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We present two models for the fair value of a self-funding instalment warrant. In both 

models we assume the underlying stock process follows a geometric Brownian motion. In 

the first model, we assume that the underlying stock pays a continuous dividend yield and 

in the second we assume that it pays a series of discrete dividend yields. We show that 

both models admit similarity reductions and use these to obtain simple finite-difference 

and Monte Carlo solutions. We use the method of multiple scales to connect these two 

models and establish the first-order correction term to be applied to the first model 

in order to obtain the second, thereby establishing that the former model is justified 

when many dividends are paid during the life of the warrant. Further, we show that the 

functional form of this correction may be expressed in terms of the hedging parameters 

for the first model and is, from this point of view, independent of the particular payoff in 

the first model. In two appendices we present approximate solutions for the first model 

which are valid in the small volatility and the short time-to-expiry limits, respectively, by 

using singular perturbation techniques. The small volatility solutions are used to check 

our finite-difference solutions and the small time-to-expiry solutions are used as a means 

of systematically smoothing the payoffs so we may use path-wise sensitivities for our 

Monte Carlo methods. 

 

 

 
 

 

 
 

 

 

Keywords: Self-funding Instalment Warrants, Asian Options, Black-Scholes’ Partial Dif- 

ferential Equation, Finite-difference Methods, Monte Carlo Simulation, 

 
∗Corresponding  author. 

 

1 

mailto:dewynne@maths.ox.ac.uk
mailto:Nadima.El-Hassan@uts.edu.au


March 28, 2017    15:8    WSPC/INSTRUCTION FILE IJTAF-SFI 

 

 

 

 

 

 

 
2   J.N. Dewynne and N. El-Hassan 

 

1. Introduction 

A self-financing instalment warrant, or SFI as it is generally abbreviated, is a call 

option with a time varying strike driven by a (stochastic) dividend process. The im- 

portant details of an SFI contract are as follows. The initial buyer pays an amount 

which includes both the SFI’s price and a fraction of the current price of the un- 

derlying asset (which we will take to be a stock). The holder then has the right to 

buy the stock for the value of the strike (see below) at the time the SFI is exer- 

cised. The holder is not obliged to exercise this right. In the case of a European 

SFI, the holder may only exercise their right at expiry. The strike is initially set 

equal to the difference between the underlying stock’s price and the fraction of the 

stock’s price paid by the holder when purchasing the SFI. The strike subsequently 

accrues interest at a rate specified in the SFI contract. This rate may be different 

from the risk-free rate. Each time the underlying stock pays a dividend, the value 

of this dividend is immediately subtracted from the strike. The SFI holder does not 

directly receive the dividend, but the strike is reduced. 

If the SFI is exercised, its effect is to allow the holder to buy the stock at its 

initial price by paying a deposit, plus a premium for the SFI, paying off some of the 

balance (which accrues interest) using the stock’s dividend income over the life of 

the SFI and then settling the outstanding balance at exercise. Should the strike be 

negative at exercise, which is possible if the stock pays out enough dividends, the 

SFI holder receives both the stock and the surplus funds. 

Self-funding instalment warrants are listed contracts in Australia ASX (2016, 

2010), Westpac (2017). They are popular with investors and self-managed superan- 

nuation funds as they provide tax benefits ASX (2010), Westpac (2017). In some 

cases there are additional features such as stop-loss clauses, ASX (2016), barrier 

features, ASX (2016), or American style exercise rights, ASX (2016), although we 

do not consider any of these features here. 

In this paper we present two simple models for SFIs. Sections 2 and 3 of the 

paper contain the first model and §4 contains the second model. In §2 we assume 

that the underlying stock pays a (constant) continuous dividend yield while in §4 
we assume it pays a series of (constant) discrete dividend yields. In both models we 

assume the underlying stock follows a geometric Brownian motion. Our models are 

mathematically similar to models for arithmetic Asian options (see, in particular, 

Dewynne & Shaw (2008) and Siyanko (2012) who approach the asymptotic anal- 

ysis for the average-strike Asian option problem from a similar perspective to our 

approach in the two appendices). 

One of the main points of this paper is to use the method of multiple scales to 

show that the continuous dividend yield case is the limit of the discrete dividend 

yield case (as the number of dividend dates during the SFI’s life becomes infinite) 

and, further, to find the first-order correction term relating these two cases (this 

first-order correction vanishes as the number of dividend dates becomes infinite). To 

compare the continuous and discrete cases we have, of course, to solve the models 



March 28, 2017    15:8    WSPC/INSTRUCTION FILE IJTAF-SFI 

 

 

 
 
 
 

 
The Valuation of Self-funding Instalment Warrants    3 

 

and in general this must be done numerically. 

In general, neither of our models admits closed form solutions, but we demon- 

strate that it is relatively easy to obtain finite-difference, Monte Carlo and, in 

certain common parameter regimes, asymptotic solutions for the price and various 

hedge-ratios. 

In §4 we develop our simple model for the case where the underlying stock pays 

a discrete dividend yield and in §5 we use the method of multiple scales to show that 
the continuous dividend yield model is indeed the limit of the discrete dividend yield 

model, as the number of dividend payments during the life of the SFI becomes very 

large. We also obtain the (first-order) correction to the continuous yield solution to 

obtain improved approximations to the discrete dividend. This correction term may 

be expressed purely in terms of the price and hedging parameters for the continuous 

model. 

In the two appendices we obtain singular asymptotic approximations for both 
small dimensionless volatility and for small dimensionless time-to-expiry. The first 

is used as a check on the finite-difference solutions of §3.1, and the second allows us 
to smooth the payoff so that we may use path-wise sensitivity methods to compute 

the hedge-ratios using Monte Carlo. 

In §2 we present our model for an SFI when the stock pays a continuous dividend 

yield, consider special cases where there are exact solutions and reduce the prob- 

lem to a dimensionless form. We discuss numerical solutions in §3, finite-difference 

solutions in §3.1 and Monte Carlo solutions in §3.2. We show some examples of 

finite-difference and Monte Carlo solutions, for typical parameter values, in §3.3. 

In §4 we present the model where the stock pays dividend yields at discrete 

dates. In §4.2 we reduce the problem to its dimensionless form. In §4.3 we briefly 
describe the modifications to the continuous dividend finite-difference scheme and 

in §4.4 we do likewise for the Monte Carlo scheme. In §4.5 we compare the Monte 
Carlo and finite-difference solutions. 

In §5 we perform a multiple-scales analysis on the discrete dividend model. 

We show that as the period between dividend dates tends to zero we recover the 

continuous dividend model of §2, assuming that the size of the discrete dividend 

tends to zero linearly with the dividend period. We also determine the (first-order) 

correction necessary to obtain accurate prices to the model in §4 from the solutions 

of §2; this analysis is essentially independent of the payoff. 

Finally, in Appendix A and Appendix B we present approximate SFI solutions, 

for the continuous dividend yield case, in the form of singular asymptotic expan- 

sions. In Appendix A we assume the dimensionless volatility is small and in Ap- 

pendix B we assume that the dimensionless time to expiry is small. As in Dewynne 

& Shaw (2008) and Siyanko (2012), these approximate solutions may be of use in 

themselves for pricing. We, however, only employ them as, in the first case, a check 

on the finite-difference scheme and, in the second case, as a systematic means of 

smoothing the SFI’s dimensionless payoff so that we can use path-wise sensitivity 

Monte Carlo methods. 
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2. A model for a European SFI with continuously paid dividend 

yields 

In this and the following section, we assume that the dividends may be modelled 

using a constant, continuous dividend yield, qc. Usually we will assume that the 

dividend yield is positive, qc > 0. The stock price and strike processes, St and Kt 

respectively, are assumed to evolve as 
dSt  

= (µ − q ) dt + σ dW , dK 
 
= (r̂  K − q S ) dt, (2.1) 

St 
c 

t t t c   t 

where r̂  is the interest charged on the strike. Typically, but not necessarily, r̂  is 

greater than the constant risk-free rate, r, and to emphasise this we write 

r̂  = r + ρ, (2.2) 

where the interest-rate premium, ρ, is a constant and typically, but not necessarily, 

ρ > 0. We assume also that the initial stock price, S0 > 0, and strike, K0, are pre- 

scribed. It follows from the first equation in (2.1) that St > 0 for t ≥ 0. Integration 

of the second equation in (2.1) shows that 

Kt = er̂ t   K0 − qc 

0 

e−r̂ u Su du 
 

. (2.3) 

From this we can see that, firstly, Kt may become negative at some time t∗ < T if 
   t∗ 

e−r̂ u Su du > K0/qc, (2.4) 
0 

and, secondly, that if Kt does become negative then it remains negative at all later 

times. 

Let Vt = Vc(St, Kt, t) denote the price of the SFI at time t < T , where 

Vc : R
+ × R × [0, T ] → R (2.5) 

is the value function for the SFI. The usual Black-Scholes arguments show that we 

may perfectly hedge the SFI by holding 
 

∆t = ∆c(St, Kt, t) = 
∂Vc 

(S , K , t) (2.6) 

∂S 
t t 

stocks at time t ∈ [0, T ) and then the usual no-arbitrage condition shows that 

Vc(S, K, t) satisfies the partial differential equation 
2 

∂Vc  
+ 1

 2  2 ∂ Vc ∂Vc ∂Vc 

∂t 2 σ S 
∂S2 

+ (r − qc) S 
+  (r̂K q S) r V  = 0, (2.7) 

∂S ∂K 

for S > 0, K ∈ R and t < T . The payoff, VT  = max(ST − KT , 0), implies the 

terminal condition 

Vc(S, K, T ) = max(S − K, 0), S > 0, K ∈ R. (2.8) 

Subject to the usual technical conditions on the rate of growth of the solution as 

S → 0 and S → ∞, (2.7) and (2.8) uniquely determine the value function V (S, K, t) 

   t 
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for all S > 0, K ∈ R and t ≤ T . The solution may be interpreted in the usual way 

as 

Vt = Vc(St, Kt, t) = e−r(T −t) EQ
r 
V (ST , KT , T ) 

l
, (2.9) 

where the conditional expectation EQ is taken with respect to the risk-neutral equiv- 

alent of (2.1), namely 

dSt  
= (r − q ) dt + σ dW Q, dK 

 

 
= (r̂  K 

 

− q S ) dt, (2.10) 

St 
c 

t t t c   t 

and conditioned on the information available at time t. Note that r̂  is unchanged 

between (2.1) and (2.10) as there is only one source of risk. 

 

2.1. Special cases 

There are two special cases where there are closed form solutions of (2.7)–(2.8). 
 

(1) If qc = 0 the strike evolves deterministically and the problem reduces to a non- 

standard formulation of the Black-Scholes problem for a call. In terms of the 

price function for a call option, Cbs(S, t; K, T, r, q, σ), we have 

Vc(S, K, t) = Cbs

(
S, t; er̂ (T −t) K, T, r, 0, σ

)
. (2.11) 

In spite of appearances, this function does not depend on the risk-free rate r, 

but only on the premium ρ — this is a consequence of the fact that cash only 

arises through the strike and present-value-of-money effects are already implicit 

in the process for Kt. 

(2) Should the event Kt < 0 occur then, as above, integration of the second equation 

in (2.1) shows that KT < 0. In this case the terminal value of the SFI is 

ST −KT > 0 and so the SFI will be exercised. The payoff is linear in ST and KT 

and we may find a solution of (2.7) of the form Vc(S, K, t) = a(t) S −b(t) K. This 
reduces (2.7) to a pair of ODEs for a(t) and b(t) which describe the deterministic 

hedging strategy in this case. These are easily integrated and, in conjunction 

with (2.8), show that 

 
Vc(S, K, t) = 

ρ e−qc (T −t) + qc eρ(T −t) 
 

ρ + qc 

 

S − e 

 
ρ(T 

 

−t) 

 
K, K < 0. (2.12) 

In the unlikely case that ρ = −qc, a limit must be taken. 

