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Abstract—Most of the existing RFID-based localization systems
cannot well locate RFID-tagged objects in a 3D space. Limited
robot-based RFID solutions require reader antennas to be carried
by a robot moving along an already-known trajectory at a
constant speed. As the first attempt, this paper presents RF-
MVO, which fuses battery-free RFID and monocular visual
odometry to locate stationary RFID tags in a 3D space and
recover an unknown trajectory of reader antennas binding with a
2D monocular camera. The proposed hybrid system exhibits three
unique features. Firstly, since the trajectory of a 2D monocular
camera can only be recovered up to an unknown scale factor,
RF-MVO combines the relative-scale camera trajectory with
depth-enabled RF phase to estimate an absolute scale factor
and spatially incident angles of an RFID tag. Secondly, we
propose a joint optimization algorithm consisting of coarse-to-fine
angular refinement, 3D tag localization and parameter nonlinear
optimization, to improve real-time performance. Thirdly, RF-
MVO can determine the effect of relative tag-antenna geometry
on the estimation precision, providing optimal tag positions and
absolute scale factors. Qur experiments show that RF-MVO can
achieve 6.23cm tag localization accuracy in a 3D space and 0.0158
absolute scale factor estimation accuracy for camera trajectory
recovery.

Keywords—RFID; Monocular Visual Odometry; Tag Localiza-
tion

I. INTRODUCTION

Radio Frequency IDentification (RFID) is a promising tech-
nique that uses backscatter signals to communicate with RFID
tags for automatic object identification. Low-cost battery-free
RFID tags make it easy to manage and track each RFID-
tagged object, which is becoming the first choice of many
industry solutions, especially in indoor object localization
[1]. However, many state-of-the-art studies [2]-[4] for RFID
localization can only work in a two-dimensional (2D) plane
and require RFID tags or RFID reader antennas to move along
a known trajectory. In this work, we mainly focus on how
to locate stationary RFID tags in a 3D space when reader
antennas move along an unpredictable trajectory. To achieve
this goal, we introduce a 2D monocular camera into RFID-
based systems. Many applications benefit from the RFID
and Computer Vision (CV) fusion solutions. For example, a
RFID-CV fusion robot can construct and update a map of

an unknown environment using simultaneous localization and
mapping (SLAM) technique [5]-[7] and further present the
spatial positions of RFID-tagged objects in the map through
RFID localization.

At present, two main problems challenge RFID localization
accuracy. /) Phase Wrapping. In commercial RFID readers,
the reported RF phase with 27 radians period repeats at
distances between a reader antenna and an RFID tag separated
by integer multiples of the one-half carrier wavelength. 2)
Multipath Interference. The reflected beams off surrounding
objects of RFID tags can combine with primary backscatter
signals at the tag end, thereby changing the reported phase.
To address the above-mentioned problems, existing purely
RFID-based methods for stationary object localization can be
categorized into stationary-antenna [2], [4], [8] and moving-
antenna [9], [10]: Stationary-antenna. The stationary-antenna
approaches need to deploy more than three reader antennas at
specified positions to remove the uncertainty of multiple tag
positions caused by phase periodicity. However, the impact
of multipath interference can not be effectively suppressed
and these solutions fail to locate RFID-tagged objects in a
3D space. Moving-antenna. The moving-antenna approaches
require to deploy reader antennas on a robot moving along a
linear trajectory at a constant speed, because the trajectory can
be easily and accurately estimated. In dynamic environments,
however, the mobile robot might rely on its self-adaptive
trajectory planning algorithm to avoid obstacles, which will
inevitably produce an unpredictable trajectory. To our knowl-
edge, capturing this trajectory for most of commonly-used
low-cost robots (e.g., about 200 US dollars iRobot Create 2
[11]) is challenging.

Visual odometry (VO) enables the estimation of the loca-
tions and orientations of a camera by analyzing a sequence
of captured images [12], [13]. Stereo and RGB-D VO can
recover an actual camera trajectory, while monocular VO can
only estimate the trajectory up to an unknown scale factor.
However, in the case where the distance from a stereo camera
to a working scenario is much higher than the distance between
two camera lens, stereo VO will degenerate to the monocular



case. Similarly, a depth-enabled camera in most of commercial
off-the-shelf RGB-D cameras (e.g. Kinect V2) also has a
ranging limit of about 0~3m measurement distance. Since a
commonly 8dBi-gain antenna-equipped RFID system with the
reading range of about 6~10m is usually used in wide working
areas like warehouse, it is not always reliable to obtain an
exact trajectory using a stereo or RGB-D camera. Fortunately,
RF phase is a tag-to-antenna distance function, which provides
us with an opportunity to recover a 2D monocular camera
trajectory up to an absolute scale factor. In general use, we
mainly focus on monocular VO for fusion localization.

