rj
p − Rt

p: (8)

It is straightforward to check that hp can be obtained using
Eqs. (6) and (8)

EQ-TARGET;temp:intralink-;e009;326;289hp ⊗ Rj
p ¼ Rj

p − Rt
p. (9)

According to the correlation theorem,33 we have

EQ-TARGET;temp:intralink-;e010;326;244hp ¼ σ2k − σ2η
σ2k

δp; (10)

where σ2k is the variance of Jp and σ2η is the variance of Tp.
Substituting Eq. (10) into Eq. (3), we have

EQ-TARGET;temp:intralink-;e011;326;176Ŝp ¼ σ2k − σ2η
σ2k

Jp ¼ σ2k − σ2η
σ2k

ðIp − μkÞ: (11)

Then, we use the estimated signal Ŝp to recover the signal Îp
by

Fig. 1 A 1-D example of a signal. The signal is decomposed to struc-
ture and texture.
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EQ-TARGET;temp:intralink-;e012;63;752Îp ¼ μk þ Ŝp ¼ μk þ
σ2k − σ2η

σ2k
ðIp − μkÞ: (12)

Here, σ2k is known while σ2η is unknown.
Let v denote

σ2k−σ
2
η

σ2k

EQ-TARGET;temp:intralink-;e013;63;691Îp ¼ μk þ Ŝp ¼ μk þ vðIp − μkÞ: (13)

We minimize the mean square error between Ip and Îp while
maintaining the linear model [Eq. (13)]. Specifically, we seek
a solution that minimizes the objective function in the win-
dow Ωk

EQ-TARGET;temp:intralink-;e014;63;613min
v

X
p∈Ωk

f½μk þ vðIp − μkÞ − Ip�2 þ λv2g: (14)

Here, λ is a regularization parameter penalizing large v.
Equation (14) is the linear ridge regression model, and its

solution is given by

EQ-TARGET;temp:intralink-;e015;63;537v ¼ σ2k
σ2k þ λ

: (15)

Substituting Eq. (15) into Eq. (13), we have

EQ-TARGET;temp:intralink-;e016;326;752Îp ¼ μk þ
σ2k

σ2k þ λ
ðIp − μkÞ; p ∈ Ωk: (16)

It is straightforward to check that pixels with variance larger
than λ are preserved by Eq. (16), whereas patches with vari-
ance smaller than λ are smoothed. Equation (16) is a struc-
ture-preserving filter, which ensures that Îp has a structure
only if Ip has a structure because of ∇Îp ¼ v∇Ip.

If the intensity of a structure with very large variance σ2k
always changes sharply within Ωk, then the structure can be

preserved, i.e., if σ2k ≫ λ, then we have
σ2k

σ2kþλ
≈ 1 and Îp ≈ Ip.

The intensity is preserved while the pixel belongs to a main
structure.

Fig. 2 (a) Gradient magnitude, d ; (b) d is smoothed by averaging;
(c) d is filtered by image closing operation; and (d) d is filtered by
Eq. (23).

Fig. 3 Weight map: (a) before filtering, wp ; and (b) after filtering, ŵp .

Algorithm 2 Fast filtering image fusion.

Input: Input source images Ið1Þ ∈ Rm×n and Ið2Þ ∈ Rm×n , where the
superscript denotes the image index, radius r , and parameter λ.

Output: Fused image F .

1: Calculate the element number in each box window by
c ¼ boxfilter½onesðm;nÞ; r �.

2: for q ∈ f1;2g do

3: Detect contrast and image sharpness by the gradient magnitude
M ¼ j ∂IðqÞ∂x j þ j ∂IðqÞ∂y j.

4: Normalize M to d ∈ ½0;1� by d ¼ M−minðMÞ
maxðMÞ−minðMÞ.

5: Perform the dilation operation by d ¼ boxfilterðd;r Þ
c .

6: Perform the closing operation by gðqÞ ¼ 1 − boxfilterð1−d;r Þ
c .

7: end for

8: Obtain the weight matrix by w ¼ step½gð1Þ; gð2Þ�.

9: Smooth the weight matrix by w ¼ boxfilterðw;r Þ
c .

10: Calculate the mean of the weight matrix by μ ¼ boxfilterðw;r Þ
c .

11: Calculate the variance of the weight matrix by
σ2 ¼ boxfilterðw:�w;r Þ

c − μ: � μ.

12: Perform the structure-preserving filtering by
ŵ ¼ μþ σ2

σ2þλ
: � ðw − μÞ.

13: Obtain the fused image by F ¼ ŵ Ið1Þ þ ð1 − ŵÞIð2Þ.

Algorithm 1 Structure-preserving filtering.

Input: Filtering input image I, radius r of the window Ωk , and
regularization λ.

Output: Filtering output image Î.