Note also that if we take the atypical parameter values ρ = −r, qc = −1/T , then 

(2.1) reduces to 

dSt  
= (µ + 1/T ) dt + σ dW , dK 

 
= (S /T ) dt (2.13) 

St 
t t t 

and (2.7) and (2.8) reduce to the problem for the value function of an arithmetic 

Asian strike option, but with a negative dividend yield. 
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2.2. Similarity  reduction  and  dimensionless  variables 

All of V , S and K represent prices. As there are no fixed price scales in (2.7)–(2.8), 

this problem must be invariant under the one-parameter group 

Vc → λ Vc, S → λ S, K → λ K, λ > 0. (2.14) 

Two convenient invariants of this group are 

νc = Vc/S, ξ = K/S, (2.15) 

which we may also interpret as a change of numeraire. This change of numeraire 

was pioneered by Shreve & Večer (2000) and first applied to Asian options by Večer 

(2001). We look for a solution of (2.7)–(2.8) in terms of these invariants, in the form 

Vc(S, K, t) = S νc(ξ, t), ξ = K/S, (2.16) 

and we find that 

∂Vc  
= S 

∂νc 
, 

∂Vc  
= 

∂νc 
, 

∂Vc  
= ν

 

 

 
∂νc 

— ξ 

 

∂ 2Vc 

 

ξ2 ∂ 2νc 

∂t ∂t ∂K ∂ξ ∂S 
c
 ∂ξ 

, 
∂S2  

=  
S 

∂ξ2 
. (2.17) 

Thus, (2.7)–(2.8) becomes 

∂νc 
+ 1

 2  2 ∂ νc ∂νc 

∂t 2 σ  ξ 

∂ξ2  
+ 

( 
(ρ + qc) ξ − qc 

) 

∂ξ 
− qc νc = 0, 

νc(ξ, T ) = max(1 − ξ, 0), 

 

(2.18) 

for −∞ < ξ < ∞ and t < T . We are measuring prices relative to S here so its 

dividend yield, qc, plays the role of the risk-free rate. There is no fixed cash-scale 

so the risk-free rate r does not occur in the reduced problem.a 

We now define a dimensionless time variable, τ , and new dimensionless price 

function, φc, by 

τ = t/T, φc(ξ, τ ) = νc(ξ, t), (2.20) 

in which case (2.18) becomes 

∂φc  
+ 1

 2  2 ∂ φc ∂φc 

∂τ 2 α ξ 

∂ξ2  
+ 

( 
(β + γ) ξ − β 

)
 

∂ξ 
− β φc = 0, 

 

(2.21) 

φc(ξ, 1) = max(1 − ξ, 0), 

 
aIf we argue that the solution does not involve r because it is a property of cash and the problem 

does not explicitly depend on cash, then the terms involving r in (2.7) must vanish identically. 

This implies that 

S 
∂Vc 

∂S 
+ K 

∂Vc 

∂K 
= Vc, (2.19) 

which may be solved to show that Vc(S, K, t) = S F (K/S, t) which is, of course, precisely the 

form we have assumed in (2.16). It also implies that the payoff must have the form Vc(S, K, T ) = 

S F (K/S), which in turn implies that the problem is independent of r only if the payoff has this 

form. 
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where the dimensionless volatility α, dimensionless dividend yield β and dimension- 

less premium γ are given by 

α2 = σ2 T, β = qc T, γ = ρ T. (2.22) 

Although (2.21) will prove useful when we consider discrete dividends in §4 and §5 

until then it is convenient to remove the discounting term by setting 

φc(ξ, t) = e−β(1−τ ) ψc(ξ, τ ), (2.23) 

which reduces (2.21) to 
∂ψc  

+ 1
 

 
2  2 ∂ ψc 

 
 

∂ψc 

∂τ 2 α ξ 

∂ξ2  
+ 

( 
(β + γ) ξ − β 

)
 

= 0, 
∂ξ 

 

(2.24) 

ψc(ξ, 1) = max(1 − ξ, 0). 

As ξ < 0 is equivalent to K < 0, it follows that the solution of (2.24) for ξ < 0 

can be found using essentially the same arguments as in §2.1, and is 

ψc(ξ, τ ) = e(β+γ)(1−τ ) 
( 
ξ∗(τ ) − ξ 

)
, (2.25) 

where  
 

ξ∗(τ ) = 

 
β + γ e−(β+γ)(1−τ ) 

β + γ 

 

 
. (2.26) 

If γ = −β then one must take the limits in (2.25) and (2.26). 

If qc = 0 then β = 0 and (2.24) reduces to a Black-Scholes problem, as in §2.1. In 
terms of the standard Black-Scholes put formula, Pbs(S, t; K, T, r, q, σ), the solution 

is 

ψc(ξ, τ ) = Pbs(ξ, τ ; 1, 1, 0, −γ, α). (2.27) 

This is useful for testing numerical routines and as a terminal condition for finite- 

difference and Monte Carlo schemes in the discrete dividend problem. 

If β /= 0, we can not write down a useful closed form solution for (2.24) for ξ > 0 
and so in order to find solutions we must solve (2.24) numerically or approximately. 

Until §4 we work with the dimensionless problem (2.24), rather than (2.21) or the 
dimensional problem (2.7)–(2.8). To recover the dimensional price we use 

Dt  = e−qc (T −t)  = e−β(1−τ ), Vc = Dt S ψc (2.28) 

and the important sensitivities are recovered using 
∂Vc  

= D   ψ ∂ψc
 ∂Vc 

— ξ , 

√  ∂ψc 

∂S 
t c 

∂ξ 
= Dt S T , 

∂σ ∂α 

∂Vc 
= D

 
∂K 

t
 

∂ψc 
,
 

∂ξ 

∂Vc 
= D

 

∂qc 
t
 

  ∂ψ 

∂β 
− (1 − τ ) ψc  , 

 
(2.29) 

∂2Vc 

∂S2 
=

 

Dt ξ2 

S 

∂2ψc 

∂ξ2 
,
 

∂Vc  
= D S T 

∂ρ 
t
 

∂ψc 
.
 

∂γ 

Theta, ∂Vc/∂t, may be computed from Vc, ∂Vc/∂S, ∂Vc/∂K and ∂2Vc/∂S2 using 

(2.7). 
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3. Numerical methods for continuous dividends 

In this section we discuss simple finite-difference and Monte Carlo methods for 

solving (2.24). In Appendix A we give the details of a singular asymptotic approx- 

imation assuming the dimensionless volatility is small, as a check on the finite- 

difference solutions. The Monte Carlo method is used mainly as a check on the 

finite-difference results. To use Monte Carlo to compute the hedge-ratios (with- 

out using difference methods) we have developed a small time-to-expiry asymptotic 

approximation, which is described in detail in Appendix B. 

 

3.1. Finite-difference scheme 

In what follows we only outline our approach and refer the reader to a standard text, 

such as Tavella & Randall (2000) or Morton & Mayers (2005), for further details. 

For our purposes it suffices to approximate (2.24) using simple, equally-spaced, ξ 

and τ -grids with a standard two-point finite-difference approximation 

∂ψc ψm − ψm−1 

∂τ  
≈

 
n n (3.1) 

δτ 

for ∂ψc/∂τ and symmetric, θ-weighted, differences of the form 

∂ψc   ψm — ψm
   ψm−1 m−1   

∂ξ  
≈ (1 − θ) n+1 

2 δξ 
n−1 + θ n+1 − ψn−1 , 

2 δξ 

 
 

(3.2) 
∂2ψc   ψm — 2 ψm + ψm

   ψm−1 − 2 ψm−1 + ψm−1   

∂ξ2  
≈ (1 − θ) 

n+1 n 

(δξ)2 
n−1 + θ n+1 n 

(δξ)2 
n−1 , 

for the ξ-partial derivatives, where ψm
 ≈ ψc(n δξ, m δτ ) and δξ and δτ are the 

constant ξ and τ grid step sizes. 

We know that ψc → 0 monotonically as ξ → ∞ and that ψc tends to the linear 

solution (2.25) as ξ → −∞, so we apply the zero-curvature boundary conditions 

∂2ψc 

∂ξ2  
= 0    at    ξ = ξmin and ξmax, (3.3) 

where ξmin ≤ 0 and ξmax > 1, respectively, denote the left- and right-hand trunca- 

tion points on the ξ-grid. Substituting these approximations into (2.24) leads to a 
system of linear equations of the form 

R ψm−1 = L ψm, (3.4) 

where R and L are constant, tridiagonal, diagonally-dominant matrices and ψk 

denotes the vector of approximate prices on the ψ-grid at time-step k. The payoff 

in (2.24) gives the values of ψM , corresponding to τ = 1, and then we repeatedly 

solve (3.4) to move one time step, δτ , backwards until we obtain ψ0. 

With the scheme described above, all of ∂ψc/∂τ , ∂ψc/∂ξ and ∂2ψc/∂ξ2 may be 

computed using the approximations on which the finite-difference scheme itself is 
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based. To compute the sensitivities ∂ψc/∂α, ∂ψc/∂β and ∂ψc/∂γ, we proceed as 

follows. Differentiating (2.24) with respect to α shows that uc = ∂ψc/∂α satisfies 

∂uc 
+ 1

 2  2 ∂ uc ∂uc 2 ∂ ψc 

∂τ 2 α ξ 

∂ξ2  
+ 

(
(β + γ) ξ − β

)
 

uc(ξ, 1) = 0. 

= α ξ 
∂ξ ∂ξ2 

,
 
 

(3.5) 

The only important differences between solving this problem and (2.24) are in the 

terminal values and on the right-hand side of the linear system. To find end con- 

ditions, we note that uc = ∂ψc/∂α → 0, monotonically, as ξ → ±∞. This implies 

that ∂2uc/∂ξ2 → 0 in these limits, so the finite-difference matrices are identical for 

both problems (2.24) and (3.5). Therefore, once the vector representing ψc has been 

updated we may compute ∂2ψc/∂ξ2 and use this to update the vector representing 

uc, using the same matrices as for ψc. That is, each time step amounts to solving 

the linear system 

R um−1 = L um + am, (3.6) 

where the vector am is determined from ψm and ψm−1. To start the time-stepping 

procedure we use uc(ξ, 1) = 0, which implies uM = 0. 

Similarly, with vc = ∂ψc/∂β and wc = ∂ψc/∂γ we find that 
2 ∂vc 

+ 1
 2  2 ∂ vc ∂vc ∂ψc 

 
 
 
 

and 

∂τ 2 α ξ 

∂ξ2  
+ 

(
(β + γ) ξ − β

) 

∂ξ  
= (1 − ξ)  

∂ξ 
, 

vc(ξ, 1) = 0, 

 

2 

 

(3.7) 

∂wc 
+ 1

 2  2 ∂ wc ∂wc ∂ψc 

∂τ 2 α ξ 

∂ξ2   
+ 

(
(β + γ) ξ − β

)  

∂ξ  
= ξ 

∂ξ 
, 

wc(ξ, 1) = 0. 

 

(3.8) 

The fact that ψc is linear in ξ in the limits ξ → ±∞ implies that both vc and wc 

also satisfy zero curvature boundary conditions at the ends of the ξ-grid. Therefore 
both (3.7) and (3.8) may be solved in parallel with (2.24), in essentially the same 
way as (3.5). Note, however, that inside each individual time step we must find 

ψm+1 before attempting to find um+1, vm+1 and wm+1. 

 
3.1.1. An alternative finite-difference scheme 

As the scheme described above uses central difference approximations for the first 
ξ-partial derivative, there is a danger it will violate the Courant Friedrichs Lèvy 

(CFL) condition, particularly when |ξ| is small.b We saw no evidence of this in the 

 
bRoughly speaking, the CFL condition asserts that to obtain a stable and convergent numerical 

scheme we should difference in the characteristic direction implied by the first-order ξ-derivative in 

(2.24) (and on the left-hand sides of (3.5)–(3.8)) when the dimensionless volatility is zero, α = 0, 
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parameter regimes which we studied, but as a precaution (and following Dewynne 

& Shaw (2008) and Zhang (2001)) we made the following change of variables 

x = A(τ ) ξ − B(τ ), u(x, τ ) = ψc(ξ, τ ) (3.9) 

where  
A(τ ) = e(β+γ)(1−τ ), B(τ ) = 

β
 

β + γ 

 
(
A(τ ) − 1

)
. (3.10) 

This reduces (2.24) to the pure diffusion problem 

∂u 

∂τ 2 
α
 
2 

(
x + B(τ ) 

)2 ∂2u 

∂x2 
= 0, u(x, 1) = max(1 − x, 0), (3.11) 

which we solved on a regular (x, τ ) grid, as above. This is slower than the method 

above because the B(τ ) term means that we have to recompute matrices at each 

time step. For the parameter ranges we considered, the differences between the two 

numerical solutions, for ψc, ∂ψc/∂ξ, ∂2ψc/∂ξ2, ∂ψc/∂α, ∂ψc/∂β and ∂ψc/∂γ, are 

negligible. For example, with α = 0.4743, β = 0.0750, γ = 0.0250 the differences 

between the two Crank-Nicolson versions of schemes (with 2, 800 ξ-steps on [−2, 12] 

and 500 τ -steps), the respective RMS differences are ψc 2 ≈ 2×10−7,  ∂ψc/∂ξ 2 ≈ 

8 × 10−7,  ∂2ψc/∂ξ2 
2 ≈ 3 × 10−6,  ∂ψc/∂α 2 ≈ 5 × 10−7,  ∂ψc/∂β 2 ≈ 10−6 and 

 ∂ψc/∂γ 2 ≈ 7 × 10−7, which are comparable with the local truncation errors in 

these schemes. 
 

3.2. Monte Carlo solution 

Although not particularly efficient in this context, Monte Carlo methods neverthe- 

less serve as one way of verifying the finite-difference solutions. The solution of 

(2.24) may be written as 

ψc(ξ, τ ) = Eτ 

r 
max(1 − ξT , 0) | ξτ  = ξ 

l
, (3.12) 

where the process ξτ evolves as 

dξτ = 
( 

(β + γ) ξτ − β 
) 
dt + α ξτ dŴ 

t (3.13) 

and ξT denotes the value of ξτ at expiry, τ = 1. Using short time-to-expiry 

asymptotics, described in detail in Appendix B, we are able to accurately esti- 

mate ψc(ξ, τ ∗), where τ ∗ = 1 − c2 and c « 1 is a small, dimensionless parameter.c 

We may then use 

ψc(ξ, τ ) = Eτ 

r 
ψc(ξ, τ ∗) | ξτ  = ξ 

l
, (3.14) 

 
or small. Typically this implies that we should use less accurate, one-sided, approximations for 

the first-order ξ-derivative. For a more precise and detailed discussion of the CFL condition see, 

for example, §4.2 of Morton & Mayers (2005). 
cUsing the first eight terms in the asymptotic expansion described in Appendix B, we are able to 

compute an approximation to ψc(ξ, τ ∗) which is accurate to O(E8). In our Monte Carlo simulations 

in this subsection we take E = 0.1 and the error in our adjusted payoff, ψc(ξ, 0.99), is O(10−8). 