In this paper, we are the first to introduce RF-MVO, an
RFID and CV hybrid system that can simultaneously locate
stationary RFID-tagged objects in a 3D space and recover
an unknown trajectory of reader antennas binding with a
2D monocular camera. An RFID reader, one or more reader
antennas and a 2D monocular camera are deployed on a mobile
utility cart. We move the cart in the region of interest to locate
RFID tags using reported RF phase and a piece of camera
trajectory up to an unknown scale factor. To achieve this hybrid
system, we need to solve three key challenges:

Challenge 1: Determining a stationary RFID tag position
in a 3D space given an already-known antenna trajectory like
the previous work [14] or estimating camera/antenna displace-
ments of a current 2D image relative to its last 2D image
given an already-known RFID tag position is relatively easy.
However, it is very challenging to simultaneously estimate the
camera/antenna trajectory and 3D RFID tag position. Further,
RF phase measurements are affected by multipath interference,
and camera pose estimation suffers from accumulated errors
over time. To deal with these problems, we utilize the mobility
of reader antennas to emulate a sequence of overlapped
antenna arrays. Then according to Direction of Arrival (DOA)
estimation theory, we design a spatial power spectrum with
strong tolerance to measurement noise, which can be used
to calculate a pair of azimuth and elevation angles for tag
localization as well as an absolute scale factor for trajectory
recovery in each antenna array.

Challenge 2: To obtain the accurate incident angles and
absolute scale factors, the smaller the searching granularities
in the proposed spatial power spectrum, the higher the system
computation jeopardizes the real-time performance. Instead,
RF-MVO firstly uses a relatively small factor granularity and a
high angular granularity to obtain the high-resolution absolute
scale factor and low-resolution incident angles. On this basis,
we propose a joint optimization problem to accelerate our task
for tag localization and camera/antenna trajectory recovery.

Challenge 3: RF-MVO might output multiple tag positions
of an RFID tag over antenna arrays. And in an antenna array,
RF-MVO might simultaneously read more than one RFID
tag, producing multiple absolute scale factors. Selecting an
optimal tag position and absolute scale factor still remains
challenging. To address this problem, a key intuition is that
the tag localization error is sensitive to antenna-tag geometry.
Antenna elements in an antenna array that are close to each
other can not provide with good geometry as the antennas that

are widely separated. Inspired by Global Positioning System
(GPS), RF-MVO introduces horizontal dilution of precision
(HDOP) to evaluate the effect of antenna-tag geometry on
estimation accuracy.

To the best of our knowledge, RF-MVO is the first RFID and
CV fusion system, which utilizes RF phase measurements and
2D images to simultaneously perform 3D RFID-tagged object
localization and 2D monocular camera trajectory recovery. The
main contributions are summarized as follows:

1) We propose a DOA-based spatial power spectrum with
the suppression capability of multipath interference and ac-
cumulated errors to search incident angles (i.e., azimuth and
elevation angles) and an absolute scale factor in each antenna
array, which is a fundamental step for 3D tag localization and
camera/antenna trajectory recovery.

2) To balance between estimation accuracy and real-time
performance, we propose a joint optimization algorithm that
iterates the steps of coarse-to-fine angular search, 3D tag
localization and parameter nonlinear optimization. In our ex-
periment, the algorithm can perform very quickly and achieve
fine-grained estimation accuracy.

3) We exploit horizontal dilution of precision to determine
the effect of tag-antenna geometry on estimation accuracy,
which effectively helps our hybrid system obtain the optimal
3D tag position and absolute scale factor over each antenna
array.

We build a prototype of RF-MVO using off-the-shelf RFID
devices and a 2D monocular camera. Experimental results
demonstrate that, when only deploying two reader antennas on
the mobile utility cart, RF-MVO can locate stationary RFID
tags with the average of 6.23 cm localization error in a 3D
space and estimate absolute scale factors with the average of
0.0158 estimation error.

Paper outline: The rest of this paper is organized as follows.
Section II describes the overview of our hybrid system. The
main algorithms are described in III, IV and V, respectively.
Experimental setup and results are introduced in Section VI
and VII. Related work is reviewed in Section VIII. Finally, we
conclude the work.

II. SYSTEM OVERVIEW

The proposed RF-MVO can locate RFID-tagged objects in
a 3D space and estimate absolute scale factors for camer-
a/antenna trajectory recovery without additionally deploying
any other sensor (e.g. wheel odometer) or measuring a refer-
ence object with a pre-known size. An RFID reader together
with one or more directional antennas binding with a 2D
monocular camera are carried by a utility cart moving along
an unknown trajectory in the region of interest. RFID tags
are affixed on stationary objects to be located in advance.
The RFID reader collects RFID tag data, including Electronic
Product Code (EPC), RF phase and reading timestamp. The
2D monocular camera captures a sequence of 2D images.
Fig. 1 shows our RF-MVO system architecture, which contains
four components: sampling synchronization, spatial power
spectrum search, joint optimization and accuracy estimation.
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Fig. 1. RF-MVO system architecture.
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1) Sampling Synchronization. According to Gen2 standard
[15], most of RFID readers rely on a slotted-aloha access
scheme to read RFID tags randomly. The sampling time
between consecutive inventories of the same tag is unpre-
dictable, which is determined by reader settings (reader mode,
search mode and session), tag population and environment
interference. In our experiment, a 2D camera is set to capture
video streams at 30 frames per second (FPS), while an RFID
reader can read the same RFID tag more than 10 times
per second. We synchronize the RFID reader clock with an
Internet time server, and then match RFID reports to 2D
images by minimizing sampling time difference [16].

2) Spatial Power Spectrum Search. In Section III, we
introduce how to build an antenna array and a DOA-based
spatial power spectrum. A pair of low-resolution incident
angles of an RFID tag in a 3D space and a high-resolution
absolute scale factor are estimated by finding the highest peak
in the spectrum.