1: μ ¼ fmeanðIÞ;

2: σ2 ¼ fmeanðI: � IÞ − μ2;

3: Î ¼ μþ σ2

σ2þλ
ðI − μÞ.
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If the intensity is always not changed a lot in a textural
region with much smaller variance σ2k than structures, then
these regions are smoothed by the linear mean filter, i.e.,

if σ2k ≪ λ, then we have Îp ≈ μk and
σ2k

σ2kþλ
≈ 0. The intensity

is smoothed by the mean filter, which is the most simple
smoothing filter.12

2.2 Morphological Filtering
Salient structure detection may produce gaps at a continuous
curve and holes in a homogeneous region. The morphologi-
cal closing operation can well-bridge gaps and fill holes, and
it is feasible to refine the structures of the images. The mor-
phological closing operation can be expressed by

EQ-TARGET;temp:intralink-;e017;63;596gp ¼ ðdp � sÞ⊖s; (17)

where dp is an input image, gp is the output image, �
denotes the morphological dilation operation, ⊖ denotes
the morphological erosion operation, and s is a structuring
element object.

According to the duality property of the morphological
operations, dilation and erosion are duals of each other
with respect to the complement operation, i.e., A⊖B ¼
ðAc � BÞc, where Ac is the complement of A. Then,
Eq. (17) can be rewritten by

EQ-TARGET;temp:intralink-;e018;63;466gp ¼ ½ðdp � sÞc � s�c: (18)

If the input image dp is normalized in the range of [0, 1], then
Eq. (18) can be expressed in the following equivalent form:

EQ-TARGET;temp:intralink-;e019;326;730gp ¼ 1 − ½1 − ðdp � sÞ� � s: (19)

However, the dilation operation is a time-consuming pro-
cedure due to calculating the maximum value in the sliding
structuring element s. It is straightforward to check that the
convolution can obtain comparable results as similar as the
dilation.12 To accelerate the procedure, we use the convolu-
tion operation instead of the dilation operation. For the clos-
ing operation, we first perform the convolution on the
normalized image to obtain the similar result of the dilation,
and the similar operation of Eq. (19) is given by

EQ-TARGET;temp:intralink-;e020;326;600gp ¼ 1 − ½1 − ðdp ⊗ sÞ� ⊗ s: (20)

2.3 Computation and Efficiency
The filtering process of Eq. (16) can be given by
Algorithm 1. In Algorithm 1, fmeanð·Þ is a mean filter
with a window of radius r. The box filter is equivalent to
the convolution between an image and a square matrix of
all ones,18 and it can be computed efficiently in an OðNÞ
(where N is the pixel number) complexity using the integral
image technique.34 With theOðNÞ time mean filter, the struc-
ture-preserving filter [Eq. (16)] is naturally OðNÞ time.

Table 1 Quantitative evaluation of different fusion methods.

Images Metrics NSCT GFF MSSR GTF CBF FFIF

Disk Qabjf
p 0.6837 0.7054 0.6936 0.6279 0.6819 0.7124

Qxy jf
w 0.9243 0.9405 0.9304 0.9367 0.9231 0.9583

QMI 0.8931 0.9732 0.9795 0.8878 0.9457 1.0573

QNCIE 0.8244 0.8301 0.8313 0.8257 0.8275 0.8353

Time (s) 79.4536 0.3692 69.6018 7.3069 50.1227 0.1024

Pepsi Qabjf
p 0.7573 0.7866 0.7712 0.7530 0.7676 0.7901

Qxy jf
w 0.9533 0.9555 0.9470 0.9600 0.9421 0.9629

QMI 0.9893 1.0393 1.0152 0.9567 1.0244 1.1332

QNCIE 0.8295 0.8319 0.8323 0.8307 0.8309 0.8382

Time (s) 67.9367 0.3147 64.1769 8.4516 42.5323 0.0879

Lab Qabjf
p 0.7128 0.7143 0.7156 0.5822 0.7159 0.7197

Qxy jf
w 0.8670 0.9520 0.8871 0.8623 0.9329 0.9703

QMI 1.0581 1.1661 1.1753 0.8342 1.1168 1.2339

QNCIE 0.8321 0.8377 0.8382 0.8307 0.8349 0.8413

Time (s) 86.5337 0.4317 57.6864 8.9642 50.0641 0.1030
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Table 1 (Continued).