March 28, 2017    15:8    WSPC/INSTRUCTION FILE IJTAF-SFI 

 

 

0 

0 
∗ 

  

0 
∗ 

  

0 
∗ 

  

∂ξ 

∂ξ 

∂ξ 

∂ξ 

 

 

 

 

 
The Valuation of Self-funding Instalment Warrants    11 

 

for τ ≤ τ ∗, instead of (3.12). This makes it possible to use path-wise sensitivity 
methods to estimate all the hedge-ratios, as well as the price. This is more effi- 
cient than using Monte Carlo methods based on difference schemes (with small 

perturbations to ξ, α, β and γ) for these hedge-ratios. Specifically, once we have an 

approximation to ψ(ξ, τ ∗; α, β, γ) we may write 

ψ(ξ, 0; α, β, γ) = EQ
r
ψ(ξτ ∗ , τ ∗; α, β, γ) | ξ0 = ξ

l 
(3.15) 

where ξt evolves as (3.13). From this it follows that 
∂ψ 

(ξ, 0; α, β, γ) = EQ
 
  ∂ψ (ξτ ∗ , τ ∗; α, β, γ) ∂ξτ ∗  

    
ξ0 = ξ 

 
, (3.16) 

∂ξ 0   ∂ξ ∂ξ 
 

∂2ψ Q  ∂
2ψ   ∂ξτ ∗ 

 2   

∂ξ2 
(ξ, 0; α, β, γ) = E0 

∂ξ2 
(ξτ ∗ , τ ∗; α, β, γ) 

∂ξ
 

  
ξ0 = ξ 
   

(3.17) 
   2   

+ EQ  ∂ψ ∂ ξτ ∗  
  

0 (ξτ ∗ , τ ∗; α, β, γ) 
∂ξ2 

  
ξ0 = ξ  , 

  

 

∂ψ 
(ξ, 0; α, β, γ) = EQ

 

∂α 

  

∂ψ 

∂α 

(ξτ  , τ 
∗; α, β, γ)  ξ0 = ξ 

  
 

 
(3.18) 

+ EQ  ∂ψ ∂ξτ ∗  
  

0 (ξτ ∗ , τ ∗; α, β, γ)  
∂α

 

  
ξ0 = ξ  , 

  

 

∂ψ 
(ξ, 0; α, β, γ) = EQ

 

∂β 

  

∂ψ 

∂β 

(ξτ  , τ 
∗; α, β, γ)  ξ0 = ξ 

  
 

 
(3.19) 

+ EQ  ∂ψ ∂ξτ ∗  
  

 

and 

0 (ξτ ∗ , τ ∗; α, β, γ)  
∂β

 

  
ξ0 = ξ 

  

∂ψ 
(ξ, 0; α, β, γ) = EQ

 

∂γ 

  

∂ψ 

∂γ 

(ξτ  , τ 
∗; α, β, γ)  ξ0 = ξ 

  
 

 
(3.20) 

+ EQ  ∂ψ ∂ξτ ∗  
  

0 (ξτ ∗ , τ ∗; α, β, γ)  
∂γ

 

  
ξ0 = ξ  . 

  

In order to approximate these expectations numerically, we divide the interval 

[0, τ ∗] into a grid consisting of n equal subintervals of length δτ = τ ∗/n and numer- 

ically integrate (3.13) on this grid using a Milstein scheme. Specifically, we use the 

fixed step Milstein scheme (see §6.1 of Glasserman (2004) or §10.3 of Kloeden & 

Platen (1992)) to integrate (3.13) from ξ0 = ξ at dimensionless time zero to τn = τ ∗ 

ξk+1 ≈ 

 (
β + γ + 1 α2(Z2 − 1)

)
 

  
ξk − β  δτ + α ξk 

√   
δτ Zk , ξ0 = ξ, (3.21) 

2 k 

where the Zk are independent identically distributed (IID) normal random variables, 

Zk ∼ N (0, 1), and k = 0, 1, . . . , n − 1. We use the notation ξk as a short-hand for 

ξτk . In order to compute the hedge-ratios we note that 
∂ξk+1 (  1  2 2 √  ∂ξk ∂ξ0 

∂ξ 
≈

 β + γ + 2 α (Zk − 1)
) 
δτ + α δτ Zk 

∂ξ 
, = 1, (3.22) 

∂ξ 
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from which it follows that ∂2ξk /∂ξ2 = 0 for all k ≥ 0, that 
∂ξk+1 (  1  2 2 √  ∂ξk 

∂α 
≈

 β + γ + 2 α (Zk − 1)
) 
δτ + α δτ Zk 

∂α
  

(3.23) 

+ 
(
α(Z2 − 1) δτ + 

√
δτ Zk 

) 
ξk , 

with ∂ξ0/∂α = 0, that 
∂ξk+1 (  1  2 2 √  ∂ξk ∂ξ0 

∂β 
≈

 

and that 

β +γ + 2 α (Zk −1)
) 
δτ +α δτ Zk +(ξ 1) δτ, 

∂β 
= 0 (3.24) 

∂β 

∂ξk+1 (  1  2 2 √  ∂ξk ∂ξ0 

∂γ 
≈

 β + γ + 2 α (Zk − 1)
) 
δτ + α δτ Zk + ξk δτ, 

∂γ 
= 0. (3.25) 

∂γ 

In addition, we also use antithetic variables to reduce the variance of the Monte 
Carlo solution. That is, for each Zk in a path of (3.21), we run a corresponding path 

using −Zk . We use the same paths to estimate the price and all of the hedge-ratios. 

 
3.2.1. An alternative Monte Carlo scheme 

Given that β and γ are non-negative, the SDE (3.13) is mean repelling, away from 
β/(β +γ). This repulsion may lead to problems when integrating (3.13) numerically, 

but in practice this is unlikely as β and γ are typically small. If the mean repulsion, 

β + γ, is significant over the interval 0 ≤ τ ≤ τ ∗, we may ameliorate some of the 
problems it causes by scaling it out; for example, by setting 

β 
 

 
in which case 

ξτ  = e(β+γ)τ    ητ + 

 
β 

 
 

β + γ 

(
e−(β+γ)τ  − 1

)   
, (3.26) 

dητ = α  ητ +   

β + γ 

(
e−(β+γ)τ  − 1

)   
dWτ , η0 = ξ0. (3.27) 

We implemented this method but found no appreciable advantage, in terms of 

accuracy, for the parameter regimes in this paper. This method, however, is slower 

than the previous method as (3.27) is not τ -autonomous. 

 
3.3. Comparison of numerical results for continuous dividends 

Figure 1 shows numerical values of ψc, ∂ψc/∂ξ, ∂2ψc/∂ξ2, ∂ψc/∂α, ∂ψc/∂β and 

∂ψc/∂γ as functions of ξ as time τ = 0. The dimensionless financial parameters are 

α = 0.4743, β = 0.1250 and γ = 0.0250, which correspond, for example, to financial 

parameters q = 0.05, ρ = 0.01, σ = 0.30 and T = 2.5. 

The finite-difference scheme is a Crank-Nicolson method (θ = 1 ) on a ξ-grid 

covering [−2, 12] with 2, 800 subintervals of length δξ = 0.05 and 500 τ -steps of 

length δτ = 0.02. The main reason for choosing ξmin = −2 is to make sure that the 

scheme has been coded correctly—we have an exact solution for ξ < 0, see (2.25), 

and so we have exact expressions for the price and hedge-ratios for ξ < 0. 



March 28, 2017    15:8    WSPC/INSTRUCTION FILE IJTAF-SFI 

 

 

 
 
 
 

 
The Valuation of Self-funding Instalment Warrants    13 

 

 

 

 

 

 

 
 

f-d 

aMC 

2 

 

0.4 

 
0.35 

 
f-d 

aMC 

 

 

1.5 

 

  1 

 
0.3 

 
0.25 

  0.2 

0.15 

 
 

0.5 

 
0.1 

 

0.05 

 
0 0 

 
-1 0 1 2 3 4 5 

 
-1 0 1 2 3 4 5 

 

  

 

 
 

0 
 
 

2 
-0.2 

 
 

-0.4 
 

1.5 
 
 

-0.6 

 

f-d 

aMC 
1 

 

-0.8 
 

0.5 

-1 

 
 

-1.2 

-1 0 1 2 3 4 5 

 
 

0 

 
-1 0 1 2 3 4 5 

 

  

 

 
 

 

1.2 

 
f-d 

aMC 

1.2 f-d 

aMC 

1 

 
1 0.8 

 

 
0.8 

 

 
0.6 

 
0.6 

 0.4 

0.2 

 
0.4 0 

 

 
0.2 

 

 
0 

 
-1 0 1 2 3 4 5 

 
-0.2 

 
-0.4 

 
-0.6 

-1 0 1 2 3 4 5 
 

 

 

 
Fig. 1. High-resolution finite-difference values and antithetic Monte Carlo values for the SFI, with 

continuous dividend yields, and its sensitivities as functions of ξ at τ = 0, with α = 0.4743, 

β = 0.1250 and γ = 0.0250. Note that the finite-difference values for ξ < 0 are essentially exact. 
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The Monte Carlo scheme uses Milstein integration with 500 time steps to inte- 

grate (3.13) and price the SFI using antithetic variables, with 1, 000, 000 simulations 

(thus 500, 000 IID normals are generated per time-step). The path-wise sensitivity 

method, as outlined in §3.2 above, is used to compute the dimensionless hedge-ratios 

(using, of course, the same antithetic sequence of random numbers used to compute 
the price). 

Figure 2 shows a comparison of the differences between the Monte Carlo and 

finite-difference values together with the 99% confidence interval, as estimated by 

the Monte Carlo method, for the Monte Carlo values. These figures are typical of 

the numerical solutions with similar dimensionless and numerical parameters. 

 
4. A model for a European SFI with discretely paid dividend 

yields 

Here we assume that dividends are paid only at the n discrete times 

0 ≤ t1 < t2 < · · · < tn ≤ T. (4.1) 

At each time tk , the underlying stock pays a proportional dividend of qd S −  to its 
k 

holder. We assume that 0 < qd < 1 so that the dividend is always positive and that 
the stock price always remains positive after each dividend. Between consecutive 

dividend dates, i.e., for tk < t < tk+1, we assume that St  and Kt evolve according 

to (2.1) with qc = 0, that is 
dSt  

= µ dt + σ dW , 
dKt  

= r̂  dt, (4.2) 

St 
t 

Kt 

where µ, σ and r̂  are as defined in §2. Between dividend dates, tk < t < tk+1, the 

second equation of (4.2) implies the strike varies as Kt  = er̂ (t−tk ) Kt  . Across a 

dividend date, tk , the stock price and strike jump according to 

S+ − + − − 

k  = (1 − qd) Sk , Kk   = Kk   − qd Sk , (4.3) 

where, to simplify notation, we define 

S− + − + 

k   = St− , Sk   = St+ , Kk    = Kt− , Kk    = Kt+  . (4.4) 
k k k k 

As in the continuous dividend model, even if the strike is initially positive, it may 

become negative if the accumulated dividends are large enough. It is obvious from 

the second equations in (4.2) and (4.3) that if the strike becomes negative at some 

date then it remains negative for all subsequent time. 

Between dividend payment dates, tk < t < tk+1, a minor modification to the 

argument given in §2 shows that the price function, Vd(S, K, t), for a European SFI 
must satisfy the partial differential equation 

2 
∂Vd 

+ 1  2 2 ∂ Vd ∂Vd ∂Vd 

∂t 2 σ  S 
∂S2 

+ r S 
+ r̂  K r V = 0. (4.5) 

∂S ∂K 

At expiry, the payoff for the SFI is the same regardless of the dividend structure, 

so that (2.8) still holds. The SFI holder receives no cash as a result of the dividend 
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payment and hence the SFI price process must be continuous in time across a 

dividend payment date, Vt−  = Vt+ . This implies that 
k k 

Vd(S, K, t−) = Vd

( 
(1 − qd) S, K − qd S, t+ 

) 
(4.6) 

k k 

across each dividend date tk . Our model for an SFI written on an underlying stock 

which pays discrete dividend yields is the pricing equation (4.5) for t /= tk ,  

the payoff condition (2.8) at t = T and the jump condition across dividend dates 

(4.6), for S > 0, K ∈ R and t ≤ T . 

 
4.1. Special cases 

If there are no dividends then qd = 0 and so, as in §2.1, our model reduces to a non- 

standard formulation of the Black–Scholes formulation of a European call option; 

the analysis and solution are identical to those given in §2.1. 