3) Joint Optimization. In Section IV, we give details on the
joint optimization solution. Firstly, the step of coarse-to-fine
angular refinement is to refine the low-resolution incident an-
gles given the high-resolution absolute scale factor. Secondly,
the step of 3D tag localization is to locate the tag position
given the refined incident angles and the absolute scale factor.
Thirdly, the step of parameter nonlinear optimization is to
simultaneously refine the 3D tag position and the absolute
scale factor because they are interrelated with each other. The
algorithm takes iterations before it converges.

4) Accuracy Estimation. In Section V, we describe how to
calculate Horizontal dilution of precision to evaluate the effect
of tag-antenna geometry on estimation accuracy and select the
optimal 3D tag position and absolute scale factor.

III. SEARCHING SPATIAL POWER SPECTRUM AND
LOCATING RFID TAGS

In this section, a spatial power spectrum is built to search
a pair of incident angles and an absolute scale factor in each
antenna array. Then we locate RFID tags in a 3D space with
coarse localization accuracy.
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Fig. 2. DOA estimation model.

A. Estimation of Incident Angles and Absolute Scale Factor

Direction of Arrival Estimation Model. In Fig. 2, a
geometric model in a 3D scenario is to intuitively introduce
our basic idea. As a reader antenna moves over time, it reads
a stationary RFID tag at different positions, which is regarded
to deploy multiple antennas at each of these positions. An
antenna array of a reader antenna A contains the length of L
phase measurements, and the step size between two adjacent
antenna arrays is one phase sample. Suppose that in the k-
th antenna array, phase values are reported at the antenna
positions X4 [k,1],..., X4 [k, L], respectively. The azimuth
and elevation angles of RFID backscatter signals arriving at the
k-th antenna array are denoted as «4 [k] and 4 [k]. The dis-
placement of two adjacent reader antennas in x-axis, y-axis and
z-axis 18 AX 4 [k,i] = (Azalk,i],Ayalk,i],Azg [k, 1)),
which is the same as the 2D monocular camera displacement at
each time. Here we assume that AX 4 [k,i] = X a [k, i + 1] —
X 4 [k,d]. In this case, the tag-to-antenna distance difference
between two consecutive i-th and (¢ + 1)-th elements in the
k-th antenna array can be approximated as follows:

Aha ki) =Ax 4 [k, 1] X cosaq [k] cosPa [k] +
Aya [k, 1] x sinaa [k] cosBa K]+ (1)
Azy [k, i) x sinBa [k

In our system, a 2D monocular camera poses (i.e., positions
and orientations) are estimated by analyzing a sequence of 2D
images based on monocular visual odometry (MVO) technique
[17]. Without additional information, however, the estimated
camera positions of the current view relative to the previous
view can be only recovered up to an unknown scale factor. We
exploit Perspective-n-point (PnP) algorithm [18] for camera
pose estimation to make the scale factors be same over
an antenna array. In this way, the estimated displacement
between adjacent camera positions up to an relative-scale
factor is AX¢ [k,i] = X¢[k,i+ 1] — X [k,4] in the k-
th antenna array. Suppose that the ground-truth scale factor
is denoted as ~ [k], called absolute scale factor in our work,
then AX 4 [k, 1] = 7 [k] x AX¢ [k, ]. Note that we also use
windowed bundle adjustment [19] in MVO to further optimize



the camera poses corresponding to the last L image views.
In this case, however, the absolute scale factors in different
antenna arrays will be different from each other.

The Range of Absolute Scale Factor. If the speed at
which the camera captures photos is set to 30 FPS and
IAX 4 [k, 3] < A/2 (X is the signal wavelength, about 32
cm), the maximum speed of the utility cart can be as high
as 4.8 m/s, which could be meet the requirement for most of
application scenarios. However, previous work [20] indicates
that when an RFID tag moves at a high speed, most of RFID
systems would miss a lot reported packets from the tag and
suffer from serious doppler frequency shift. In practice, our
experience suggests to set the maximum speed to about 100
cm/s. Suppose that the Euclidean distance from the reader
antenna at X 4 [k, 4] to an RFID tag is denoted by d4 [k, ].
According to the relationship between the distance and phase
[21] as well as the triangle rule that the length difference
of two sides is smaller than the length of the third side, the
absolute value of the distance difference between d4 [k, ¢] and
da [k,i+ 1] meets the following equation:

|Ada [k, il|=|da[k,i +1] — da[k, |

= 2 |Agalk i +AN [k ]| <[ AKX [k,
(2
where
[AX 4 [k, i)l = v [F] x |AXc [k, 4]
A‘)OA [k,Z] = PA [k,Z + 1] — YA [kal]
AN4 [k,i]) = Na [k, + 1] — Ny [k,

and the phase ¢4 is reported by an RFID reader, ranging
within [0,27]. The unknown parameter N4, called phase
ambiguity, is an integral multiple of 27 to make ¢ 4 fall within
[0, 27].