Images Metrics NSCT GFF MSSR GTF CBF FFIF

Natocamp Qabjf
p 0.4212 0.4547 0.4404 0.3493 0.3670 0.5139

Qxy jf
w 0.7634 0.8287 0.7504 0.7469 0.6464 0.9124

QMI 0.2198 0.2424 0.3378 0.3380 0.2287 0.4611

QNCIE 0.8033 0.8035 0.8044 0.8054 0.8035 0.8081

Time (s) 19.6777 0.0459 9.7825 0.6911 12.5096 0.0157

Sandpath Qabjf
p 0.3862 0.5048 0.4507 0.3386 0.3377 0.6001

Qxy jf
w 0.7926 0.9088 0.8359 0.8014 0.7146 0.9978

QMI 0.1184 0.3199 0.3227 0.2193 0.2081 1.0095

QNCIE 0.8024 0.8052 0.8058 0.8036 0.8034 0.8558

Time (s) 67.4090 0.3238 60.4524 4.7001 44.1827 0.0874

Street Qabjf
p 0.5362 0.6530 0.6263 0.4473 0.5456 0.6707

Qxy jf
w 0.6385 0.8590 0.8349 0.4260 0.6523 0.9767

QMI 0.2015 0.2865 0.5563 0.2773 0.3062 0.8859

QNCIE 0.8029 0.8039 0.8112 0.8034 0.8043 0.8327

Time (s) 18.4305 0.0529 14.8249 0.6088 10.6250 0.0111

Medical A Qabjf
p 0.6315 0.6443 0.6668 0.6058 0.5535 0.6776

Qxy jf
w 0.3995 0.8340 0.8231 0.7638 0.8673 0.9699

QMI 0.5822 0.7303 0.8006 0.6965 0.7241 0.8536

QNCIE 0.8079 0.8095 0.8103 0.8090 0.8099 0.8165

Time (s) 17.1328 0.0418 17.8447 0.4422 10.5611 0.0091

Medical B Qabjf
p 0.5668 0.5999 0.6183 0.5135 0.6263 0.6450

Qxy jf
w 0.4578 0.8559 0.7508 0.6594 0.9331 0.9688

QMI 0.5618 0.6956 0.7420 0.6463 0.7766 0.9867

QNCIE 0.8072 0.8084 0.8093 0.8072 0.8096 0.8114

Time (s) 17.3855 0.0398 36.6682 0.5387 10.4869 0.0092

Medical C Qabjf
p 0.6296 0.6660 0.6459 0.5239 0.6210 0.6720

Qxy jf
w 0.4023 0.8843 0.7635 0.7718 0.8841 0.9663

QMI 0.5555 0.7426 0.7051 0.6518 0.7424 0.8915

QNCIE 0.8070 0.8085 0.8082 0.8070 0.8087 0.8111

Time (s) 18.5469 0.0472 11.3064 0.4648 10.5045 0.0110
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The filtering process of Eq. (20) also can be realized using
the box filter18,34 when the structuring element s is set to a
flat disk-shaped structuring element with a specified radius.
Then, Eq. (20) is performed in an OðNÞ time too in
this paper.

3 Image Fusion Scheme
The same region in different modality images has a different
contrast and image sharpness. In the spatial domain, the

gradient magnitude is a fast and simple way to detect the
contrast and sharpness in intensity. The main reason that
we use the gradient magnitude is to speed-up the process
of image fusion. Because the gradient image contains rich
texture and boundary information of image structure, we
use the gradient magnitude to measure the saliency informa-
tion. Gradient magnitude can accurately position edges and
other details, and the use of forward difference can quickly
realize a discrete gradient. Suppose that there are two input
source images Ið1Þ and Ið2Þ, where the superscript denotes the

Fig. 4 Multifocus images disk and fused images obtained by different methods: (a) disk 1, (b) disk 2,
(c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.

Fig. 5 Multifocus images Pepsi and fused images obtained by different methods: (a) Pepsi 1, (b) Pepsi 2,
(c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.
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image index. Approximating the gradient magnitude by
absolute values is frequently used to detect contrast and
image sharpness

EQ-TARGET;temp:intralink-;e021;63;719MðqÞ ¼
���� ∂I

ðqÞ

∂x

����þ
���� ∂I

ðqÞ

∂y

����; q ∈ f1;2g; (21)

where ðx; yÞ are the spatial coordinates, and the digital differ-
ence is ∂I

∂x ¼ Iðxþ 1; yÞ − Iðx; yÞ.
Due to the postprocessing of the complement operation, a

normalization needs to perform on the saliency map. We nor-
malize MðqÞ to dðqÞ in the range of [0, 1] with linear function
transformation35

EQ-TARGET;temp:intralink-;e022;326;752dðqÞ ¼ MðqÞ −min½MðqÞ�
max½MðqÞ� −min½MðqÞ� ; q ∈ f1;2g: (22)

Because the gradient image contains rich texture and
boundary information, we use the gradient magnitude for
detecting contrast and image sharpness. Furthermore, a mor-
phological closing operation is used to refine the gradient
map since the salient structure detection may produce
gaps at a continuous curve and holes in a homogeneous
region. The morphological filtering can be given by

EQ-TARGET;temp:intralink-;e023;326;642gðqÞ ¼ 1 − f1 − ½dðqÞ ⊗ s�g ⊗ s; q ∈ f1;2g: (23)

Fig. 7 Visible and infrared imagesNatocamp and fused images obtained by different methods: (a) visible,
(b) infrared, (c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.

Fig. 6 Multifocus images lab and fused images obtained by different methods: (a) lab 1, (b) lab 2,
(c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.