Also as in §2.1, if Kt < 0 at t < T in this model then KT < 0 at expiry, and 

so the payoff is strictly positive. Again, there is no optionality as the SFI is certain 

to be exercised. Therefore, for K ≤ 0, Problem (4.5), (2.8), (4.6) may be solved by 

writing 

Vd(S, K, t) = ad(t) S − bd(t) K. (4.7) 

The partial differential equation (4.5) and the payoff condition (2.8) imply that 

ȧ d = 0, ad(T ) = 1, ḃ d = −ρ bd, bd(T ) = 1, (4.8) 

for t /= tk . Across a dividend date, the jump condition (4.6) implies that 

ad(t−) = (1 − qd) ad(t+) + qd bd(t+), bd(t−) = bd(t+). (4.9) 
k k k k k 

The jump conditions show that bd(t) is continuous in time — it simply replicates 

the future value of the current level of the strike given an interest rate of ρ — and 

is given by bd(t) = eρ(T −t). 

The jump condition for ad(t) shows that it is piecewise constant and represents 

the fact that in order to hedge the SFI in this case we must ensure we have exactly 

one stock at expiry (this is the (1−qd) ad(t+) term) and replicate the extra dividend 

payments subtracted from the strike between now and expiry (this is the qd bd(t+) 

term). Although it is possible to write down an analytic expression for ad(t), this 

expression is unhelpful in practice. It is easier to compute ad(t) backwards from 

expiry, recursively, starting with ad(t) = 1 for t > tn and then using 

ad(t) = ad(t−) = (1 − qd) ad(t+) + qd e
ρ(T −tk ), tk 1 < t < t . (4.10) 

k k − k 

 

4.2. Similarity reduction and non-dimensionalisation 

For the reasons given in §2.2, the model in this section may be simplified and made 

dimensionless by setting 

Vd(S, K, t) = S ψd(ξ, τ ), ξ = K/S, τ = t/T, τk = tk /T, (4.11) 
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in which case it becomes 
2 

∂ψd 
+ 1

 2  2 ∂ ψd ∂ψd 

∂τ 2 α ξ 
∂ξ2  

+ γ ξ 
= 0, ψ (ξ, 1) = max(1 ξ, 0), (4.12) 

∂ξ 

for τ /= τk . Across a dividend date τ = τk the jump condition is 
  ξ − qd + 

  
ψd(ξ, τ −) = (1 − qd) ψd 

1 − qd 
, τk . (4.13) 

The dimensionless parameters here are the same as in (2.22), α2 = σ2 T and γ = ρ T . 

It proves useful to have the solution of the partial differential equation in (4.12) 

and (4.13) subject to the linear terminal condition 

ψ(ξ, 1) = 1 − ξ. (4.14) 

This is the exact solution of (4.12)–(4.13) for ξ < 0 and so may be used to obtain 

boundary conditions for the finite-difference schemes described below. In principle 

it may also be used in a control-variate variance reduction scheme for Monte Carlo 

pricing algorithms, although we will not use it in this way. If we introduce the 

convention that 

τ0 = 0, τn+1 = 1, (4.15) 

then we may show that for τk < τ < τk+1 we have 

ψ(ξ, τ ) = ak + eγ(1−τ ) ξ, (4.16) 

where an = 1 and  
ak = (1 − qd) ak+1 + qd e

γ(1−τk ) for   k < n. (4.17) 

 

4.3. Finite-difference solutions 

Between two successive dividend dates, say τk < τ < τk+1, we may solve the partial 

differential equation in (4.12) in essentially the same manner as described in §3.1. 

An important difference is that since (4.12) is a standard Black–Scholes problem, 

there is a simple closed-form solution of (4.12)–(4.13) for τn  < τ < 1, given by 

ψd(ξ, τ )  =  Pbs(ξ, τ ; 1, 1, 0, −γ, α) — the Black-Scholes price of a European put 

option  with  spot  price  ξ,  time  τ  > τn,  strike  K  =  1,  expiry  T  =  1,  risk-free 

rate r = 0, continuous dividend yield q = −γ and volatility σ = α. Therefore we 

only need to solve (4.12)–(4.13) numerically over the time interval [0, τn], using 

Pbs(ξ, τ +; 1, 1, 0, −γ, α) as the terminal condition. 

Another important difference arises from the jump condition (4.13). If ξj 

point on the finite-difference ξ-grid, and τk is a dividend date, then (4.13) requires 
the value of ψd(ξI , τ +) at 

j  k 

= 
ξj − qd j 1 − q 

 
. (4.18) 

If ξI
 

d 

lies inside the finite-difference ξ-grid, ξmin ≤ ξI
 ≤ ξmax, then this may be 

achieved by interpolating the values of ψd already available on the finite-difference 

is a 
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grid. We use a cubic spline with natural boundary conditions to interpolate; the 

interpolation error of a cubic spline and the local truncation error of the finite- 

difference scheme are both O(δξ2) and the natural boundary conditions are consis- 

tent with the zero curvature boundary conditions we apply in the finite-difference 

scheme. Not all ξI lie inside the finite-difference grid, however. If ξI > ξmax, we set 
j j 

ψd(ξI , τk ) = 0, while if ξI < ξmin, we use (4.16). This requires the finite-difference 
j j 

scheme to use (4.17), in order to compute ak . 

To compute the sensitivity ∂ψd/∂α, we differentiate both (4.12) and (4.13) with 

respect to α. As there is a simple analytic formula for ψd, and hence for ud  = 

∂ψd/∂α, for τn < τ < 1, we only need to numerically solve the problem 

∂ud 
+ 1

 2  2 ∂ ud ∂ud 2 ∂ ψd 

∂τ 2 α ξ 
∂ξ2  

+ γ ξ 
I 

1 − τn 

= α ξ 
∂ξ 

 
2 

∂ξ2 
,
 

ud(ξ, τ +) = ξ eγ(1−τn ) e−d+ /2, 
2π 

(4.19) 

ud(ξ, τ −) = ud

 
 

ξ − qd 

1 − qd 

, τ +   , 

for τ < τ + in order to find ud = ∂ψd/∂ξ. Here and in what follows, d+ is given by 

 
d+ = 

log ξ + ( 1 α2 + γ)(1 − τn) 
 

α2(1 − τn) 

 
. (4.20) 

In order to implement the jump condition, we use cubic-spline interpolation (with 

natural boundary conditions) if ξI
 lies inside the finite-difference grid and set ud 

to zero if ξI
 lies off the grid. This follows because the asymptotic values of ψd are 

independent of α in both the limits ξ → ∞ and ξ → −∞. 

For τ > τn, vd = ∂ψd/∂qd is zero as there are no dividends paid between τn and 

the SFI’s expiry. For τ < τn we have 

∂vd 
+ 1

 2  2 ∂ vd ∂vd 

∂τ 2 α ξ 
∂ξ2  

+ γ ξ 
= 0, 

∂ξ (4.21) 

vd(ξ, τ +) = 0. 

The jump condition across dividend dates follows by differentiating (4.13) with 

respect to qd and is 
  ξ − qd + 

  
vd(ξ, τ −) = (1 − qd) vd 

1 − qd 
, τk  

(4.22)   ξ − qd + 
  (1 − ξ) ∂ψd    ξ − qd 

+   .
 

— ψd 
1 − qd 

, τk − 
(1 − qd)  ∂ξ 1 − qd 

, τk 

As in the previous two cases, if ξI lies within the finite-difference grid, we use cubic- 

spline interpolation to implement the jump condition, while if ξI > ξmax we set vd 

to zero. For ξI < ξmin we may differentiate (4.16) with respect to qd to find that for 
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τk−1 < τ < τk  

v (ξ, τ ) = 
∂ak 

d 
∂qd 

 

 
, (4.23) 

and differentiating (4.17) with respect to qd shows that 

∂an  
= 0, (4.24) 

∂qd 

and for k < n  
∂ak  

= (1 − q ) 
∂ak+1 

− a 

 
 

+ eγ(1−τk ). (4.25) 
 

∂qd 
d 

∂qd 
k+1 

As above, it is only necessary to solve numerically for wd = ∂ψd/∂γ if τ < τn 

and over this time range it satisfies the problem 

∂wd 
+ 1

 2  2 ∂ wd ∂wd ∂ψd 

∂τ 2 α ξ 
∂ξ2  

+ γ ξ 
= ξ , 

∂ξ ∂ξ 

wd(ξ, τ +) = (τn − 1) eγ(1−τn ) ξ N(−d+), (4.26) 

wd(ξ, τ −) = wd

 
 

ξ − qd 

1 − qd 

, τ +   . 

The jump condition may be implemented using cubic-spline interpolation if ξI lies 

inside the ξ-grid. If ξI > ξmax then we set wd to zero while if ξI < ξmin we may use 
j 

the fact that for τk−1 < τ < τk we have 

∂ak 

j 
 
 

γ(1−τ ) 

 
 

where 

wd → + (1 τ ) e 
∂γ 

ξ as   ξ → −∞, (4.27) 

 
 

 
and for k < n 

∂an  
= 0 (4.28) 

∂γ 

∂ak  
= (1 − q ) 

∂ak+1 
+ (1 − τ ) q eγ(1−τk ). (4.29) 

∂γ 
d 

∂γ 
k d

 

 

4.4. Monte Carlo simulations 

In order to effect a Monte Carlo solution of (4.12)–(4.13), we work in terms of a 

stochastic process ξτ and use the short-hand notation 

ξ− + − − − + + + 

k   = ξτ − , ξk   = ξτ + , ψk  = ψd(ξk , τk ), ψk  = ψd(ξk , τk ). (4.30) 
k k 

Between two consecutive dimensionless dividend dates, say τk and τk+1, the partial 

differential equation in (4.12) implies that ξτ should evolve according to 

ξτ = ξ+ exp
(
(γ − 1 α2) (τ − τk ) + α Wτ τ  

)
, (4.31) 

k 2 − k 



March 28, 2017    15:8    WSPC/INSTRUCTION FILE IJTAF-SFI 

 

 

ξ+ ξ− 

n 

τ 

τ 

2 

= 

 
 
 
 

 
20   J.N. Dewynne and N. El-Hassan 

 

while the jump condition (4.13) implies that across τk we have 

k − qd 
k 

 
. (4.32) 

1 − qd 

These enable us to simulate the dimensionless price-process ξτ . The jump condition 

(4.13) also implies that across τk we have 

ψ+ − 

k  = (1 − qd) ψk . (4.33) 

Therefore, if there are m(τ ) dimensionless dividend dates between τ and the final 

dimensionless dividend payment date τ +, we may write 

ψd(ξ, τ ) = (1 − qd)m(τ ) EQ[ ψd(ξ + , τ +) | ξτ = ξ ], (4.34) 
τ τn n 

where in this context EQ denotes expectation with respect to the process ξτ  de- 

scribed above, with the information available at time τ . In particular, 

ψd(ξ, 0) = (1 − qd)n EQ[ ψd(ξ + , τ +) | ξ0 = ξ ]. (4.35) 
0 τn n 

As noted above, for τn  < τ < 1 we know ψd(ξ, τ ) = Pbs(ξ, τ ; 1, 1, 0, −γ, α) and 

hence we can write ψd(ξ, τ +) = Pbs(ξ, τ +; 1, 1, 0, −γ, α). 
n n (ξ, τ ) using Monte Carlo simula- 

Thus we are able to obtain estimates for ψd 

tion. As before, we use antithetic variables to reduce variance and we compute the 

required hedge-ratios using path-wise sensitivities. Unlike the case in the previous 

part, however, we do not need to use a numerical integration scheme to obtain ξ + . 
n 

We also use the fact that we have an exact formula for the option immediately after 

the final dividend (but before, in general, expiry) and so we do not need the small 

time-to-expiry asymptotic approximations here. 

 

4.5. Comparison of numerical results for discrete dividends 

Figure 3 shows finite difference and Monte Carlo values of ψd, ∂ψd/∂ξ, ∂2ψd/∂ξ2, 

∂ψd/∂α, ∂ψd/∂β and ∂ψd/∂γ as functions of ξ at time τ = 0. The dimensionless 

financial parameters are α = 0.4743, qd = 0.0125 and γ = 0.0250. There are nine 

equally spaced dimensionless dividend dates occurring at τ1 = 0.1, τ2 = 0.2 and 
so on through to τ9 = 0.9. The value of qd is chosen so that the rate of dividend 

payments is the same as the continuous dividend yield model in §3.3, i.e., qd = qc δτd. 

These dimensionless values correspond, for example, to financial parameters qd ≈ 
0.05, ρ = 0.01, σ = 0.30, T = 2.5 with nine quarterly dividend payments starting at 
time t = 0.25 and ending at time t = 2.25. The finite-difference scheme is a Crank- 

Nicolson method (θ = 1 ) on a ξ-grid covering [−2, 12] with 2, 800 subintervals 
of length δξ = 0.05 and a total of 450 τ -steps of length δτ = 0.02. Between two 

consecutive dividend dates there are 50 time steps. As the finite-difference solution is 

only computed for τ < τ9, the time step-size here is the same as in §3.3. The Monte 
Carlo scheme uses antithetic variables with 1, 000, 000 simulations (thus 500, 000 
IID normals are generated at each of the times τ0 = 0 through to τ8 = 0.8, but not 
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at τ9 = 0.9). Thus, in so far as is possible, the Monte Carlo parameters here are the 

same as in §3.3. 

