
23

Full paper

Reliably Classifying Novice Programmer Exam Responses using the
SOLO Taxonomy

Tony Clear
School of Computing and

Mathematical Sciences, Auckland
Univ. of Technology, New Zealand

tony.clear@aut.ac.nz

Jacqueline L. Whalley
School of Computing and

Mathematical Sciences, Auckland
Univ. of Technology, New Zealand

jacqueline.whalley@

aut.ac.nz

Raymond Lister
Faculty of Engineering and

Information Technology, Univ. of
Technology, Sydney, Australia
raymond@it.uts.edu.au

Angela Carbone
Faculty of Information Technology,

Monash University, Australia
Angela.Carbone@infotech.

monash.edu.au

Minjie Hu
School of Business, Computing and
Foundation, Tairawhiti Polytechnic,

Gisborne, New Zealand
min@tairawhiti.ac.nz

Judy Sheard
Faculty of Information Technology,

Monash University, Australia
Judy.Sheard@infotech.

monash.edu.au

Beth Simon
Computer Science and Engineering Department,

University of California, San Diego, USA
esimon@cs.ucsd.edu

Errol Thompson
2 Haven Grove, Lower Hutt,

New Zealand
kiwiet@computer.org

Abstract
Past papers of the BRACElet project have described an
approach to teaching and assessing students where the
students are presented with short pieces of code, and
are instructed to explain, in plain English, what the
code does. The student responses to these types of
questions can be analysed according to the SOLO
taxonomy. Some students display an understanding of
the code as a single, functional whole, while other
students cannot “see the forest for the trees”. However,
classifying student responses into the taxonomy is not
always straightforward. This paper analyses the
reliability of the SOLO taxonomy as a means of
categorising student responses. The paper derives an
augmented set of SOLO categories for application to
the programming domain, and proposes a set of
guidelines for researchers to use.

Keywords: SOLO taxonomy, BRACElet Project,
computing education research, novice programmers,
assessment.

1 Introduction
A number of psychological studies have shown that
novice programmers frequently understand the parts of
a program but struggle to organize those parts into a
coherent whole (McKeithen, Reitman, Rueter & Hirtle,
1981; Adelson, 1984; Wiedenbeck, Fix and Scholtz,

1993). Those psychological studies suggest that we
need teaching techniques that help students to see “the
forest”, not just “the trees”. That is, we need teaching
techniques that help students to see the relationships
between the parts of a program, and assessment
techniques to test for that ability.

Academics participating in the multi-institutional
BRACElet Project have experimented with a simple,
pragmatic approach to developing and also assessing
the capacity of novices to “see the forest” (Whalley, et
al., 2006; Lister et al., 2006). In this approach,
students are presented with short pieces of code, and
are instructed to explain, in plain English, what the
code does. The student responses are classified
according to the first four levels of the SOLO
taxonomy (Biggs & Collis, 1982). (As this type of
question provides minimal opportunity to provide an
‘extended abstract’ response (the highest level in the
SOLO taxonomy), this was excluded as an outcome.)

The SOLO taxonomy is not discipline-specific and,
apart from Thompson (2004), we are not aware of any
application of the SOLO taxonomy to novice
programming prior to the BRACElet Project. Members
of BRACElet have defined what the taxonomy means,
in the context of teaching novice programmers, which
is described in Table 1.

As a Multi Institutional project, the BRACElet project
has had to deal with many pragmatic aspects of
research coordination, including developing an agreed
understanding of, and process for, classifying student
responses according to the SOLO taxonomy. To
develop a shared understanding of the SOLO
taxonomy, participants at the 6th BRACElet workshop
(held at Auckland University of Technology (AUT), on
December 18, 2007) collectively rated a small sample

This quality assured paper appeared at the 21s t

Annual Conference of the National Advisory
Committee on Computing Qualif ications (NACCQ
2008), Auckland, New Zealand. Samuel Mann and
Mike Lopez (Eds). Reproduction for academic,
not-for profit purposes permitted provided this
text is included. www.naccq.ac.nz

24

of student responses to three examination questions,
using data from AUT’s introductory programming
students. Subsequently, a sub group of three
BRACElet participants worked on documenting and
further developing the SOLO classification process,
into a reliable method for teaching and assessment, and
also into a reliable data analysis technique for further
research in the BRACElet project. This paper now
proceeds to examine the SOLO classifications of the
student responses by the three BRACElet participants
who form the SOLO subgroup.