Journal of Electronic Imaging 063004-7 Nov∕Dec 2017 • Vol. 26(6)

Zhan et al.: Fast filtering image fusion



As shown in Fig. 2, the gradient magnitude is filtered by
different filters, and the filtered result of Eq. (23) preserves
structure well. Morphological filtering is used to bridge gaps
and fill holes since the salient structure detection may pro-
duce gaps and holes in a homogeneous region. The local

average operation may smooth the details and structures
simultaneously, which renders edges degraded and blurred.
The main difference in the proposed algorithm from the aver-
aging is the digits in Fig. 2, e.g., the eleven “11” in Fig. 2(b),
and the proposed algorithm obtains a clearer structure of

Fig. 8 Visible and infrared images sandpath and fused images obtained by different methods: (a) visible,
(b) infrared, (c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.

Fig. 9 Visible and infrared images street and fused images obtained by different methods: (a) visible,
(b) infrared, (c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.
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Fig. 11 Medical images B and fused images obtained by different methods: (a) MR-T 1, (b) MR-T 2,
(c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.

Fig. 10 Medical images A and fused images obtained by different methods: (a) MR-T 1, (b) MR-T 2,
(c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.
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Table 2 Quantitative evaluation of different fusion methods for image sequences.

Images Metrics NSCT GFF MSSR GTF CBF FFIF

Toy Qabjf
p 0.7056 0.7209 0.7235 0.6549 0.7211 0.7237

Qxy jf
w 0.9173 0.9559 0.9354 0.9372 0.9206 0.9702

QMI 1.0602 1.1580 1.1018 1.2139 1.0655 1.2150

QNCIE 0.8310 0.8346 0.8329 0.8369 0.8309 0.8391

Time (s) 149.0144 0.6710 1.6658 18.8374 75.9842 0.1884

Board Qabjf
p 0.4490 0.6028 0.6105 0.4598 0.5006 0.6723

Qxy jf
w 0.7678 0.9479 0.9084 0.7741 0.7640 0.9832

QMI 0.1912 0.6952 0.7184 0.3944 0.4740 0.9470

QNCIE 0.8032 0.8184 0.8212 0.8056 0.8081 0.8357

Time (s) 146.7246 0.7718 52.2784 10.5798 85.5720 0.2100

Medical Qabjf
p 0.5643 0.6135 0.6082 0.5548 0.5710 0.6268

Qxy jf
w 0.4336 0.8729 0.6716 0.6309 0.8598 0.9582

QMI 0.6370 0.7896 0.7624 0.7550 0.7876 1.1066

QNCIE 0.8077 0.8094 0.8086 0.8088 0.8087 0.8158

Time (s) 37.7614 0.0996 22.1736 0.1388 21.4638 0.0252

Fig. 12 Medical images C and fused images obtained by different methods: (a) MR-T 1, (b) MR-T 2,
(c) NSCT, (d) GFF, (e) MSSR, (f) GTF, (g) CBF, and (h) FFIF.
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these digits with less blurred contours than the averaging,
which indicates that the proposed method can well-protect
the structure information.

The gradient magnitude is high if the pixel plays an
important role in representing the scene and is low if
pixel represents unimportant information. By comparing
the saliency map, the weight map is determined by

EQ-TARGET;temp:intralink-;e024;326;752w ¼ step½gð1Þ; gð2Þ�; (24)

where step½gð1Þ; gð2Þ� returns one for an element of w if the
corresponding element of gð1Þ is a value larger than gð2Þ, oth-
erwise it returns zero.

Then, the structure-preserving linear filter is performed on
w to obtain a desired weight map

Fig. 13 Multifocus image sequence Toy-1, Toy-2, Toy-3, and fused images obtained by different
methods: (a) Toy-1, (b) Toy-2, (c) Toy-3, (d) NSCT, (e) GFF, (f) MSSR, (g) GTF, (h) CBF, and (i) FFIF.
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EQ-TARGET;temp:intralink-;e025;63;752ŵp ¼ μk þ
σ2k

σ2k þ λ
ðwp − μkÞ; p ∈ Ωk: (25)

Since the input of the linear filter is wp, so the corresponding
mean μk and variance σk are calculated in the sliding window
of the image wp.

As shown in Fig. 3, the filtered weight map ŵp renders
structures that look more natural than wp. If the weight wp is
used to fuse images, subjectively, the fusion results may suf-
fer from the blocking effect. As shown in Fig. 3, the filtered
weight map ŵp renders structures that look more natural than
the result of wp, then the fusion results of the proposed
method have a natural structure. If the structure is very

Fig. 14 Multispectral image sequence and fused images obtained by different methods: (a) visible,
(b) near-infrared, (c) far-infrared, (d) NSCT, (e) GFF, (f) MSSR, (g) GTF, (h) CBF, and (i) FFIF.
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complex, then using wp hardly obtains a natural boundary.
Finally, the fused image is obtained by the weight averaging
on two input images

EQ-TARGET;temp:intralink-;e026;63;719F ¼ ŵIð1Þ þ ð1 − ŵÞIð2Þ: (26)

The overall algorithm is given by Algorithm 2.