Figure 4 shows the differences between the Monte Carlo and finite-difference 

solutions for the dimensionless price and hedge-ratios shown in Figure 3. It also 

shows, as grey lines, the 99% confidence intervals, estimated by the Monte Carlo 

program, for the errors in the Monte Carlo values. 

Note that both the finite-difference and Monte Carlo estimates are computed 

using the exact values at τ + = 0.9, rather than at τ = 1. These figures are typical 
of results with similar dimensionless and numerical parameters. 

 
 

5. Multiple-scales analysis 

In this section we show that if there are many dividends paid during the life of 

the SFI then the solutions of the discrete dividend yield model given in §4 are well 

approximated by the solutions of the continuous dividend yield model of §2. Further, 

we compute the first-order correction which should be applied to the solution of the 

continuous dividend model in order to obtain more accurate approximations to the 

solution of the discrete dividend model. 

The first frame of Figure 5 shows solutions of the discrete and continuous div- 

idend SFI models, with comparable dividend payments (see below), as a function 

of τ and at a fixed value of ξ = 0.25. In the discrete dividend SFI case, the under- 

lying stock pays many dividends over the life of SFI. The second frame shows the 

difference between the two solutions as a function of τ at ξ = 0.25. The interval 

between dividends is constant and is ∆τ = 0.05. Note that the difference between 

the solutions changes from a negative value just after a dividend has been paid to 

a positive value just before the next dividend is about to be paid. After this new 

dividend is paid, the cycle repeats itself. We shall model this change as a periodic 

solution on the time-scale between dividend dates modulated by a function which 

varies over the life of the SFI but only slowly between dividend dates. 

We start from the discrete dividend model, (4.12)–(4.13), and, for simplicity, we 

assume in this section that the dividend dates are equally spaced, i.e., for each k 

tk+1 − tk = δt, τk+1 − τk = δτ, (5.1) 

where δt and δτ = δt/T are fixed. As we assume there are many dividend dates 

over the life of the SFI, δτ , is small and we use it as the small parameter in our 

multiple-scales argument, therefore in what follows we follow the usual convention 

and represent it by c « 1.d It is also convenient to introduce a scaled discrete 

dividend yield, β̂, defined to be the dividend yield per unit of dimensionless time 

and therefore comparable with the dimensionless continuous dividend yield β. Thus, 

c = δτ = δt/T, qd = c β̂. (5.2) 

 
dThe E in this section is unrelated to the E in §3.2. 
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Fig. 3. High resolution finite-difference values and antithetic Monte Carlo values for the price of a 

discrete SFI and its sensitivities as functions of ξ, with α = 0.4743, qd = 0.0125 and γ = 0.0250. 

There are 9 dividend dates at τ1 = 0.1, τ2 = 0.2, . . . , τ9 = 0.9, which makes qd roughly equivalent 

to β = 0.1250. 
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Fig. 4. Differences between the high resolution finite-difference and Monte Carlo values shown 

in Figure 3. The grey dashed lines represent Monte Carlo estimates of the 99% confidence band 

for the corresponding Monte Carlo values. The root mean square difference, rms, and maximum 

absolute differences, max, between the two sets of values is shown at the top of each frame; these 

figures are computed over all Monte Carlo values shown in the corresponding frame. 
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Fig. 5. The first frame shows solutions of the discrete and continuous dividend SFI models, with 

comparable dividend payments, as a function of τ at a fixed value of ξ = 0.2500, with α = 0.559, 

γ = 0.05, β = 0.25, qd = 0.0125 and E = 0.05; these correspond to dimensional values of σ = 0.25, 

qc = 0.05, ρ = 0.01, T = 5.00 and 19 quarterly dividends, for example. The second frame shows 

the difference between the two solutions at the parameters given above. 

 

 

In terms of c and β̂, we may write the jump condition (4.13) as 

ψd(ξ, τ −) = (1 − cβ̂) ψd

 
 
ξ − cβ̂ 

1 − cβ̂ 

 

, τ + 

 
. (5.3) 

The terminal condition in (4.12) is not important in what follows, although our ex- 

pansions are only accurate if dimensionless time is well away from the dimensionless 

expiry, τ = 1. 

We assume that α, γ and β̂ are large compared to c and use a multiple-scales 

analysis to show that to leading order, in c, the discrete dividend yield model of §4 

gives rise to the continuous dividend yield model of §2, with β̂ playing the role of 

β. Our argument follows those given in Howison (2012); for more general details on 

the method of multiple scales we refer the reader to Chapter 11 of Bender & Orszag 

ψ
 

ψ
d

  −
 ψ

c
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(1999) or §3.2 of Kevorkian & Cole (1981). 
To achieve our aim, we introduce a new ‘fast-time’ variable 

θ = (τ − τk )/c, (5.4) 

where τk is a fixed dividend date. The idea is that θ changes on an O(1) scale between 

successive dividends and the rapid but small variations, shown in the second frame 

of Figure 5, are associated with changes on this θ-scale, while the more gradual 

modulation shown in the first frame of Figure 5 occur on the τ -scale. In order to 

avoid transient effects close to expiry, we assume that τk is well away from expiry, 

i.e., 1 − τk » 0. 

In order to make concrete the ideas expressed above, we write the SFI’s price as 
 

ψd(ξ, τ ) = Φ(ξ, τ, θ). (5.5) 
 

It follows that  
∂ψd 

= 
1 ∂Φ 

+ 
∂Φ 

 

 
(5.6) 

∂τ c ∂θ ∂τ 

and hence that the partial differential equation in (4.12) may be written as 

1 ∂Φ 
+ 

∂Φ ∂2Φ ∂Φ 
+ 1 α2 ξ2 + γ ξ 

 
= 0, (5.7) 

c ∂θ ∂τ 2
 ∂ξ2 ∂ξ 

away from dividend dates, i.e., for θ /= 0, θ /= 1, while the jump condition  

(4.13) may be expressed as 

Φ(ξ, τ, 0−) = (1 cβ̂)      
ξ − c β̂

 
ˆ 

− 

 

, τ, 0+   . (5.8) 

Based on the observation that the dividend payments occur periodically with unit 

period on the θ-scale, we make the assumption that,e up to and including O(c2), 

Φ(ξ, τ, θ) is θ-periodic, with unit period, 

Φ(ξ, τ, θ + 1) = Φ(ξ, τ, θ) + O(c3). (5.9) 

This allows us to express the jump condition as 
  ξ − c β̂ 

Φ(ξ, τ, 1−) = (1 − cβ̂) Φ 
 

 

1 − cβ̂ 
, τ, 0+   + O

( 
c3 

)
. (5.10) 

We next assume it possible to expand Φ as a regular Taylor expansion in c, 

about c = 0, 

Φ = Φ0 + c Φ1 + c2 Φ2 + O(c3), (5.11) 

 
eThis does not, of course, imply that ψd(ξ, τ ) is τ -periodic. Rather it implies that since the 

dividends recur with a θ-period of unity, the behaviour of the price is periodic on the θ-scale, but 

subject to a gradual modulation on the τ -scale, as illustrated in Figure 5. 
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where each of the Φj is independent of c. When we substitute this expansion into 

(5.7) and equate powers of c, we obtain 
 

∂Φ0 
= 0, 

∂Φ1 
= −L [ Φ ∂Φ2 ], = −L [ Φ 

 
], (5.12) 

 

where 

  

∂θ ∂θ 

 

 
∂ 

0 0 
∂θ 

0 1 

 

1  2  2  ∂
2 ∂ 

L0  = +   α ξ 
∂τ 2

 
∂ξ2 

+ γ ξ 
∂ξ 

. (5.13) 
 

From the first equation in (5.12), the leading-order SFI’s price, Φ0, is independent 

of θ, so 
 

ψd = Φ0(ξ, τ ) + O(c). (5.14) 
 

Integrating the second and third equations of (5.12) shows that 

Φ1(ξ, τ, θ) = −θ L0[ Φ0(ξ, τ ) ] + A1(ξ, τ ), 

Φ2(ξ, τ, θ) = 1 θ2 L2[ Φ0(ξ, τ ) ] − θ L0[ A1(ξ, τ ) ] + A2(ξ, τ ), 

 
 

 
(5.15) 

2 0 

where the assumed θ-periodicity of Φ implies that θ in these expressions should be 

taken modulo one; that is, each time a new dividend date is crossed θ is reset to 

zero and then increases linearly to unity immediately prior to the following dividend 

date. 

The eigenfunctions Φ0(ξ, τ ), A1(ξ, τ ) and A2(ξ, τ ) here are, as yet, undeter- 

mined. To determine them, we must consider the jump condition, (5.10). 

To this end, we expand Φ
(
(ξ − cβ̂)/(1 − cβ̂), τ, 0+

) 
as a Taylor series in c, about 

c = 0, and substitute the resulting expression into (5.10) and then expand the 

right-hand side as a Taylor series in c (again about c = 0), to obtain 

Φ(ξ, τ, 1−) = Φ(ξ, τ, 0+) 

cβ̂ (1 ξ)    
∂Φ

(ξ, τ, 0+) + Φ(ξ, τ, 0+) 
 

 
∂ξ 

 

(5.16) 

+ 1  2 ̂ 2 2 ∂ Φ + 3 

2 c β (1 − ξ) 
∂ξ2 

(ξ, τ, 0 ) + O(c ). 

Using the expansion (5.11) and matching powers of c gives 

Φ0(ξ, τ, 1−) = Φ0(ξ, τ, 0+), (5.17) 

Φ1(ξ, τ, 1−) = Φ1(ξ, τ, 0+) 

− β̂ (1 − ξ) 
∂Φ0 

(ξ, τ ) − β̂ Φ (ξ, τ ), (5.18) 

∂ξ
 0 
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and  
Φ2(ξ, τ, 1−) = Φ2(ξ, τ, 0+) 

− β̂   (1 − ξ) 
∂Φ1 

(ξ, τ, 0+) + Φ (ξ, τ, 0+) 
 

 

∂ξ 

+ 1 β̂2 (1 − ξ)2 ∂ 

1 

 
Φ0 

(ξ, τ ). 

(5.19) 

2 ∂ξ2 

The equality in (5.17) is satisfied automatically, as the eigenfunction Φ0(ξ, τ ) is 

independent of θ. The second equation, (5.18), is non-trivial. When applied to first 

equation in (5.15), it gives 

 

L0[ Φ0 ]  = 
 

for all ξ, which in turn implies that 

β̂   (1 − ξ) 
∂Φ0 

∂ξ 
+ Φ0   , (5.20) 

Φ1(ξ, τ, θ) = A1(ξ, τ ) − β̂ θ  (1 − ξ) 
∂Φ0 

∂ξ 
(ξ, τ ) + Φ0(ξ, τ )  . (5.21) 

Written out in full, (5.20) is the partial differential equation 

∂Φ0 
+ 1

 2  2 ∂ Φ0 ∂Φ0 

∂τ 2 α ξ 

∂ξ2   
+ 

( 
(β̂ + γ) ξ − β̂ 

)
 

∂ξ 
− β̂ Φ0 = 0, (5.22) 

which is (2.21), but with β replaced by β̂. Thus to leading order in c = δt/T , 

the solution of the discrete dividend problem is indeed given by the solution of 

the continuous dividend problem with β = β̂ = qd/c or, in dimensional variables, 

qc = qd/δt. 

To find the O(c) correction to this approximation, (5.21), we must find the eigen- 
function A1(ξ, τ ). We obtain an equation to determine it as a solvability condition 
for Φ2. Substituting the second expression of (5.15) into (5.19) gives 

L0[ A1 ] − β̂  (1 − ξ) ∂A1 + A1   = 1 L2[ Φ0 ] − 1 β̂2 (1 − ξ)2
 ∂2Φ0 

 
. (5.23) 

∂ξ 2   0 2 

We may use (5.20) to deduce that 

∂ξ2 

L0[ Φ0 ] = β̂ L0 

and if we observe that 

(1 − ξ) 
∂Φ0 

  

∂ξ 
+ β̂2

 
 (1 − ξ) 

∂Φ0 
+ Φ

 

∂ξ
 0 

 
(5.24) 

L0  (1 − ξ) 
∂Φ0 

  

∂ξ = β̂ (1 − ξ) 
2 ∂

2Φ0 2 

∂ξ2  
− α ξ 

∂2Φ0 

∂ξ2  
− γ 

∂Φ0 
, (5.25) 

∂ξ 

then we find that 

2 2 
 

 2 ∂
2Φ0 ∂Φ0 2  ∂

2Φ0 ∂Φ0 
  

L0[ Φ0 ] = β̂ (1 − ξ) 
∂ξ2  

+ (1 − ξ) 
∂ξ  

+ Φ0 
— β̂ α ξ 

∂ξ2  
+ γ 

∂ξ 
. (5.26) 

2 
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Therefore, A1 is determined by 
2 ∂A1 

+ 1 2  2 ∂ A1 ∂A1 

∂τ 2 α ξ 

∂ξ2 
+  

( 
(β̂ + γ) ξ − β̂ 

)
 

∂ξ 
− β̂ A1 

   2       

 
(5.27) 

= 1 β̂2   (1 − ξ) 
∂Φ0 

+ Φ — β   α2 ξ 
∂
 Φ0 

+ γ 
∂Φ0   

.
 