To determine the range of an absolute scale factor, we firstly
assume all of the antenna displacements is within [0, A/4].
Due to Ay [k,i] € [—2m,27], the difference of the phase
ambiguity AN 4 [k, ] can be determined as follows:

2r, 2w < Apalk,i] < -7
ANy [k,i] = 0, |Apa lk,d]| <7 3)
=27,  7w<Apalk,di <27

The minimum absolute scale factor is calculated by

i [k] = max {AdAM}
Ymin i€l L—1] HAXC [k, Z] ||

And due to ||AX 4 [k,]]] < 100/10 (the maximum speed
of the cart is 100 cm/s and the tag is read 10 times/s at least
in the experiment), the maximum absolute scale factor is

10
= min —— 5)
i€[l,L—1] { |AX ¢ [k, 4] } (

Spatial Power Spectrum. Given an absolute scale factor
vkl € (Ymin [K] s Ymaz [k]) in the k-th antenna array, the
spatial power spectrum of backscatter signals along an azimuth
angle a4 € [0°,180°] and an elevation angle 54 € [0°,180°]

“4)

Ymaz K]

is a 2D intensity graph in which each pixel represents the
likelihood of each pair of spatially incident angles:

L1
1 .
Py (aa,Ba,7) = -1 E cos A 4 [k, 1] (6)
i=1

where AU 4 [k,i] = Apa [k, i] + L2 Ah 4 [k, i]. The closer the
parameters a4 [k], B4 [k] and + [k] to the ground truth, the
larger the peak of the proposed spatial power spectrum is.

Analysis: RFID-related hardware such as RFID tags circuit,
RFID reader antennas feed cable and RFID readers com-
ponents may all introduce additional phase shift ¢;. And
RF signals transmitted along multiple paths (reflected by the
ceiling, wall or even human bodies) in the actual circumstances
may also produce additional phase shift .. In practice, the
reported phase can be further formulated as

wa= <47T;iA + ¢n + 90@) mod 27 @)
where the function mod represents the modulo operation,
which can be removed by the cosine function. For consecutive
phase @4 [k,i] and @4 [k,7+ 1], additional phase shifts ¢,
and ¢, will be very close to each other. Hence, consecu-
tive phase differencing can effectively reduce the effect of
unexpected phase shifts. In addition, as the estimates of
camera poses can not exactly match the ground truth despite
using windowed bundle adjustment, the pose errors inevitably
accumulate over time, which can be suppressed by differencing
the consecutive estimates of camera/antenna positions.

Search Absolute Scale Factor and Incident Angles. Given
M physical reader antennas on the utility cart, we obtain the
optimal absolute scale factor and incident angles (i.e., azimuth
and elevation angles) in the k-th antenna array by searching
the highest peak in the proposed spatial power spectrum:

Sy (aa;, Ba;v) = max Py (aa,,Ba,,7)

aa,;,Ba,€[0,180°]

M
Z Sk (OéAi 5 /BAi ) 7)
1

i=

v k] = arg max

1
’Y[k]e('Y'rrLi'rl [k]>77naw[k§]) M
(i, [K], B4, [K]) = Py (aa,,Ba;,7")

®)

arg max
aa,,Ba;€[0,180°]

B. RFID Tag Localization in a 3D Space

Average Incident Angles. The proposed system takes an in-
cremental process to generate an antenna array. Once receiving
the length of L RFID-CV data, RF-MVO produces an absolute
scale factor and a pair of azimuth and elevation angles. Hence,
the length of 2 (L — 1) data should be provided for our hybrid
system initialization at the beginning. In Fig. 3, since an
antenna element may be included in multiple antenna arrays,
we firstly take an average of the estimated incident angles
in these arrays. For the k-th reader antenna, the averaged
azimuth and elevation angles @ [k] and 3 4 [k] are calculated
as follows:
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Fig. 3. Incident angle averaging.

) If1<k<L, we have

1k
:%;OZAM

o ©)
=% > Bali
i=1
2) If k > L, we have
k
- Z aA |l
=k—L+1 (10)

k
i:k—z;-&-l
Locate RFID Tag in a 3D Space. To reduce the effect
of accumulated errors in camera trajectory estimation, we
pinpoint the relative location of an RFID tag in each antenna
array. Instead of viewing that reader antennas binding with
a 2D monocular camera move along an unknown trajectory,
the fixed RFID tag T' can be considered to virtually move in
the opposite direction, as illustrated in Fig. 4. Suppose that
the first element of a physical reader antenna A,.; in the k-
th antenna array is at the coordinate origin O, then the ¢-th
(¢ > 2) element position is denoted as

1—1
X, kil =[] x Y (Xc [k, j+1] - Xe [k, 4]) (A1)
j=1

Since the displacement AX 4, , of another antenna A rel-
ative to A,y can be measured in advance, the corresponding
position of A is

Alk,i] = Xa,., ki +AXa,., 12)

Since a spatial line can be represented by the intersection
of two planes in a 3D space, the equation of a line ¢4 [k, i]
passing through the RFID tag and the ¢-th antenna element at
3D coordinates X [k] and X 4 [k, i] are given by

wr (k] —zalk i) _yr(k]—yalk,i] 20 [k]—2a [k, ]
waldl valki wallg O
where
XT [k} = (xT [k] y YT [k} y AT [k]) (14)
X [kvl] = (IA [kvl] y YA [kv Z} y A [kvl])

Virtual
RFID Tag

Moving
Antenna
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Fig. 4. RFID tag localization.

and the direction vector (ua [k,i],va4 [k, i],wa [k,i]) along
the line £ 4 [k, 7] is calculated as follows:

ua [k,i] = cos@a [k,i] cos B4 [k, 1]
va [k, i] = sinag [k, i] cos B4 [k, 1] (15)

wa [k,i] = sinB 4 [k, 1]

Here a [k,i] =04 [k+i—1], B4 [k,i]|=B4 [k+i—1].

Given a total of M x L lines, there might exist multiple non-
intersecting lines and even parallel lines in a 3D space. We
regard the nearest point to these lines as the spatial coordinate
X [k] of the RFID tag T, which is solved using Singular
Value Decomposition (SVD) technique [22].