4 Experiments

4.1 Experimental Setup
Experiments are performed on three pairs of multifocus
images, three pairs of the visible and infrared images, and
three pairs of medical images. In addition, we use three dif-
ferent groups with more than two input images. All the

Fig. 15 Multimodal image sequence MR-T 1, MR-T 2, MR-Gad, and fused images obtained by different
methods: (a) MR-T 1, (b) MR-T 2, (c) MR-Gad, (d) NSCT, (e) GFF, (f) MSSR, (g) GTF, (h) CBF, and
(i) FFIF.
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images have been aligned perfectly before fusion, and image
registration needs to perform if images are not aligned
well.36,37 The proposed fast filtering image fusion (FFIF)
method is compared with five state-of-the-art methods:
NSCT,28 GFF,22 MSSR,29 GTF,30 and CBF.31 For these meth-
ods, we adopt the default parameters given in their papers,
respectively.

To evaluate the performance of the proposed fusion
method, four objective image fusion performance metrics
are adopted to evaluate the performances of different fusion
methods, i.e., feature-based metric Qabjf

p ,38 structure-based
metric Qxyjf

w ,39 the normalized mutual information QMI,
40

and nonlinear correlation information entropy QNCIE.
41,42

A comprehensive review of the metrics can be seen from
Liu et al.’s literature.42

4.2 Experimental Results
First, experiments are conducted on the different two-modal
images as shown in Figs. 4–12. To evaluate the performance
of these results, the objective performances of different meth-
ods are presented in Table 1.

Figures 4(a) and 4(b) show two “disk” images that contain
different focused regions. As shown in Figs. 4(c)–4(h), the
results of GTF are not good since it cannot obtain clear digits
on the clock. It is straightforward to check that MSSR- and
CBF-based methods cause artifacts in the area of the book.
FFIF obtains a better visual effect than other methods [see
Fig. 4(h)], which indicates that the output image contains
original focused regions of the input images. For the
image brightness, GFF decreases image brightness, while
FFIF well-preserves brightness. As shown in Figs. 5(a)
and 5(b), we use the “Pepsi” images. Similarly, the words
of “ES magnifier quality” are not fused well with these
methods as shown in Figs. 5(c)–5(g). For the “lab” images
[see Figs. 6(a) and 6(b)], the fusion results are shown in
Figs. 6(c)–6(h). Fused results of NSCT, MSSR, and GTF
methods have lower lightness and sharpness than the others.
GFF and CBF make the fused images have visual artifacts in
the student’s hair. FFIF has a good contrast and spatial con-
sistency. As shown in Table 1, the performance of FFIF
always outperforms other methods in terms of the four evalu-
ation metrics.

Fig. 16 Metrics with respect to different r and λ on multifocus image disk: (a)Qabjf
p , (b)Qxy jf

p , (c)QMI, and
(d) QNCIE.
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For the visible and infrared image fusion, Figs. 7(a) and
7(b) show two source “Natocamp” images. The fused results
of different methods are shown in Figs. 7(c)–7(h). GTF and
NSCT can obtain dissatisfactory results in terms of the tex-
ture and target. Since Figs. 7(c) and 7(f) render some details
invisible and lose some original features and structures. The
fused results of MSSR and CBF have higher brightness than
other methods, and they can well-preserve the texture and
details of the source images. However, the details of the
background are not easy to distinguish. GFF can obtain
good fusion results for the visible and infrared images, but
it can be seen that the method introduces unclear woods
structure and decreases the contrast. By contrast, the
FFIF-fused images have a distinct boundary and good visual
perception. FFIF ensures that structures of source images are
well-preserved. Figures 8(a) and 8(b) show a “sandpath”
image. Similarly, as shown in Figs. 8(c)–8(h), FFIF performs
well in preserving source image information. NSCT, GTF,
and CBF-based methods [see Figs. 8(c), 8(f), and 8(g)]
lose different levels of information in Fig. 8(a), As shown
in Fig. 8(d), the GFF result is not very good in this case,

because the fused image produces the brightness and even
causes uneven shade. In short, MSSR and FFIF usually per-
form well in preserving the image details. In fact, FFIF has
the better performance. Moreover, Fig. 9 shows the third
example of the visible and infrared image fusion, the street
is not clear in the fusion results produced by other methods
except FFIF [see Figs. 9(c)–9(g)], FFIF renders some details
visible and well-preserves the brightness of the source
images. As presented in Table 1, FFIF with the largest qual-
ity indices for Qabjf

p , Qxyjf
w , QMI, and QNCIE among all of

comparison methods implies that structures can be well-pre-
served by FFIF.