2 ∂ξ 
0 2 ∂ξ2 ∂ξ 

At expiry we must have A1(ξ, 1) = 0 or we would change the payoff (which is dealt 

with by Φ0(ξ, τ )). 

At this point, it is convenient to introduce the β̂-discounted value of A1, defined 

as Â1(ξ, τ ) = e−β̂ (1−τ ) A1(ξ, τ ), and a new differential operator, L1, defined by 
∂ 1  2 2  ∂

2 ∂ 

L1 = 
∂τ 

+ 2 α  ξ 
∂ξ2 

+ 
( 

(β̂ + γ) ξ − β̂ 
) 

∂ξ 
. (5.28) 

With the notation [ A, B ] = AB − BA and I as the identity operator, we find that 

L1 satisfies the operator identities 
r 
L1, (1 − τ ) I 

l 
= −I, 

∂ 

L1, (1 − ξ) 
∂ξ

 

∂ 2 

= −γ 
∂ξ 

− α 

∂2 
ξ , 

∂ξ2 

(5.29) 

both of which prove to be useful in what follows. 

We may write (5.27) in terms of L1 and Ψ0 as 

∂Ψ0 

 
 

∂2Ψ0 

 

 

 
∂Ψ0 

L1[ Â1 ]  =  1 β̂2   (1 − ξ) + Ψ0   − 1 β̂   α2 ξ 
 

∂ξ2 

+ γ , 
∂ξ 

 
(5.30) 

Â1(ξ, 1) = 0. 

As Ψ0 satisfies L1[ Ψ0 ] = 0, it follows from (5.29) that 

L1[ (1 − τ ) Ψ0 ] = −Ψ0, 

 
 
 
 

 
(5.31) 

L1  (1 − ξ) 
∂Ψ0 

+ Ψ
 

∂ξ
 0 

= −γ 
∂Ψ0 2 

∂ξ  
− α ξ 

∂2Ψ0 

∂ξ2 
,
 

and the fact that Ψ0(ξ, 1) = max(1 − ξ, 0) shows that both 

r 
(1 − τ ) Ψ0 

l
τ =1 

= 0, 

Therefore, we may write 

(1 − ξ) 
∂Ψ0 

+ Ψ
 

∂ξ
 0 

 

 
τ =1 

 

= 0. (5.32) 

Â1(ξ, τ ) = 1 β̂2   B̂1(ξ, τ ) − (1 − τ ) Ψ0   + 1 β̂   (1 − ξ) ∂Ψ0 + Ψ0   , (5.33) 
2 2 ∂ξ 

where B̂1(ξ, τ ) is the solution of the terminal value problem 

∂Ψ0 

L1[ B̂1 ] = (1 − ξ)  
∂ξ 

, 
B̂1(ξ, 1) = 0. (5.34) 

∂ξ 
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This is simply (3.7), but with ψc replaced by Ψ0, β replaced by β̂ and vc = ∂ψc/∂β 

replaced by B̂1. Given that Ψ0 = ψc when β = β̂, this shows that 
∂Ψ0 

B̂1(ξ, τ ) = 
∂β̂ 

(ξ, τ ). (5.35) 

Thus, we find that the eigenfunction Â1(ξ, τ ) which determines the first-order cor- 

rection term is given by 

Â1(ξ, τ ) = 1 β̂2 
 

 
∂Ψ0 

∂β̂ 

     ∂Ψ0 
2    ∂ξ 

+ Ψ0   , (5.36) 

or, in terms of the undiscounted leading-order price, 
∂Φ0 

 

∂Φ0 

A1(ξ, τ ) = 1 β̂2
 

∂β̂ 
+ 1 β̂   (1 ξ) 

∂ξ 
+ Φ0   . (5.37) 

The (un-discounted) first-order correction itself is simply 
∂Φ0 

Φ1(ξ, τ ; θ) = A1(ξ, τ ) − β̂ θ  (1 − ξ) + Φ0 

 
  

(5.38) 
= 1 β̂2 ∂Φ0 ˆ  1 ∂Φ0 

2 
∂β̂ 

+ β ( 2 − θ) (1 − ξ) + Φ0   , 
∂ξ 

where, as noted above, θ varies linearly from θ = 0 immediately after a dividend is 

paid to θ = 1 immediately before the following dividend is paid. 

In terms of the original dimensionless variables, we find that 

ψd(ξ, τ ; β) = φc(ξ, τ ; β) 
 

 
+ c β 

1 β 
∂φc 

+ ( 1 − θ)   (1 − ξ) 
∂φc 

+ φ 
 

 
 

(5.39) 
 
 

 
where 

2 ∂β 2 

+ O(c2). 

∂ξ 
c
 

φc(ξ, τ ; β) = e−β(1−τ ) ψc(ξ, τ ; β). (5.40) 

This may be used to either approximate the solution of the discrete problem in §4 

from the solution of the continuous problem in §2 or, given that 

∂ψd 
= 

∂φc 
+ O(c), (5.41) 

∂β ∂β 

vice versa. One might use the first approach if using a finite-difference technique (as 

it is easier to solve the model in §2 than the model in §4 in this case) and the second 

approach if using a Monte Carlo method (as the model in §4 does not require the 

numerical integration of a stochastic differential equation). 

In the first frames of Figures 6–9 we compare φc and ψd, computed using the 

finite-difference methods described in §3 and §4.3 respectively, as functions of τ 

at different fixed values of ξ, for the parameter values α = 0.559, β = β̂ = 0.25, 

∂ξ 

( \ 
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γ = 0.05 and c = 0.05. These dimensionless values correspond to, for example, an 

expiry date of T = 5 years, volatility of σ = 0.25, interest-rate premium of ρ = 0.01, 

continuous dividend yield of q = 0.05 and 19 discrete quarterly dividends paid as 

yields of 0.0125. In the second frame of each figure we compare the difference φc −ψd 

with the O(c) multiple-scales correction term, c Φ1, both as functions of τ at the 

same fixed value of ξ as in the first frame and, in the third frames, we show the 

remainder terms φc − ψd − c Φ1. The differences shown in the third frames should be 

approximately equal to c2 Φ2 and therefore both O(c2) and quadratic in (θ mod 1), 

modulated by a function that varies significantly only on the τ -scale. This appears 

to be the case in all of these frames. Figure 10 shows φc and ψd as functions of 

ξ at τ = 0 in the first frame, φc − ψd and Φ1 as functions of ξ at τ = 0 in the 

second frame and φc − ψd − Φ1 as a function of ξ at τ = 0 in the third frame. The 

dimensionless parameters are the same as in the previous figures. 
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Appendix A. Small volatility asymptotic solution 

We may obtain approximate analytic solutions of (2.24) using the approach outlined 

in Dewynne & Shaw (2008) or the procedure described in Siyanko (2012). In both 

cases, the idea is to obtain a singular perturbation expansion for the limit α → 0+. 

In practice, however, such series are often found to be acceptable even when α ∼ 1. 

The analysis here closely follows that of Dewynne & Shaw (2008) and so we omit 

most of the detail. 

As explained in Dewynne & Shaw (2008), we decompose the ξ domain into two 

outer regions, where α2 ξ2 ∂2ψc/∂ξ2 « 1, and a complementary inner region where 

this condition is not met; see Figure 11 for a schematic representation. Roughly 

speaking, in the inner region there is a chance that the dimensionless SFI’s money- 

ness will change before expiry, so dimensionless volatility and gamma are crucial, 

whereas the outer regions are those where the chance of a change in moneyness is 

negligible, so volatility and gamma are irrelevant. 

In the outer regions we assume a regular expansion in powers of α2, 

ψc(ξ, τ ) ≈ Ψ0(ξ, τ ) + α2 Ψ1(ξ, τ ) + α4 Ψ2(ξ, τ ) + · · · . (A.1) 

The leading-order term, Ψ0, is determined by the hyperbolic problem 
∂Ψ0 

+ 
(
(β + γ) ξ − β

) ∂Ψ0 
= 0, Ψ (ξ, 1) = max(1 − ξ, 0). (A.2) 

∂τ ∂ξ
 0

 

This may be solved to show that 

Ψ0(ξ, τ ) = e(β+γ)(1−τ ) max
( 
ξ∗(τ ) − ξ, 0 

)
, (A.3) 

where ξ∗(τ ) is given by (2.26). There is a jump in the first ξ-partial derivative 

across ξ = ξ∗(τ ), which implies a δ-function in the second ξ-partial derivative at 

this point. Away from ξ = ξ∗(τ ), α2 ξ2 ∂2Ψ0/∂ξ2 is identically zero, consistent with 

α2 ξ2|∂2ψc/∂ξ2| « 1. The δ-function behaviour at ξ∗(τ ) is inconsistent with this 

assumption and implies there is an inner region, located about ξ∗(τ ), where this 

assumption breaks down. 

In order to determine the behaviour of ψc in the neighbourhood of ξ∗(τ ) we 

introduce new inner variables, ζ and u, defined by 

ξ − ξ∗(τ ) 

ζ = 
α 

, ψc(ξ, τ ) = α u(ζ, τ ). (A.4) 

The inner region is defined by the conditions that ζ and u are O(1). 

In terms of these variables (2.24) becomes 

∂u 
+ 1 

( 
ξ∗(τ ) + α ζ 

)2 
+ (β + γ) ζ 

∂u
 
 
= 0, 

∂τ 2
 ∂ζ2 ∂ζ 

u(ζ, 1) = max(−ζ, 0). 

(A.5) 

We may eliminate the drift term here by introducing the new variables 

η = F (τ ) ζ, θ = Θ(τ ), v(η, θ) = u(ζ, τ ), (A.6) 
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where 

F (τ ) = e(β+γ)(1−τ ), Θ(τ ) = 

 
   1 

F ∗(p)2 dp, F ∗(τ ) = ξ∗(τ ) F (τ ). (A.7) 
τ 

This change of variables reduces (A.5) to 

∂v 
= 1 

( 
1 + α η Â(θ) 

)2  
θ > 0, v(η, 0) = max(  η, 0), (A.8) 

∂θ 2
 ∂η2 

where Â(θ) is defined implicitly by 

Â(θ) = F ∗(τ )−1. (A.9) 

As Θ̇ (τ ) = −F ∗(τ )2 < 0, Â(θ) is well-defined for τ < 1. 

We now assume the regular expansion 

v(η, θ) = v0(η, θ) + α v1(η, θ) + α2 v2(η, θ) + · · · , (A.10) 

where the vj and their partial derivatives are O(1) functions that do not depend 

on α. Substituting this expansion into (A.8) and equating coefficients of powers of 
α gives the following hierarchy of problems, 

∂v0 ∂ 2v0 

= 1 

∂θ 2
 

∂η2 
, v0(η, 0) = max(−η, 0), (A.11) 

 

∂v1 1 ∂
2v1 ∂2v0 

 
 

and 

∂θ 
− 

2
 

∂η2  
= η Â(θ) 

∂η2 
, v1(η, 0) = 0, (A.12) 

∂v2 1 ∂
2v2 ∂2v1 1 2 ∂2v0 

∂θ 
− 

2
 

∂η2  
= η Â(θ) 

∂η2  
+ 2 

(
η Â(θ)

)
 ∂η2 

, v2(η, 0) = 0. (A.13) 

The problems for v3, v4, v4 and so forth are identical to that for v2, except for the 

obvious adjustments to the indices. 

The solution of (A.11) for θ > 0 is 
       ( ) 

with 

v0(η, θ) = −η N
( 
−η/  θ  + θ/2π exp −η2/2θ , (A.14) 

    2 

) ∂v0 
= −N

( 
−η/ θ 

∂ 
and 

v0 
= G(η, θ), (A.15) 

where 

∂η 

    1 
x

 −q2 /2 

∂η2 

e−x /2t 

N(x) = √
2π 

e 
dq and    G(x, t) = 

√
2π t 

. (A.16) 

If we set u0(ζ, τ ) = v0(η, θ) we find that 

lim 
ζ→−∞ 

u0(ζ, τ ) → −e(β+γ)(1−τ ) ζ, lim u0(ζ, τ ) → 0, (A.17) 
ζ→∞ 

where the error terms are exponentially small establishing that the leading-order 

inner solution, u0, matches to the outer solution. 
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The problem for v1(η, θ) reduces to 

∂v1 1 ∂
2v1 

∂θ 
− 

2
 

∂η2 
= η Â(θ) G(η, θ), v1(η, 0) = 0. (A.18) 

Note that G(η, θ) has the properties that 

∂G ∂2G ∂G 
= 1        

∂θ 2
 ∂η2 

,
 

= η G/θ, (A.19) 
∂η 

which imply that the functional form of v1(η, θ) is 

v1(η, θ) = â1(θ) η G(η, θ). (A.20) 

Substituting this into (A.18) gives the ordinary differential equation 
d (

θ â (θ)
) 

= θ Â(θ). (A.21) 

dθ 
1
 

If we set a1(τ ) = â1(θ) we obtain 
d (

Θ(τ ) a (τ )
) 

= ΘI(τ ) Â(θ) Θ(τ ) = −F ∗(τ ) Θ(τ ), (A.22) 

dτ
 1 

the terminal condition implies that a1(1) = 0, and so 

1 

a1(τ ) = 
Θ(τ )

 

   1 

F ∗(p) Θ(p) dp. (A.23) 
τ 

This may be expressed in terms of elementary functions, but the formula is lengthy 

and not particularly illuminating, so we omit it; it is easily evaluated using a sym- 

bolic algebra package. Thus, with u1(ζ, τ ) = v1(η, θ), we find that 

u1(ζ, τ ) = a1(τ ) η G(η, θ). (A.24) 

We find that u1(ζ, τ ) vanishes exponentially as ζ → ±∞, establishing that there is 

again no need for explicit matching to the outer solution. 