IV. JOINTLY OPTIMIZING TAG POSITION AND ABSOLUTE
SCALE FACTOR

In the above discussion, exhaustively searching incident
angles from 0° to 180° and an absolute scale factor from v,y
t0 Ymao 1S @ time-consuming process. The time complexity is
O % % 1A8§ % ’YmazA—:mem
the corresponding searching granularities. In this section, a
joint optimization algorithm is proposed to balance the esti-
mation accuracy and real-time performance:

1) Imitialization. Instead of searching incident angles and
an absolute scale factor with fine granularities simultaneously,
we firstly obtain a high-resolution absolute scale factor v° [k]
and low-resolution incident angles oY [k] and 9 [k] given a
small value of A~ and relatively large values of A« and ApS,
which can ensure low computational load.

2) Refine Incident Angles « 4 [k] and (54 [k]. A coarse-
to-fine angular refinement is proposed to refine the incident
angles using small searching spacings of Aaop: and ABgp:.
The angular searching ranges are o, [k] £ p € [0°,180°] and
BY [k] £ p € [0°,180°], where p is the predefined searching
threshold.

In the [-th iteration, the azimuth and elevation angles

), where Aa, A and A~ represent

ljl [k] and ﬁlH [k] of the antenna A are updated given /' [k]:
(k.85 k)= arsmax Py (ody,B7)

aa€loly [k —p,oly [Kl+u]
Ba€[By k] =Bl [k]+1]
(16)
Then we update the averaged incident ar}glles according to
Eq.(9) and (10), so we have @’ [k] and B,  [k].



3) Pinpoint Tag Position X [k]. In the [-th iteration, the

3D tag position X/ [k] is calculated given ~' [k] and a set of

averaged incident angles afjjl (%] ,BIAJZ_I [k}}(] =1,...M)

corresponding to M reader antennas (refer to Section III.B):

{e(@ YR} an

—l+1

Xé” [k}: SVD 75Aj [kvl]v

i€(1,L)

JE[L,M]

4) Optimize Tag Position X7 [k] and Absolute Scale

Factor v [k]. In the I-th iteration, the tag position X1 [k]

and the absolute scale factor y!*![k] are both updated by

minimizing the distance error given X7'[k] and ~![k] as
follows:

(X5 11,7 1k1)

L-1
= argmin
XLk~ K] =1

i HAdlA]. [k, ] — Adl, [k,i]”
j=1
(18)
where
Adly, [k,i]:% (Apa, kil +ANY, [k, 1)
Ad, [k = | Xk, [k, i+ 1= X (8| - | XA, [, - X5 (4]
XY, [k i]=AXa,,, ]+ k] x (Xe [k, i] - Xo [k, 1]) o)

Since the spacing of consecutive antenna positions can be
estimated by
AXY [k, i)=XY [k,i+ 1] — X [k, ]
=7 [k] % (Xc [k, i+ 1] = X [k,1])

and ||AXY [k,d]| < 3

2
AN, [k, ] is determined as:

a) If HAfg [k,z]H € [0,2], we have

(20)

the phase ambiguity difference

'
0, Al [k, ]| <
ANY ki) = { —2m, 7 <A@ [k,i] <27 Q1
2w, =27 < Agh [k,i] < -7
b) If HAY; [k,z]H € (4, %], we have
0, m<|AQY [k, i]| <2m
ANY ki) = —2m,  0< AQY [ki] <7 (22)
2w,  —m < ApYy [k,i] <0

The process for the tag position and absolute scale factor
refinement is interrelated with each other, so they need to be
optimized simultaneously. The nonlinear optimization problem
is solved by Levenberg-Marquardt algorithm [23]. Once the
estimates of tag position and absolute scale factor are updated,
we repeat the joint optimization from step 2 until it converges.

Analysis: For a non-linear optimization problem, a good
initial guess closer to the ground truth can achieve faster
convergence, so the tag position refinement can speed up
the optimization process. Given Aagp: = 1°, Afop = 1°
and ¢ = 20° in our experiment, the number of updating
the absolute scale factor and tag position is 4 times on
average, taking the average of 16 milliseconds in our platform
illustrated in Section VI. In addition, the proposed algorithm
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Fig. 5. Uncertainty of RFID Tag Localization.

just provides a local optimum in each antenna array and can
not achieve a global optimum over all antenna arrays. Due to
adjacent antenna arrays with one sample step, our algorithm
performs very well in practice shown in Section VII.

V. ESTIMATING LOCALIZATION ACCURACY AND
RECOVERING 2D CAMERA TRAJECTORY

As the cart moves near a target RFID tag, RF-MVO
produces a series of antenna arrays and then outputs the cor-
responding tag position estimates. In Fig. 5, the shaded region
in each case illustrates the size of uncertainty region. Ignoring
the measurement error, the smaller the uncertainty region, the
higher the localization accuracy is. The RFID tag positions
are less precisely located as the lines through the antenna
coordinates become more parallel, which means that in an
antenna array the average distance from the RFID tag to each
antenna element becomes larger and/or the average spacing
between consecutive antenna elements becomes smaller. In [3],
the authors also indicate that reader antennas deployed close to
each other and fay away from RFID tags cannot provide stable
and accurate localization results. Since our cart moves along
the horizontal coordinates (X-Y dimension), we mainly focus
on horizontal position errors. Inspired by global positioning
system, we introduce Horizontal Dilution of Precision (HDOP)
to evaluate RFID tag localization accuracy.