Table 1: SOLO Categories

SOLO
category

Description

Relational

[R]

Provides a summary of what the
code does in terms of the code’s
purpose. (The “forest”)

Multistructural

[M]

A line by line description is
provided of all the code. (The
individual “trees”).

Unistructural

[U]

Provides a description for one
portion of the code.

Prestructural

[P]

Substantially lacks knowledge of
programming constructs or is
unrelated to the question

2 The Data
The data used in this study are the responses of 14
students to three “explain in plain English” questions.
The three questions were answered by the 14 students
at Auckland University of Technology, as part of an
exam attempted by them and all their class mates at the
end of their first programming paper. Approximately
80 students sat the exam, but at the time of the
workshop only these 14 students had given approval
for their exam responses to be used in this project.

The three “explain in plain English” questions
comprised three parts, “A”, “B” and “C”, of the tenth
question in the exam paper. The three parts were
preceded by the preamble shown in Figure 1. The
code used in parts “A”, “B” and “C” are shown in
Figures 2, 3 and 4 respectively.

Students were provided with between 5 and 7 lines of
space on the exam paper to answer each of the parts.

As part of their preparation for the exam, students had
been shown “explain in plain English” questions, but
this type of question was not central to their instruction
throughout the semester.

3 Straightforward SOLO Classifications
This section reviews some straightforward SOLO
classifications of the data, for parts “A”, “B” and “C”.
In this classification exercise, the raters used an
extended set of classifications from those in Table 1,
with such logical extensions as “Relational Error” and

“Multistructural Omission” being identified. The
specifics of these codes will be expanded upon in a
subsequent section. In addition, the raters provided
multiple ratings for responses which they were
uncertain how to correctly classify. This rather loose
initial coding system produced 18 independently
derived codes or code groupings, a considerable
expansion on the set of 4 codes in Table 1.

3.1 Question 10A
Of the 13 non-blank student responses analysed, the
three raters independently and unanimously agreed on
8 of the 13 (62%), all of which were classified as either
“R” or “M”.

3.1.1 Relational (“R”) Responses
The three raters independently and unanimously agreed
to assign “R” to 7 of the 14 student responses,
including:

• This method returns the sum of the numbers in the
array.

• The purpose of this code is to get a list of numbers,
then return a number, is to the total of the list of
numbers.

• The purpose of this code is to add together all the
numbers in the integer array list

• It is a method of a double data type and take an
parameter from ArrayList. First, it sets the local
variable as default store a value of 0. Then it uses a
for loop statement which has the conditions if the
count “iLoop” is less than the number of integers.
The “iLoop” count will plus one after the variable
“num” add the ArrayList number to its upon
different “iLoop” index. At last, it returns the sum
(totals) of the ArrayList numbers.

While the second and third responses may contain
details that are possibly errors “list of numbers”,
“array list” those responses demonstrate an overall
grasp of what the code does. In the fourth response, it
is the last sentence that is relational, and everything
prior to that sentence is redundant. Without the final
sentence, the fourth response would have been coded
as multistructural.

3.1.2 Multistructural (“M”) Responses
The three raters independently and unanimously agreed
to assign “M” to 1 of the 14 student responses:

• It sets the double num to zero and executes the loop
as long as iLoop is less than the length of aNumbers.
If it does execute the loop, it adds the value of num to
aNumbers and re executes the loop by incrementing.
Once the condition is no longer met it returns num.

25

Figure 1: The common preamble of Question 10, which preceded the parts “A”, “B” and “C” pieces of code shown in
Figures 2, 3, and 4.

Figure 2: The code from “Question 10A” analysed in this paper.

Figure 3: The code from “Question 10B” analysed in this paper.

3.2 Question 10B
The three raters independently and unanimously
agreed to assign a newly derived code “Re” (Relational
Error) to one of the 14 student responses.

• This code prints out a vertical line of “*” Whatever
amount or value you give the variable iNum is going
to be the number of “*” printed. Example num =5
<student then drew 5 asterisks arranged vertically>

Here the student has correctly identified a portion of
the purpose of the code, but has neglected the nested
loop structure that prints multiple columns of stars.

There were some consistent patterns of categorisation
between pairs of raters for the remaining responses, but
the expanded classification scheme appeared to limit
the scope for consistent responses across the group.