The medical source images and fused results with differ-
ent methods are shown in Figs. 10–12. These images are
from different magnetic resonance imaging (MRI) sensors,
and we use three pairs of T1-weighted and T2-weighted
MRI images. It can be seen from Figs. 10–12 that FFIF
can obtain satisfactory results with more natural edges, better
spatial consistency and the complementary information of
different images, such as the structure of the bone and the
area of the brain. Furthermore, the computational efficiency

Fig. 17 Metrics with respect to different r and λ on multispectral image Natocamp: (a) Qabjf
p , (b) Qxy jf

p ,
(c) QMI, and (d) QNCIE.
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and quantitative evaluation of the different image fusion
methods are shown in Table 1, and FFIF has better perfor-
mance than others.

Second, we conduct experiments to demonstrate the
effectiveness of the proposed method for image sequences,
and three groups of three source images and their fused
images are shown in Figs. 13–15, respectively. First, we
fuse the top two images and second, we fuse the result
with the third one. For the multifocus images, FFIF performs
very well. For example, details in “Toy” are clearly presented
in the fused image. Figures 14(a)–14(c) show three multi-
spectral images, the three images are visible, near-infrared,
and far-infrared images. The fusion results obtained by dif-
ferent fusion methods are shown in Figs. 14(d)–14(i). It can
be seen from Fig. 14 that FFIF works well in keeping details
of scenes, such as people on the board and brightness.
Similarly, for the multimodal medical source images
[MR-T1 and MR-T2, and MR-Gad (T1-weighted, after
Gd-DTPA)], FFIF has better results than others in terms
of the bone structure and visual quality. Table 2 indicates
that the performance of FFIF outperforms other methods
in terms of Qabjf

p , Qxyjf
w , QMI, and QNCIE and running time.

4.3 Computational Time Analysis
The computational time with the different fusion methods on
several images is presented in Table 1. All the experiments
are implemented on a PC with 3.6-GHz CPU and 12.0-GB
memory. It can be seen from Table 1 that FFIF is very fast.
FFIF costs only 0.009 s for the medical images, and NSCT,
CBF, and MSSR methods required more computational time
than other methods because the mean in a sliding window
(structure-preserving filtering and morphological filtering)
can be computed by a box filter.

4.4 Influence of r and λ

There are two parameters r and λ for FFIF. r denotes the
radius of the sliding window and λ denotes the degree of
the smoothing, respectively. However, they both have influ-
ence on the fusion quality and computational efficiency of
FFIF. In detail, r determines filtering radius of the structuring
element in morphological closing operation and λ is the
smoothing degree of the linear filtering. In this section,
the influence of these parameters on the fusion performance
is analyzed in Figs. 16–18. Experiments are performed on

Fig. 18 Metrics with respect to different r and λ on medical image A: (a) Qabjf
p , (b) Qxy jf

p , (c) QMI, and
(d) QNCIE.
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three different types of images, i.e., disk, Natocamp, and
medical A, respectively. Qabjf

p Qxyjf
w , QMI, and QNCIE of

FFIF are measured with different parameter settings.
Specifically, Figs. 16–18 show the influence of r by varying
it from 5 to 30 while λ is varying from 0.02 to 0.12. It can be
seen from Figs. 16–18 that the amplitude of the column
changes slightly indicating that the performance of FFIF
is not sensitive to the setting of the r and λ. The default
parameter setting of FFIF for the medical and multifocus
image fusion is set as r ¼ 6 and λ ¼ 0.06 since it can give
good fusion quality on the subjective and objective evalu-
ation. In addition, the default parameter setting for the visible
and infrared image fusion is r ¼ 16 and λ ¼ 0.06. The exper-
imental results show that good fusion performance is
obtained with these parameters.

5 Conclusion
In this paper, we propose a spatial image fusion method
based on fast filtering. The proposed method uses the dis-
crete gradient magnitude to detect contrast and image sharp-
ness, and it is refined with a fast morphological filtering
operation. Moreover, we utilize a structure-preserving filter
to obtain a desired weight map in the spatial domain.
Experimental results of different images show that the per-
formance of the FFIF method outperforms other state-of-the-
art image fusion approaches in terms of both visual perfor-
mance and objective metrics. More importantly, the pro-
posed method is not sensitive to the setting of the
parameters and costs less time, which renders it easy to
apply to real-time applications.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China under the Grant No. 61201422, the
Specialized Research Fund for the Doctoral Program of
Higher Education under the Grant No. 20120211120013,
and the Fundamental Research Funds for the Central
Universities under the Grant No. lzujbky-2017-190.

References

1. Z. Zhang and R. S. Blum, “A categorization of multiscale-decomposi-
tion-based image fusion schemes with a performance study for a digital
camera application,” Proc. IEEE 87(8), 1315–1326 (1999).

2. G. Piella, “A general framework for multiresolution image fusion: from
pixels to regions,” Inf. Fusion 4(4), 259–280 (2003).