According to the definition of HDOP, we linearize the
distance function d4 [k,i] from the ground-truth position
Xcr [k] of the RFID tag T to the i-th element in the k-th
antenna array by expanding a Taylor series at the optimized tag
coordinate X7 [k], and then ignore second and higher order
terms,

dA [kJ] zadA [k; 71} A.’L‘T [ki] + 6dA [kal] AyT [k’] 4
Ox dy (23)
ada k1 ~ ,
—%fhwm+mm@
where Mé‘i)[f’i] represents the first partial derivative of each

distance function d 4 [k, 4], d4 [k,i]= || X 4 [k,]— X [k]|| and
Xor [k] = X5 [k]+ AXyp [k]. AXyp[k] represents the tag
position’s measurement error.



Consider M reader antennas on the cart, we group M x L
equations in the k-th antenna array together and represent them

in matrix form,
D[k] = G [k] AX7 [k] + D [k] (24)

where G [k] is a matrix of the partial derivatives in X-Y

dimension with M x L rows and 2 columns,
Gk = Ga, [H Ga, [k ]" @5

and the matrix corresponding to the j-th reader antenna can
be represented by

adAj [k,1] é)dAj [k,1]
ox Jy
Ga, =] : (26)
BdAj [k,L] BdAj [k,L]
ox Jy

We construct the covariance matrix @ [k] for localization
error analysis,
QK] =

(G[k])TG[k]]_lz{ i “%y] )

Oyx Oy
Since o2 and o) are the variances of X-axis and Y-axis
components of the tag position estimate, HDOP is given by

HDOP = /o2 + 02

Low HDOP values represent a better tag positional accuracy
due to strong tag-antenna geometry. In this case, when the er-
rors from camera pose estimation and RF phase measurement
are at the same level in each antenna array, the lower the
value of HDOP, the higher the positioning accuracy will be.
Additionally, there might be many RFID tags to be located,
so our system will output multiple candidates of the absolute
scale factor in an antenna array. We can find out the optimal
absolute scale factor v [k] corresponding to the tag T' with
the minimum HDOP value. Suppose that the initial position
of the 2D camera is X¢ [1] = X [1] = 0 at the beginning,
then the estimated camera trajectory recovered up to absolute
scale factors can be expressed as

Xc [k +1) = Xe [+ [k x (Xc [k + 1] — Xc [k]) 29)

(28)

VI. IMPLEMENTATION

Hardware: We employ an Impinj R420 RFID reader
without any hardware or firmware modification. The reader
works in the Australia operating frequency band of 920~926
MHz with 500 kHz channel spacing. The reader is directly
connected to a laptop via a standard Ethernet cable. Two
8dBi circular polarization antennas with about 6~10m reading
range connect to the RFID reader. Impinj H47 battery-free
RFID tags with the size of 4.4cmx4.4cm are attached on
double-sided checkerboards. Besides, a Microsoft Kinect V2
is used to capture 2D images and estimate the ground truth
of camera trajectory for performance test. The frame rate is
configured as 30 FPS. Note that we only input 2D images
into the proposed system. These devices are all deployed on
a utility cart.

| / RFID Data
Collection

Camera Trajectory \
Estimation

Fig. 6. Experiment setup.

Software: According to Impinj LLRP Toolkit (LTK) [24],
we program an RFID data collection application in C#. Each
RFID report contains Electronic Product Code (EPC), RF
phase, antenna port number, operating frequency and reading
timestamp. We adopt phase calibration mechanism [25] to
eliminate the effect of frequency hopping on phase measure-
ments. ORB-SLAM2 [26] is a real-time SLAM system to
estimate camera trajectory and 3D reconstruction for monoc-
ular, stereo and RGB-D cameras. It can achieve loop closure
detection and camera re-localization, which is of essential
importance in visual SLAM systems to reduce accumulated er-
rors over time. We run the RGB-D component on Ubuntu and
save the camera trajectory as ground truth. However, ORB-
SLAM?2 can only save keyframe camera poses for monocular
camera rather than all frames. Hence, we record a video stream
to a file by running ROS tool [27] and then calculate the 2D
monocular poses (i.e., position and orientation) in Matlab [28]
by analyzing these 2D images. Finally, the system performance
of tag localization and trajectory recovery are all evaluated in
Matlab, running on our laptop with 2.3 GHz CPU (Intel Core
15-6200U) and 4 G memory.

VII. EVALUATION

In this section, we evaluate the 3D tag localization and
camera trajectory recovery performance of RF-MVO. We first
introduce the experiment setup and metrics, followed by the
detailed experiment results.

A. Experiment setup

Methodology: The experiment setup is shown in Fig. 6.
We print the same checkerboards for camera calibration on
both sides of a paper, where the size of each square is 29
mm. Four double-sided checkerboards are affixed on the flat
wall, two of which has 4 RFID tags to be located at specified
corners on its back. The 3D coordinate system is referred
to the RGB camera of Kinect V2 at the initial time. The
ground truth of these RFID tags in the 3D space can be
measured by mapping points in the image coordinates to points
in the world coordinates based on camera calibration [29].
In our experiment, the default parameters are set as follows:
the number of antenna elements is L = 60; the granularities
for initial incident angle and absolute scale factor searching
are Aa = 5°, A = 5° and Ay = 0.1; the granularities
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Fig. 8. Tag localization performance.

for coarse-to-fine angular refinement are Aay,y,; = 1° and
ABopt = 1°; the searching threshold is ¢ = 20°; the cart
moves with the maximum speed of 100 cm/s.