3.3 Question 10C
Of the 10 non-blank student responses analysed, the
three raters did not independently and unanimously

agree on any of the responses. As for question 10B
there were frequent agreements by two raters, but the
frequent choice of multiple codes by the third rater
reduced the scope for unanimous agreement.

4 More Difficult SOLO Classifications
In addition to the issues arising from the rather loose
coding scheme, disagreements between the three raters
frequently arose from three sources:

• Differing opinions on the boundaries between
categories hypothetically, if we begin with a clear
multistructural response, and progressively delete
detail from that response, it is not clear when the
modified response becomes unistructural.

• The communication skills of the students, particularly
among students who write English as a second
language. One rater may interpret a phrase in a
student’s response as being vacuous, while another
rater may see something deeper in the response.

public double method10A(double[] aNumbers)
{
 double num = 0;

 for(int iLoop = 0; iLoop < iNumbers.length; iLoop++)
 {
 num += aNumbers[iLoop];
 }
 return num;
}

For each of these sections of code, explain in plain English what it does.

Note that more marks will be gained by correctly explaining the purpose of the code than by giving a description of
what each line does.

Variable names are deliberately not very meaningful so you will have to work out what the code does.

public void method10B(int iNum)
{
 for(int iX = 0; iX < iNum; iX++)
 {
 for(int iY = 0; iY < iNum; iY++)
 {
 System.out.print(“*”);
 }
 System.out.println();
 }
}

26

Figure 4: The code from “Question 10C” analysed in this paper.

• Prior to taking the exam used in this study, and again
in the preamble to the exam question, students had
been told that responses that summarised the purpose
of the code were preferred over responses that gave a
line by line description of what each line does. There
was therefore the danger that students would make a
guess at the purpose of the code, and raters would
guess whether the students were guessing.

To try to clarify the definitions of the various
categories, participants at the 6th BRACElet workshop
augmented the SOLO taxonomy of Table 1 with the
extra categories shown in Table 2. The remainder of
this section describes the classification of student
responses, using this augmented taxonomy, where the
three raters disagreed.

4.1 Question 10A
In this section we reconsider student responses to
Question 10A, using the augmented taxonomy.

4.1.1 Majority Relational Classification
In this subsection we consider student responses to
10A where at least two of the three raters assigned
some form of relational category to the response.

Table 2: Augmented SOLO Categories

SOLO category Description

Relational Error
[RE]

Provides a summary of what the
code does in terms of the code’s
purpose, but with some minor error.

Guess
Relational [GR]

The response describes a summary
of a piece of code, but the summary
is so widely divergent from what
the code actually does, it appears to
be a guess.

Multistructural
Omission [MO]

A line by line description is
provided for most of the code, but
with some detail omitted.

Multistructural
Error [ME]

A line by line description is
provided for most of the code, but
with some minor errors.

Unable to
Categorise [X]

The rater could not come to a firm
decision.

public boolean method10C(int[] aiNum, int iValue)
{
 int iX = 0;
 int iY = aiNum.length – 1;
 int iZ,
 iTemp;
 boolean bSwitch = false;

 while (!bSwitch && (iX <= iY))
 {
 iZ = (iX + iY) /2;
 iTemp = aiNum[iZ];

 if (iValue == iTemp)
 {
 bSwitch = true;
 }
 else if (iValue < iTemp)
 {
 iY = iZ - 1;
 }
 else
 {
 iX = iZ + 1;
 }
 }
 return bSwitch;
}

27

Two of the raters categorised the following student
response as R, while the third categorised it as RE:

• Trying to add all the numbers stored in the arrayList
that is less than the length of the arrayList. Go
through each number from index 0 to the index just
before then end of the arrayList

Two of the three raters categorised the following
student response as RE, and the third rater categorised
it as being one of RE, GR, or U:

• The purpose of this method is to count a double
number.

All three raters described the following student
response as being possibly RE, but two of the raters
added that it could also be GR:

• It counts the number of index spaces used in the
array.

4.1.2 Majority Multistructural Classification
In this section we consider student responses to 10A
where at least two of the three raters assigned some
form of multistructural category to the response.

Two of the three raters categorised the following
student response as M, and the third rater categorised it
as being either U or P:

• The method increments the loop and returns a
number of type double as long as the loop is less
than the length of aNumbers.

Two of the three raters categorised the following
student response as M, while the third rater chose MO:

• The method loops through the aNumbers and adds
the aNumber to num and gives the output of that
equation num += aNumber[iLoop].