3. G. Pajares and J. M. de la Cruz, “Awavelet-based image fusion tutorial,”
Pattern Recognit. 37(9), 1855–1872 (2004).

4. S. Li, B. Yang, and J. Hu, “Performance comparison of different multi-
resolution transforms for image fusion,” Inf. Fusion 12(2), 74–84
(2011).

5. P. J. Burt and E. H. Adelson, “Merging images through pattern decom-
position,” Proc. SPIE 0575, 173–181 (1985).

6. A. Toet, L. J. Van Ruyven, and J. M. Valeton, “Merging thermal and
visual images by a contrast pyramid,” Opt. Eng. 28(7), 789–792 (1989).

7. P. J. Burt and R. J. Kolczynski, “Enhanced image capture through
fusion,” in Proc., Fourth Int. Conf. on Computer Vision, pp. 173–
182, IEEE (1993).

8. R. Redondo et al., “Multifocus image fusion using the log-Gabor trans-
form and a multisize windows technique,” Inf. Fusion 10(2), 163–171
(2009).

9. T. Li and Y. Wang, “Biological image fusion using a NSCT based var-
iable-weight method,” Inf. Fusion 12(2), 85–92 (2011).

10. Z. Zhou, S. Li, and B. Wang, “Multi-scale weighted gradient-based
fusion for multi-focus images,” Inf. Fusion 20, 60–72 (2014).

11. M. N. Do and M. Vetterli, “The contourlet transform: an efficient direc-
tional multiresolution image representation,” IEEE Trans. Image
Process. 14(12), 2091–2106 (2005).

12. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.,
Pearson Education, London, United Kingdom (2007).

13. F. Zhang et al., “Segment graph based image filtering: fast structure-pre-
serving smoothing,” in Proc. of the IEEE Int. Conf. on Computer Vision,
pp. 361–369 (2015).

14. P. Perona and J. Malik, “Scale-space and edge detection using aniso-
tropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12(7),
629–639 (1990).

15. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Sixth Int. Conf. on Computer Vision, Vol. 6, pp. 839–
846, IEEE (1998).

16. Z. Farbman et al., “Edge-preserving decompositions for multi-scale tone
and detail manipulation,” ACM Trans. Graphics 27(3), 67 (2008).

17. L. Xu et al., “Image smoothing via L0 gradient minimization,” ACM
Trans. Graphics 30(6), 174 (2011).

18. K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans.
Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013).

19. Y. Jiang and M. Wang, “P-M equation based multiscale decomposition
and its application to image fusion,” Pattern Anal. Appl. 17(1), 167–178
(2014).

20. Q. Wang et al., “Robust multi-modal medical image fusion via aniso-
tropic heat diffusion guided low-rank structural analysis,” Inf. Fusion
26, 103–121 (2015).

21. Y. Jiang and M. Wang, “Image fusion using multiscale edge-preserving
decomposition based on weighted least squares filter,” IET Image Proc.
8(3), 183–190 (2014).

22. S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE
Trans. Image Process. 22(7), 2864–2875 (2013).

23. E. S. Gastal and M. M. Oliveira, “Domain transform for edge-aware
image and video processing,” ACM Trans. Graphics 30(4), 69 (2011).

24. J. Hu and S. Li, “The multiscale directional bilateral filter and its appli-
cation to multisensor image fusion,” Inf. Fusion 13(3), 196–206 (2012).

25. J. Zhao et al., “Detail enhanced multi-source fusion using visual weight
map extraction based on multi scale edge preserving decomposition,”
Opt. Commun. 287, 45–52 (2013).

26. W. Liu et al., “Robust guided image filtering,” arXiv preprint
arXiv:1703.09379 (2017).

27. L.-C. Chen et al., “Semantic image segmentation with task-specific edge
detection using CNNs and a discriminatively trained domain transform,”
in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, pp. 4545–4554, IEEE (2016).

28. G. Bhatnagar, Q. J. Wu, and Z. Liu, “Directive contrast based multimo-
dal medical image fusion in NSCT domain,” IEEE Trans. Multimedia
15(5), 1014–1024 (2013).

29. Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion
based on multi-scale transform and sparse representation,” Inf.
Fusion 24, 147–164 (2015).

30. J. Ma et al., “Infrared and visible image fusion via gradient transfer and
total variation minimization,” Inf. Fusion 31, 100–109 (2016).

31. B. S. Kumar, “Image fusion based on pixel significance using cross
bilateral filter,” Signal Image Video Process. 9(5), 1193–1204 (2015).

32. J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice
Hall, New Jersey (1990).

33. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, Prentice Hall, New Jersey (1993).

34. F. C. Crow, “Summed-area tables for texture mapping,” ACM Trans.
Graphics 18(3), 207–212 (1984).

35. T. Shibata, M. Tanaka, and M. Okutomi, “Unified image fusion based
on application-adaptive importance measure,” in IEEE Int. Conf. on
Image Processing (ICIP ’15), pp. 1–5, IEEE (2015).