Metrics: To verify RF-MVO performance, we focus on the
deviations of the estimates from the ground truth. Suppose that
Xr [1] is the 3D coordinate of an RFID tag T at initial time
and X¢ [¢] is the ground-truth camera position corresponding
to the i-th 2D image, then the tag position error is denoted as

Terr [i] = | X7 [i] — X [1] + X [] | (30)
and the absolute scale factor error is
. ‘ Xe i+ 1] — Xe [4]
F... il = |v*[i] — - - 31
[i] = |7 [1] Xolit1 = Xofi (31)

B. HDOP Performance

To validate whether HDOP can effectively indicate the
localization error, we refer to the average distances of each
RFID tag to antenna elements in each antenna array. We move
the cart at the almost same speed through RFID tags so that
the displacement between consecutive antennas is close to each
other. When the antenna moves close to an RFID tag, the wider
angular separations between the elements can reduce the tag
position uncertainty. In this case, the tag-antenna geometry is
strong and the corresponding HDOP value is low. In contrast,
when the antenna becomes far away from the tag, the geometry
is weak and HDOP is high. Fig. 7 (a) and (b) show that for
each RFID tag, the trend of HDOP and average distance curves
is basically the same, and their indexes with the minimum
value are also closer to each other, which demonstrates the
proposed HDOP is an effective indicator for tag localization
error. In Fig. 7(c), however, the lowest HDOP value does
not mean the highest localization accuracy because the error
level coming from camera pose estimation and RF phase
measurement determines the final localization accuracy.

C. Tag localization performance

We move the utility cart carrying two RFID antennas
and the camera near the RFID tags with different speeds
and trajectories each time. For each RFID tag, the 3D tag
position with minimum HDOP value over antenna arrays is
selected as the optimal one. We repeat the experiment 30
times. Fig. 8 (a) and (b) plot the CDF of tag position error
without and with the proposed joint optimization algorithm,
and indicate the average and standard deviation of localization
error for 8 RFID tags. We can see that localization errors are
substantially reduced after using optimization algorithm. The
overall average error drops from 8.20cm to 6.23cm.

In Fig. 8 (c), we also compare our fusion system with other
purely RFID-based localization systems, i.e., Tagoram [1] and
MobiTagbot [14]. In Tagoram, to eliminate the position ambi-
guity coming from phase periodicity, more than one fixed read-
er antennas are deployed far apart from each other. An RFID
tag to be located is required to move along a given trajectory at
a constant speed. To match our experiment, we can view that
the tag is fixed at the initial position and the antennas move
in the opposite direction. Its enhanced version MobiTagbot
is equipped with stronger capability of multipath suppression
than Tagoram by exploiting frequency hopping technique. The
ground-truth trajectory is used in the experiment to evaluate
their localization performance. Note that since our RFID-CV
fusion system is designed for simultaneous tag localization
and camera/antenna trajectory recovery, the tag localization
performance in RF-MVO is subject to the estimation accuracy
of absolute scale factor. The localization results show that
Tagoram and MobiTagbot have the average localization errors
of 5.41cm and 3.64cm, outperforming our method without
and with optimization by more than 2.25 times and 1.71
times, respectively. However, both Tagoram and MobiTagbot
need to provide an already-known tag/antenna trajectory. And
they also need to specify the surveillance region of interest
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where target RFID tags exist in advance. The region in the
3D space is partitioned into cuboids with the centimeter-level
size. Each of them is determined the likelihood of containing
a target RFID tag. 60x60x25 cuboids with the width of 1cm
around the ground-truth tag positions are configured in the
Tagoram and MobiTagbot. As the region of interest increases,
huge searching computations will seriously affect the real-time
performance. The proposed system of RF-MVO exploits the
DOA-based method for tag localization, which is definitely
different from them.

D. Trajectory recovery performance

According to above experiment data, we further verify the
estimation accuracy of absolute scale factor. Since eight RFID
tags may produce multiple candidates, an absolute scale factor
with the minimum HDOP value in each antenna array is
selected as the optimal one. Fig. 9 plots the CDF of absolute
scale factor error. Without optimization, the mean estimation
error is 0.0501 with the standard deviation of 0.0188. After
applying the joint optimization, the average is reduced by
3.17 times, down to 0.0158 with the standard deviation of
0.0124. To better show the trajectory recovery performance,
we choose an experiment data and plot the corresponding
camera trajectory in Fig. 10. The estimated trajectory with
optimization can better match the ground truth. However,
estimating the camera poses and absolute scale factors will
inevitably generate accumulating errors over time, making the
trajectory increasingly deviate from the ground truth. We will
take further study to reduce the drift in our future work.

E. Impact of array element size

Given a cart trajectory, we vary the number of elements in an
antenna array from 20 to 80 with a spacing of 10 elements. The
estimation error is calculated by averaging the estimates of tag
position and absolute scale factor in all antenna arrays. Fig. 11
(a) and (b) show that the more antenna elements can effectively
reduce the estimation errors when the element size increases
from 20 to 60 (70 in Fig. 11 b). The capability of the proposed
spatial power spectrum to distinguish the absolute scale factor
and incident angles in each antenna array can be reinforced
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Tag Position Error(cm)
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Fig. 11. Impact of array element size.
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around the ground truth. And when locating RFID tags, we
take an average of azimuth and elevation angles over antenna
arrays. As an element is involved in more antenna arrays, the
estimates of incident angles also become more accurate for
each element. However, when the element size increases from
60 (70 in Fig. 11 b) to 80, increasingly accumulated errors
in camera pose estimation will reduce our system accuracy.
In our experiment, the size of about 60~70 elements in an
antenna array can balance between estimation accuracy and
accumulated error in monocular VO.