4.2 Question 10B
In this section we reconsider student responses to
Question 10B, using the augmented taxonomy.

4.2.1 Majority Relational Classification
In this subsection we consider student responses to
10B where at least two of the three raters assigned
some form of relational category to the response.

Two of the raters categorised the following student
response as RE, while the third categorised it as M:

• This code takes the number entered in as the
parameter and prints out a star and a space the
amount of times as the parameter. So for example,
for 3 it would be <the student then wrote 3 asterisks,
arranged vertically>.

Two of the raters categorised the following student
response as R, while the third categorised it as M:

• This method takes a user declared int as a parameter
it prints out * (astreix) [sic] on a single line. The

amount of * it prints out is dependant on the int
value entered. It always prints out whatever number
you enter times itself number of *. For example if
entered 3, it would print out 9 * (3×3). <Remainder
of response omitted>

Two of the three raters categorised the following
student response as R, while the third rater chose RE:

• The method prints out a amount of rows which
contain the same amount of stars. Like int iNum = 3
two lines of stars that contain two stars.

Two of the three raters categorised the following
student response as GR, while the third rater chose M:

• The purpose of this method is to print out the
maximised number.

4.2.2 Majority Multistructural Classification
In this section we consider student responses to 10B
where at least two of the three raters assigned some
form of multistructural category to the response.

Two of the three raters categorised the following
student response as M, while the third rater chose MO:

• * The method takes a parameter iNum
 * ix=0 and while ix is less than iNum, increment ix
 * iy=0 and while iy is less than iNum, increment iy
 * prints a star

One of the raters categorised the following student
response as M, another rater categorised it as ME, and
the third rater categorised it as either M or MO:

 • As long as the value in each index is lower than the
iNum, keep going through and print out the result.

One of the raters categorised the following student
response as M, another rater categorised it as ME, and
the third rater categorised it as R:

• This method prints a star for as long as the number
passed in as a parameter is less than the value of iY
and the value of iX.

One of the raters categorised the following student
response as M, another rater categorised it as either M
or U, and the third rater categorised it as R:

• prints * symbol followed by a empty line, for a
specified amount of times

One of the raters categorised the following student
response as M, another rater categorised it as ME, and
the third rater categorised it as GR:

• This method loops around and checks for numbers
which are less than iY and iX and prints the results
with a “*”.

One of the raters categorised the following student
response as M, another rater categorised it as ME, and
the third rater categorised it as RE:

• This method prints the line in the terminal window
iX*iY with the iX and iY both substituted with their

28

individual values e.g. 1*1. But only when both iX
and iY are both less than iNum

Two of the three raters categorised the following
response as ME, and the third rater categorised it as U:

• The purpose of the code is to get a number, and if the
number you gave match these <indecipherable 1 or 2
words>, it will print a star sign “*” <indecipherable
word>, if not will be stop

All three raters described the following response as M,
with one rater adding that it could also be U:

• This method prints a “*” if the value in iNum is
greater than iX and iY. If the value in iNum is
negative, the method prints out nothing.

4.3 Question 10C
In this section we reconsider student responses to
Question 10C, using the augmented taxonomy.

4.3.1 Majority Relational Classification
In this subsection we consider student responses to
10C where at least two of the three raters assigned
some form of relational category to the response.

Two of the three raters categorised the following
student response as R, while the third chose RE:

• Checks if any input data in the array is the same as
the number inputted in the second parameter

Two of the three raters categorised the following
student response as RE, and the third rater categorised
it as being either RE or M:

• It checks to see whether a specific value is contained
at a specific index in the array.

One rater classified the following response as R,
another classified it as RE, and the third rater
categorised it as being either RE or GR:

• This code loops through until it matches value with it
corresponding Arraylist index. It is basically a way
of sorting.

4.3.2 Majority Multistructural Classification
In this section we consider student responses to 10C
where at least two of the the three raters assigned some
form of multistructural category to the response.

All three raters described the following response as M,
with one rater adding that it could also be MO:

• This method checks whether iX is less than or equal
to iY and then goes through the loop to check if
iValue is equal to iTemp and outputs true and if not
goes through the rest of the loop to check whether
iValue < iTemp or not and returns the boolean
result.