36. J. Ma et al., “Non-rigid visible and infrared face registration via regu-
larized Gaussian fields criterion,” Pattern Recognit. 48(3), 772–784
(2015).

37. J. Ma et al., “Robust l2e estimation of transformation for non-rigid
registration,” IEEE Trans. Signal Process. 63(5), 1115–1129 (2015).

38. C. S. Xydeas and V. Petrovic, “Objective image fusion performance
measure,” Electron. Lett. 36(4), 308–309 (2000).

39. C. Yang et al., “A novel similarity based quality metric for image
fusion,” Inf. Fusion 9(2), 156–160 (2008).

40. M. Hossny, S. Nahavandi, and D. Creighton, “Comments on ‘informa-
tion measure for performance of image fusion’,” Electron. Lett. 44(18),
1066–1067 (2008).

41. T. Stathaki, Image Fusion: Algorithms and Applications, Academic
Press, Cambridge, Massachusetts (2008).

42. Z. Liu et al., “Objective assessment of multiresolution image fusion
algorithms for context enhancement in night vision: a comparative
study,” IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 94–109 (2012).

Kun Zhan received his BSc and PhD degrees from Lanzhou
University, China, in 2005 and 2010, respectively. Currently, he
works at Lanzhou University. His main research interests are
image processing and computer vision.

Yuange Xie received her BSc degree in electronic information sci-
ence and technology from Shanxi Normal University, China, in

Journal of Electronic Imaging 063004-17 Nov∕Dec 2017 • Vol. 26(6)

Zhan et al.: Fast filtering image fusion

http://dx.doi.org/10.1109/5.775414
http://dx.doi.org/10.1016/S1566-2535(03)00046-0
http://dx.doi.org/10.1016/j.patcog.2004.03.010
http://dx.doi.org/10.1016/j.inffus.2010.03.002
http://dx.doi.org/10.1117/12.966501
http://dx.doi.org/10.1117/12.7977034
http://dx.doi.org/10.1109/ICCV.1993.378222
http://dx.doi.org/10.1016/j.inffus.2008.08.006
http://dx.doi.org/10.1016/j.inffus.2010.03.007
http://dx.doi.org/10.1016/j.inffus.2013.11.005
http://dx.doi.org/10.1109/TIP.2005.859376
http://dx.doi.org/10.1109/TIP.2005.859376
http://dx.doi.org/10.1109/34.56205
http://dx.doi.org/10.1109/ICCV.1998.710815
http://dx.doi.org/10.1145/1360612
http://dx.doi.org/10.1145/2070781.2024208
http://dx.doi.org/10.1145/2070781.2024208
http://dx.doi.org/10.1109/TPAMI.2012.213
http://dx.doi.org/10.1109/TPAMI.2012.213
http://dx.doi.org/10.1007/s10044-013-0343-9
http://dx.doi.org/10.1016/j.inffus.2015.01.001
http://dx.doi.org/10.1049/iet-ipr.2013.0429
http://dx.doi.org/10.1109/TIP.2013.2244222
http://dx.doi.org/10.1109/TIP.2013.2244222
http://dx.doi.org/10.1145/2010324
http://dx.doi.org/10.1016/j.inffus.2011.01.002
http://dx.doi.org/10.1016/j.optcom.2012.08.070
http://dx.doi.org/10.1109/TMM.2013.2244870
http://dx.doi.org/10.1016/j.inffus.2014.09.004
http://dx.doi.org/10.1016/j.inffus.2014.09.004
http://dx.doi.org/10.1016/j.inffus.2016.02.001
http://dx.doi.org/10.1007/s11760-013-0556-9
http://dx.doi.org/10.1145/964965.808600
http://dx.doi.org/10.1145/964965.808600
http://dx.doi.org/10.1109/ICIP.2015.7350747
http://dx.doi.org/10.1109/ICIP.2015.7350747
http://dx.doi.org/10.1016/j.patcog.2014.09.005
http://dx.doi.org/10.1109/TSP.2014.2388434
http://dx.doi.org/10.1049/el:20000267
http://dx.doi.org/10.1016/j.inffus.2006.09.001
http://dx.doi.org/10.1049/el:20081754
http://dx.doi.org/10.1109/TPAMI.2011.109


2015. She is currently a master’s student at Lanzhou University. Her
main research interest is image fusion.

Haibo Wang received his BSc degree in electronic and communica-
tion engineering from Shandong Agricultural University, China, in
2015. He is currently a master’s student at Lanzhou University. His
main research interest is hyperspectral image classification.

Yufang Min received her BSc and MSc degrees from Lanzhou
University, China, in 2005 and 2008, respectively. She is now a
PhD candidate at the Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences. Her main research inter-
est is remote sensing.

Journal of Electronic Imaging 063004-18 Nov∕Dec 2017 • Vol. 26(6)

Zhan et al.: Fast filtering image fusion