F. Impact of scale-factor and angular granularities

We vary the angular granularity with 1°, 2°, 5° and 10°
while fixing the scale-factor granularity at 0.1. Fig. 12 (a)
and (b) show its effect on estimation accuracy. Without opti-
mization, tag localization error obviously increases when the
angular granularity increases to 10°, while it has very little
impact on absolute scale factor error. We consider that the
proposed spatial power spectrum can find the optimal estimate
of absolute scale factor if we could provide enough samples
for our system. And after applying optimization algorithm, the
estimation accuracy of tag position over angle spacings is very
similar to each other. This is mainly attributed to coarse-to-fine
incident angle refinement in the joint optimization. However,
the larger angular granularity requires to set a larger search
threshold g in our joint optimization algorithm, which will
inevitably increase computational load.

Then we vary the scale-factor granularity with 0.05, 0.1, 0.2
while the angular granularity is set to 5°. In Fig. 13 (a) and (b),
the smaller scale-factor granularity is helpful for improving
estimation accuracy. However, it will inevitably incur much
more computations. For the granularity of 0.05, the spatial
power spectrum takes the average of 14.24s runtime on our
experiment platform for search.

There is a trade-off between real-time performance and
estimation accuracy. Here we suggest scale-factor and angular
granularities are set to 0.1 and 5°, respectively. In this case,
RF-MVO will take on average 0.52s in each estimation of
absolute scale factor and incident angles. We can potentially
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improve real-time performance by reducing the searching
range of absolute scale factor.

VIII. RELATED WORK

Pure RFID Localization. BackPos [2] and RF-IDraw [4]
locate RFID tags in a 2D plane using more than three reader
antennas at specified positions. However, the localization ac-
curacy will drop seriously with the increase of the distance
between the RFID tag and reader antennas. Tagoram [1] can
track moving RFID tags under known trajectories at cm-level
tracking accuracy. PolarDraw [30] and Pantomime [31] can on-
ly achieve relative position tracking for moving RFID tags by
exploiting two linearly reader antennas polarization and build-
ing a tag array with multiple RFID tags, respectively. STPP
[9], Pinlt [10], 3DLoc [32] and MobiTagbot [14] use moving
reader antennas equipped on a mobile robot for localization.
STPP [9] can only distinguish the left/right/up/down ordering
of RFID tags. Pinlt [10] exploits multipath propagation to
locate stationary RFID tags while it needs to pre-deploy many
reference RFID tags at specified positions. MobiTagbot [14]
leverages the antenna movement and frequency hopping to
emulate a set of virtual reader antennas and build a holography
to locate RFID tags. However, as the surveillance region
of interest increases, huge computations will jeopardize the
real-time localization performance. 3DLoc [32] performs 3D
localization by attaching three RFID tag arrays on different
orthogonal surfaces of the cuboid object. Not all objects allow
people to attach RFID tags like this. In this work, our hybrid
system needs not to pre-deploy any reference RFID tag in the
surveillance region, but also can deal with the unpredictable
movement of reader antennas.

Camera-based Recognition. Convolutional Neural Net-
works (CNNs) have been widely employed to detect target
objects from images, such as Faster R-CNN [33],YOLO [34]
and SSD [35]. They need to pre-train a CNN-based detector
for target object detection. When inputting an image into the
detector, the systems enable to determine whether a target
object exists in the image and if so where it occurs in the
image. The estimated results are enclosed by a set of bounding
boxes. In purely camera-based recognition systems, however,
when multiple objects with same appearance exist or the target
object is occluded, they may produce some unwanted errors.
RFID technique can provide accurate object identification and
even work in non-line-of-sight (NLOS) scenarios.

RFID and CV Fusion. The systems “Tell me what I see”
[36], Stereo-RSSI [37], RF-ISee [38] and ID-Match [39] can
recognize relative positions of multiple RFID-tagged objects
by associating with the depth features of the stereo camera

and RFID reports. TagVision [16] uses a 2D camera to capture
trajectories of multiple mobile objects and then differentiate
from them according to the correlations between RF phase
and the distance from the camera to motion blobs in each
trajectory. Existing work only addresses the matching prob-
lem between mobile RFID-tagged objects and CV-captured
trajectories while our hybrid system can calculate the absolute
position of the stationary target object carrying an RFID tag.

IX. CONCLUSION

In this work, we present RF-MVO, which relies on off-the-
shelf RFID devices and a 2D monocular camera for 3D object
localization and camera trajectory recovery. By exploiting the
antenna mobility to build a series of antenna arrays, RF-
MVO combines RF phase difference with the camera poses to
estimate spatially incident angles and absolute scale factor in
each antenna array. A joint optimization algorithm is proposed
to improve real-time performance of RF-MVO. The concept
of HDOP is introduced to determine the precision of estimated
tag positions and scale factors. Experimental results show that
RF-MVO can achieve fine-grained 3D tag localization and
camera trajectory recovery. The proposed fusion system not
only can locate RFID tags in a 3D space, but also can help
existing purely RFID-based systems like [14], [40] work with
an unknown antenna trajectory.
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