Following Dewynne & Shaw (2008) or Siyanko (2012) and with u2(ζ, τ )  = 

v2(η, θ), we find 
 

 
where 

u2(ζ, τ ) = 
(
a2(τ ) + b2(τ ) η2 + c2(τ ) η4

) 
G(η, θ), (A.25) 

 
   1 

a2(τ ) = F ∗(p)2 b2(p) dp 
τ 

 

Θ(τ )2 b2(τ ) = 6 

 
− 3 

   1 

F ∗(p)2 Θ(p)2 c2(p) dp + 1
 

τ 

   1 

F ∗(p) Θ(p) a1(p) dp, 
τ 

   
1 

Θ(p)2 dp 
τ 

 

 
(A.26) 

 

Θ(τ )4 c2(τ ) = 

   1 

F ∗(p) Θ(p)2 a1(p) dp 
τ 
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and 
 

 
where 

 

u3(ζ, τ ) = 
(
a3(τ ) η + b3(τ ) η3 + c3(τ ) η5 + d3(τ ) η7

) 
G(η, θ), (A.27) 

 
   1 

Θ(τ ) a3(τ ) = 3 F ∗(p)2 Θ(p) b3(p) dp 
τ 

   1 

+ F ∗(p) 
r 
2 Θ(p) b2(p) − a2(p) 

l 
dp, 

τ 
 

Θ(τ )3 b3(τ ) = 10 

   
1 

F ∗(p)2 Θ(p)3 c3(p) dp − 3 

τ 

   1 

Θ(p)2 a1(p) dp 
τ 

   1 

+ F ∗(p)Θ(p)
r
12Θ(p)2c2(p) − 5Θ(p)b2(p) + a2(p)

l
dp, 

τ 

 
(A.28) 

 

Θ(τ )5 c3(τ ) = 21 

   
1 

F ∗(p)2 Θ(p)5 d3(p) dp + 1
 

τ 

   1 

Θ(p)3 a1(p) dp 
τ 

 
+ 

 

 

Θ(τ )7 d3(τ ) = 

   1 

F ∗(p) Θ(p)3 
r 
b2(p) − 9 Θ(p) c2(p) 

l 
dp, 

τ 

 
   1 

F ∗(p) Θ(p)5 c2(p) dp. 
τ 

Closed form expressions for these functions may be obtained, typically using an 

algebraic manipulation package, but as the formulae are very lengthy and not par- 

ticularly illuminating we do not state them here. 

Starting from the third equation in (A.14) and Equation (A.24), and using 

induction on (A.13) and its higher-order equivalents, we may establish that the 

functional form of the terms in the series are 

u2n+1(ζ, τ ) = η P2n+1(η2, τ ) G(η, θ) for n = 0, 1, 2, . . . , 
 

u2n(ζ, τ ) = P2n(η2, τ ) G(η, θ) for n = 1, 2, 3, . . . , 

(A.29) 

where P2n(η2, τ ) is a polynomial of degree 3n − 1 in η2 with τ -dependent coeffi- 

cients and P2n+1(η2, τ ) is a polynomial of degree 3n in η2, also with τ -dependent 

coefficients. As a consequence, if we include α2nu2n in the asymptotic series then 

we should also include α2n+1u2n+1, since 

α2n u2n + α2n+1 u2n+1 = α2n  P2n + α η P2n+1  G 

= α2n   P2n − F (τ )
(
ξ − ξ∗(τ )

)
P2n+1   G, 

(A.30) 

where the polynomials P2n and P2n+1 are evaluated at (η2, τ ) and G is evaluated 

at (η, θ). This shows how it is possible to match the inner expansion, which is in 

powers of α, to the outer expansion, which is in powers of α2. 
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In principle we could write down recurrence relations for the time dependent co- 

efficients in these polynomials, but in practice it is simpler to compute the Pj (η2, τ ) 

using a symbolic algebra package. In particular, the expressions for the τ -dependent 

coefficients become so lengthy that it is unlikely that anyone would compute much 

beyond u3. 

As G(η, τ ) vanishes exponentially as |η| and |ζ| → ∞, it follows that all of 
the higher-order terms vanish outside the inner region and therefore that the inner 

solution matches to the outer solution to all algebraic powers, that is, the inner 

solution is globally valid. 

 

A.1.  Numerical verification 

Figure 12 shows the differences between a finite-difference solution, using the 

method outlined in §3, and the sequence of asymptotic approximations 

c   (ξ, τ ) = α u0(ζ, τ ) + α2
 u1(ζ, τ ) + · · · + α 

 

n+1 
 

un(ζ, τ ) (A.31) 
 

for n = 0, 1 and 2 with α = 0.100, β = 0.120 and γ = 0.025, corresponding to, 

for example, dimensional values of σ = 0.2, q = 0.05, ρ = 0.005 and T = 0.75. We 

have deliberately chosen α small in this figure as this is the case where we most 

expect the finite-difference scheme to have problems. In the first two frames we 

also show αn+2 un+1 and note that it is close to the difference between the finite- 

difference value and ψ
(n)

, as we would expect. We also note that in the final frame, 

the difference between ψ
(2) 

and the finite-difference solution is both consistent in 

magnitude and in functional form with α4 u3. 

 

Appendix B. Short time-to-expiry asymptotic approximations 

The second derivative of the payoff in (3.12) with respect to ξT is a Dirac delta 

function which makes computing ∂2ψc/∂ξ2 close to expiry difficult. One way to 

circumvent this difficulty is to obtain accurate approximations to ψ(ξ, τ ∗) and its 

partial derivatives at some time τ ∗ close to, but strictly prior to, τ = 1. As a solution 

of (2.24), ψ(ξ, τ ∗) is C∞ in ξ, α, β and γ. The problem is solved numerically on the 

interval [0, τ ∗], using ψ(ξ, τ ∗) as a terminal condition. Thus the short time-to-expiry 

asymptotic approximation is a systematic means of smoothing the payoff, and may 

be made as accurate as necessary. 

We introduce an artificial, dimensionless parameter,f 0 < c « 1, and use it to 
define a new time variable, τ̂ , and SFI price variable, Ψ̂ , by 

 

τ̂  = α (1 − τ )/c2, Ψ̂ (ξ, τ̂ ) = ψ(ξ, τ ). (B.1) 

By short time-to-expiry we mean that τ̂  = O(1), i.e., 1 − τ = O(c2). In terms of τ̂  

 
f This E is the E of §3.2 but is unrelated to the E of §5. 
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and Ψ̂ , (2.24) becomes 

1 ∂Ψ̂ 1  2 ∂
2Ψ̂ ∂Ψ̂ 

 
 

c2 ∂τ̂  
= 2 ξ 

∂ξ2 
+ (k ξ − b) 

∂ξ 
, Ψ̂ (ξ, 0) = max(1 − ξ, 0), (B.2) 

where the dimensionless parameters b and k are given by 

b = β/α2, k = (β + γ)/α2. (B.3) 

As in the previous section, we find that we must divide the ξ axis into a pair of 

outer regions, where ξ2(∂2Ψ̂ /∂ξ2) is negligible, separated by an inner region where 
it is not. In the outer regions the solution takes the form 

Ψ̂ (ξ, t; c) = Ψ̂ 
0(ξ, t) + c2 Ψ̂ 

1(ξ, t) + c4 Ψ̂ 
2(ξ, t) + · · · , (B.4) 

where each of the Ψ̂ 
n is independent of c. Substituting (B.4) into (B.2) and matching 

like powers of c gives 

 

 
∂Ψ̂ 

1 

∂Ψ̂ 
0 

 

∂τ̂  

 
= 0, 
 
∂2Ψ̂ 

0 

Ψ̂ 
0(ξ, 0) = max(1 − ξ, 0), 

∂Ψ̂ 
0 

 
 

∂τ̂  

∂Ψ̂ 
2 

 

∂τ̂  

= 2 ξ 

 
= 2 ξ 

∂ξ2  
+ (k ξ − b) 

∂2Ψ̂ 
1 

∂ξ2  
+ (k ξ − b) 

, 
∂ξ 

∂Ψ̂ 
1 

, 
∂ξ 

Ψ̂ 
1(ξ, 0) = 0, 

 
Ψ̂ 

2(ξ, 0) = 0, 

(B.5) 

the problems for Ψ̂ 
3, Ψ̂ 

4 and so on are the same as for Ψ̂ 
2, except for the obvious 

adjustment to the indices. We anticipate that the assumptions leading to this hier- 

archy are not valid near ξ = 1 and consider two regions, one where ξ > 1 and the 

other where ξ < 1. In the former we find that all the Ψ̂ 
n are identically zero. In the 

latter we find that Ψ̂ 
0(ξ, τ̂ ) = 1 − ξ and Ψ̂ 

n(ξ, τ̂ ) = −(k τ̂ )n(k ξ − b)/k n! for n > 0. 

When summed, this gives 

 

Ψ̂ (ξ, t; c) = 

  
(1 ξ) + 

(
1 e 

2 kτ̂
) (

ξ b/k
) 

if ξ < 1, 

0 if ξ > 1. 

 
(B.6) 

If we ignore the restrictions on ξ, both of these solutions satisfy the partial differ- 

ential equation in (B.2). This composite solution is not continuous at ξ = 1 and its 

ξ-partial derivatives are not O(1) at this point. This implies the second ξ-partial 

derivative is very large near ξ = 1 in order to balance the c−2∂Ψ̂ /∂τ̂  term in (B.2). 

Therefore we introduce an inner region defined by ξ − 1 = O(c). In this region we 

introduce new O(1) dimensionless variables 

x = (ξ − 1)/c   and   c ψ̂(x, τ̂ ) = Ψ̂ (ξ, τ̂ ). (B.7) 

In terms of these (B.2) becomes 

∂ψ̂ 
= 1 ∂

2ψ̂ ∂2ψ̂ ∂ψ̂   + c2
 1 x2 ∂

2ψ̂  + k x ∂
2ψ̂   

, 
∂τ̂  2 ∂x2 

+ c x + c 
∂x2 ∂x 

2 ∂x2 ∂x2 (B.8) 

ψ̂(x, 0) = max(−x, 0), 

2 

2 



March 28, 2017    15:8    WSPC/INSTRUCTION FILE IJTAF-SFI 

 

 

η 

2 

 
 
 
 

 
The Valuation of Self-funding Instalment Warrants    37 

 

where c = k − b = γ/α2. 

We find an asymptotic expansion of the solution of (B.8) in the form 

ψ̂(x, τ̂ ; c) = ψ̂0(x, τ̂ ) + c ψ̂1(x, τ̂ ) + c2 ψ̂2(x, τ̂ ) + · · · , (B.9) 

with all ψ̂n independent of c. It is easy to see that the functional form of ψ̂n is 
√   

ψ̂n(x, τ̂ ) = τ̂ (n+1)/2 fn(η), η = x/  τ̂  (B.10) 

and substituting the expansion into (B.8), matching powers of c, applying the initial 

condition and insisting that cn ψ̂(x, τ̂ ) is an asymptotic sequence in c for all τ̂  ∈ [0, 1] 

gives the problems 

f II I 

0 + η f0 = f0, lim 
η→−∞ 

f0(η)/η → −1, lim f0(η) → 0, (B.11) 
→∞ 

for the leading-order term, 

2 f1 − η f I − f II = 2 η f II + 2 c f I , lim 
 
f1(η) = o(η2), (B.12) 

1 1 0 0 
|η|→∞ 

for the first-order correction term and, for n = 2, 3, 4, . . . , 

(n + 1) fn − η f I − f II = 2 η f II + 2 c f I + η2 f II + 2 k η f I , 
n n n−1 n−1 n−2 n−2 

(B.13) 
 

 
The solution of (B.11) is 

lim 
|η|→∞ 

fn(η) = o(ηn+1). 

 

 
where 

f0(η) = −η F (η) + G(η), (B.14) 

   1   (  
1  2

) 
 
 

Note that 

F (η) = N(−η), G(η) = √
2 π 

exp − 2 η 
. (B.15) 

F I(η) = −G(η)   and   GI(η) = −η G(η). (B.16) 

These two properties of F (η) and G(η), together with (B.14), imply that the solu- 

tion of (B.12) has the functional form f1(η) = −a1 F (η) + A1 η G(η) and once we 

realise this it is a simple matter to show 

f1(η) = −c F (η) + 1 η G(η). (B.17) 

For n ≥ 1, (B.13)–(B.17) imply that the functional form of f2n(η) is 

f2n(η) = −a2n η F (η) + p2n(η2) G(η) (B.18) 

and that of f2n+1(η) is 

f2n+1(η) = −a2n+1 F (η) + η p2n+1

(
η2

) 
G(η). (B.19) 

Substituting these expressions into (B.13) and matching coefficients of F (η) shows 

that for n > 0 the constants a2n and a2n+1 are determined by 

a2n = k a2n−2/n, a2n+1 = c a2n/(n + 1), (B.20) 
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with a0 = 1 and a1 = c. It follows that 

a2n = kn/n! , a2n+1 = c kn/(n + 1)! . (B.21) 

The functions p2n(z) and p2n+1(z) are determined by comparing the coefficients 

of G(η) in (B.13). The p2n(z) satisfy differential equations 

−2 
(
2z pII

 + (1 − z)pI
 − (n + 1)p2n

) 
= z2L

(2) 
+ z L

(1) 
+ L

(0)
, (B.22) 

2n 2n 

where 

L(2) 

2n 2n 2n 

2n  = −a2n−2 + 2 p2n−1 + p2n−2 + 8(pII
 

I 
2n−1 

) + 4(pII
 

− 2n−2), 

2n  = 2
(
(1 + k)a2n−2 − a2n−1

) 
− 2(3 + c)p2n−1 − (1 + 2k)p2n−2 

 

L(0) 

+ 4(3 + c)pI
 

− 
+ 2(1 + 2 k)pI , 

− 

2n  = 2
(
a2n + c(a2n−1 + p2n−1)

)
 

and the p2n+1 are determined by 

 
(B.23) 

−2
(
2z pII

 + (3 − z)pI
 − (n + 2)p2n+1

) 
= z2L

(2)
 

(1) 
2n+1 

(0) 
2n+1 , (B.24) 

where 

2n+1 = p2n−1 − 4pI
 

 

 

II 

2n−1 

2n+1 = −a2n−1 − 2a2n − (3 + 2k)p2n−1 + 2p2n 
 

(B.25) 

 
L(0) 

— 8pI
 

+ 2(3 + 2k)pI
 

− 
+ 8pII  , 

2n+1 = 2(2 + c)a2n + 2ka2n−1 − 2(1 + c)p2n + 2kp2n−1 + 4(1 + c)pI  . 

The complementary solutions of (B.22) are 

C2n(z) = a1 M
(
n + 1, 1 ; 1 z

) 
+ a2 U

(
n + 1, 1 ; 1 z

)
, (B.26) 

2  2 2  2 

where M(a, b; x) and U(a, b; x) are Kummer functions; see, e.g., Abramowitz & 

Stegun (1970), §13. If the C2n(z) term is defined for all real z and has polynomial 

growth at infinity, both of which we require here, then it must be identically zero. 

The complementary solutions of (B.24) are 

C2n+1(z) = a3 M
(
n + 2, 3 ; 1 z

) 
+ a4 U

(
n + 2, 3 ; 1 z

) 
(B.27) 

2  2 2  2 

and, for the same reasons as above, these must also vanish. From this and the form 

of (B.22) and (B.24) we deduce that the particular integrals p2n(z) and p2n+1(z) 

are polynomials in z. We know that p0(z) = 1 and p1(z) = c and from this we may 

establish by induction on (B.22) and (B.24) that p2n(z) is of degree 3n − 1 in z 

and p2n+1(z) is of degree 3n. It is possible to write down complicated recurrence 

relations for the coefficients in these polynomials but it is simpler to use the fact 

that we know their order and then determine them recursively from (B.22) and 

(B.24) using a symbolic algebraic package; this is the approach we have taken. 

— p — p 

+ zL + L 

+ 4p , 
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We may write the expansion in the form 

ψ̂(x, τ̂ ; c) = ψ̂G(x, τ̂ ; c) − ψ̂F (x, τ̂ ; c), (B.28) 

where 
 

     ∞ ∞ 

ψ̂F (x, τ̂ ; c) =   
√

τ̂  η      a2n c
2n τ̂ n +       a2n+1 c

2n+1 τ̂ n+1   F (η) 
n=0 

=   x e 
2 kτ̂  + c 

(
e 

2 kτ̂  

n=0 

− 1
)
/c k F (η) 

(B.29) 

and 
/
√  ∞ 

n 
∞ 

n 

\ 

ψ̂G(x, τ̂ ; c) = τ̂         
(
c2τ̂

)
 

n=0 

p2n(η2)   + c τ̂  η      
(
c2 τ̂

)
 

n=0 

p2n+1(η2)
 

 G(η) 

  / 
∞ 

\ 

= 
√

τ̂  
 (

c2 τ̂
)n(

p 

n=0 

(η2) + c x p 
 

2n+1 (η
2)

)
 G(η).  

 
(B.30) 

In what follows, we use the closed form representation of ψ̂F , given in (B.29), as this 

allows us to match the inner and outer expansions to all powers of c. For practical 

reasons, however, we truncate the infinite series for ψ̂G after a finite number of 

terms. The point at which we truncate determines the order of accuracy of the 

asymptotic expansion in the inner region but has no effect on matching as ψ̂G is 

exponentially small in the outer region. Note, however, that since x = (ξ − 1)/c, we 

may write (B.30) in the form 
  / 

∞ 
\ 

ψ̂G(x, τ̂ ; c) = 
√

τ̂  
 

(c2 t)n 
(
p2n(η2) + (ξ − 1) p2n+1(η2)

)
 

n=0 

G(η) (B.31) 

and so it is sensible ensure that when truncating this infinite series the final poly- 

nomial has an odd index, p2n+1(η2). 

As the pn(z) are polynomial in z, ψ̂G(x, τ̂ ; c) is exponentially small as we move 

into the outer region we have 

lim 
x→−∞ 

ψ̂(x, τ̂ ; c) ∼ −ψ̂F (x, τ̂ ; c). (B.32) 

When ξ < 1 and 1 − ξ » c we have x » 1 and F (x) ∼ 1, so 

Ψ̂ (ξ, τ̂ ; c) = c ψ̂(x, τ̂ ; c) 
  

∼  (1 − ξ) 

  
F (x) (B.33) 

 

∼ (1 − ξ) + 

Thus, we recover the outer solution in this limit. When ξ > 1 and ξ − 1 » c we 

have −x » 1 which means both Ψ̂ 
F and Ψ̂ 

G are exponentially small. Therefore in 

this limit we recover 

Ψ̂ (ξ, t; c) ∼ 0. (B.34) 

2n 

2 (  2 

e kτ̂  − c e kτ̂  − 1)/k 

(
1 − 

 

2 

e  k τ̂
)(

ξ −
 
b/k

)
. 
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The inner solution matches the outer solution to all algebraic orders in c. (The 

same reasoning also applies to all the partial derivatives with respect to x, τ̂ , b and 

k). Therefore, we need only implement the inner solution in order to compute our 

short-time to expiry approximations, 

ψ(ξ, τ ) = c ψ̂(x, τ̂ ). (B.35) 

In our Monte Carlo simulations we also need the following expressions to compute 

sensitivities: 

∂ψ ∂ψ̂ 
= , ∂2ψ 1 ∂2ψ̂ 

= , 
∂ψ α2 ∂ψ̂ 

= − , 
∂ψ c 

= 
∂ψ̂ 

, 
∂ξ ∂x ∂ξ2 c ∂x2 ∂τ c  ∂τ̂  ∂β α2 ∂k 

(B.36) 

∂ψ 
= 

2c  
τ̂

 
∂α α 

∂ψ̂ 
 

 

∂τ̂  

∂ψ̂ 

— c 
∂c

 

∂ψ̂   

— k 
∂k  

, 

∂ψ c 

∂γ 
= 

α2 

  

∂ψ̂ 
+ 

∂c 

∂ψ̂   
. 

∂k 

In what follows, we generally take τ̂  = 1, which gives 

ψ(ξ, τ ∗) = c ψ̂(x, 1), τ ∗ = 1 − c2/α2. (B.37) 

In this case η = x and so (B.29) and (B.30) become 
ψ̂F (x, 1; c) =   x e  k + c e  k − 1 /c k  F (x) 

2 (  2 ) 

 
∞ 

 
(B.38) 

ψ̂G(x, 1; c) =            c2n
(
p2n(x2) + c x p2n+1(x2)

)  
G(x). 

n=0 

 

B.1.  Numerical verification 

As a check on the short-time-to-expiry asymptotic solutions, we compare them with 

numerical solutions generated by a high-resolution Crank-Nicolson finite-difference 

scheme. Typical results are shown in Figures 13 and 14, in which the dimensional 

financial parameters are σ = 0.40, r = 0.05, y = 0.05, ρ = 0.01, T = 2.50, corre- 

sponding to dimensionless parameters of α = 0.63246, β = 0.12500, γ = 0.02500. 

The small short-time-to-expiry parameters is c = 0.1 and we take τ̂  = 1, which 

means that τ ∗ = 0.975. These approximations use the first eight terms of the ex- 

pansions, i.e., ψ̂0 through to ψ̂7. The finite-difference scheme is computed using a 

regular grid on −10.000 ≤ ξ ≤ 20.000 with 30, 000 intervals and a regular grid on 

0.975 ≤ τ ≤ 1.000 with 1, 950 intervals; thus δξ = 10−3 and δτ = 1.28 × 10−5. 

A summary of the differences is shown in Table 1. Figures 13 show the finite- 

difference and short time-to-expiry solutions for ψ, ∂ψ/∂ξ, ∂2ψ/∂ξ2, ∂ψ/∂α, ∂ψ/∂β 

and ∂ψ/∂γ. Figure 14 shows the difference between the finite-difference and short 
time-to-expiry solutions for these quantities. In Figures 13 and 14 the solutions and 

errors are displayed for −0.5 ≤ ξ ≤ 2.5 as they are negligible outside this region. 
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quantity RMS difference Max difference 

ψ 1.05 × 10−7
 4.98 × 10−7

 

∂ψ/∂ξ 

∂2ψ/∂ξ2
 

4.51 × 10−7
 

1.10 × 10−5
 

2.13 × 10−6
 

5.02 × 10−5
 

∂ψ/∂τ 2.14 × 10−6
 9.96 × 10−6

 

∂ψ/∂α 1.69 × 10−7
 7.94 × 10−7

 

∂ψ/∂β 2.93 × 10−9
 1.07 × 10−8

 

∂ψ/∂γ 1.75 × 10−8
 5.13 × 10−8

 

 

Table 1. Differences between short time-to-expiry asymptotics and a high resolution Crank- 

Nicolson solution of equation (2.24) for τ ∗ = 0.975 with α = 0.63246, β = 0.12500, γ = 0.02500. 
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J. Večer (2000) A new PDE approach for pricing arithmetic average Asian options, Journal 

of Computational Finance, 4, 105–113. 

http://www.asx.com.au/documents/resources/instalment
http://www.asx.com.au/documents/resources/UnderstandingWarrants.pdf


March 28, 2017    15:8    WSPC/INSTRUCTION FILE IJTAF-SFI 

 

 

 

 

 

 

 
42   J.N. Dewynne and N. El-Hassan 

 

Westpac (2017) Self-funding Instalments (Supplementary Product Disclosure Statement), 

Westpac, September, 2017, available at the URL 

http://www.westpac.com.au/docs/pdf/Westpac SFI SPDS PDS.pdf. 

J. E. Zhang (2001) A semi-analytical method for pricing and hedging continuously sampled, 

arithmetic average rate options, Journal of Computational Finance, 5, 59–79. 

http://www.westpac.com.au/docs/pdf/Westpac


March 28, 2017    15:8    WSPC/INSTRUCTION FILE IJTAF-SFI 

 

 

The Valuation of Self-funding Instalment Warrants    43 

 

 

 

 

 
 
 

 
 

1.006 

1.005 

1.004 

ψd  and φc  at ξ = 0 . 00  

ψd 

φ c 

1.003 

1.002 

1.001 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

τ 
 

−4 

x 10 ψd − φc  and E Φ1 at ξ = 0 . 00  

3 
 

2 
 

1 
 

0 
 

−1 

ψd − φ c 

−2 E Φ 1
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

τ 
 

−6 

x 10 ψd − φc − E Φ1 at ξ = 0 . 00  
 

1 
 

0 
 

−1 
 

−2 
 

−3 
 

−4 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

τ 
 

Fig. 6. Comparison of SFI prices with discrete and continuous dividend yields and multiple-scales 

O(E) correction term as functions of τ at ξ = 0, with α = 0.559, β = β̂ = 0.25, γ = 0.05 and 

E = 0.05 corresponding to 19 equally spaced dividend dates between τ = 0 and expiry at τ = 1. 
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Fig. 13. High-resolution numerical and short time-to-expiry asymptotic approximations with E = 

0.1, α = 0.6323, β = 0.1250 and γ = 0.0250. The finite difference scheme uses 30, 000 ξ-intervals 

om [−10, 20] and 1, 950 τ steps. The short time-to-expiry asymptotics use the first eight terms, ψ̂0 

through to ψ̂7. 
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Fig. 14. Differences between high-resolution numerical and short time-to-expiry asymptotic ap- 

proximations. The parameters are the same as in Figure 13. 
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