Two of the three raters categorised the following
student response as M, and the third rater categorised it
as being one of M, U or P:

• Returns true if iValue equals iTemp. It runs through
the code and if iValue does not equal iTemp it checks
to see if iValue is less than iTemp. If it does it
minuses 1 from iZ to make it equal to iY

Two of the three raters categorised the following
student response as M, and the third rater categorised it
as being one of P, U or X:

• it assigns value to a number of local variables (i.e.
int iX, int iY, int iZ, int iTemp, boolean bSwitch).
Then skips over the while loop and returns the value
of bSwitch which will always be false. This is
because the condition for the loop is !bSwitch which
means the code will only execute when bSwitch is
true which will never be the case.

4.3.3 Majority Unistructural Classification
All three raters described the following student
response as U with one rater adding that it could also
be GR:

• trying to find Boolean result.

5 A Formal Analysis of Reliability
In order to assess the level of reliability of the ratings,
based on more than visual inspection of results, it was
decided to perform a statistical analysis of the
interrater reliability of the SOLO classifications made
by the three raters.

The statistical test applied was “Kendall’s coefficient
of concordance (W)” which “is a measure of the
agreement among several (p) judges who are assessing
a given set of n objects” (Legendre, 2005). In this case
the judges were the three ‘SOLO raters’ assigning
categories to the ‘objects’ namely the individual
‘student responses’ to each question.

The null hypothesis of the statistical test was:
H0: The p judges produced independent rankings of
the objects (Legendre, 2005).

A statistical consultant recommended that the
augmented SOLO classification system be simplified,
both to assist in achieving consistent categorisations
and to enable a stable statistical scale to be developed.
Consequently, the categories from Tables 1 and 2 were
converted to a numeric form for statistical analysis, as
shown in Table 3. This numeric form preserves the
characteristics of the original SOLO scale, as rank data
which was inherently based on an ordinal scale of
‘cognitive sophistication’. The alphabetic codes in the
scale were converted to an arbitrary numeric scale
which preserved the ordinality of the data. The
category ‘blank’ was removed from the scale, as it
required no judgement on the part of the rater, and thus
would inflate any statistical comparison of rater
judgements. Finally to remove equivocal
classifications by a rater (e.g. M/U/P) the first choice
of the rater was used (e.g. M/U/P was assigned to M,
P/U/X to P, RE/GR to RE etc.).

29

A preliminary set of rating statistics for each question
is given in Table 4. The degree of concordance among
the judges varies from excellent (for part “A”) to
moderate, as does the degree of significance of the
findings. The ‘N’ for both ‘judges’ and ‘variables’ is
relatively small for this test, which is a variant on the
classical 2 test, (cf. Legendre, 2005), but the results at
least suggest some level of agreement among judges.

Table 3: Numeric SOLO Codes

Raw Codes Converted Codes

R 10

RE 15

M 20

MO 23

ME 26

U 30

P 40

Table 4: Kendall’s W figures for 3 Judges

Question Kendall’s
W

Significance N
(students)

10a 0.962 .001 13

10b 0.553 .063 14

10c 0.605 .060 10

For the statistical analysis used here, three raters was a
relatively low number, but not necessarily an issue for
a non parametric test, which as our statistical
consultant advised tends to be robust by nature. The
impact of adding extra raters is illustrated in Table 5,
in which a fourth judge was added. The additional
judge has improved the significance level of the results
in all cases, while slightly changing the level of
interrater agreement (slightly down for Q10a & Q10b,
and up for 10c). Thus while the size of the effect may
have varied from the prior set of data, the presence of
an effect appears more certain. Addition of the fourth
rater thus served as validation for the initial findings.
Encouragingly, the figures do suggest a moderate to
strong level of agreement by judges upon their SOLO
ratings. We surmise that a larger judging pool would
give greater weight to these findings, but at the time of
writing further ratings remain to be done.

Table 5: Kendall’s W figures for 4 Judges

Question Kendall’s
W

Significance N
(students)

10a .768 .000 13

10b .500 .017 14

10c .669 .004 10

6 Conclusion
For the purposes of this paper, the results suggest that
SOLO ratings can be applied with moderate levels of
consistency. The results also make a good case for a
better guidance mechanism to support researchers in
applying SOLO ratings to BRACElet data.

Therefore we recommend adoption of the final SOLO
categories of Table 6 by those intending to apply
SOLO in analysing their programming assessments.
This coding scheme omits blank codes, omits
undecided categories (i.e. the judge must choose the
best fit from this set of categories), and requires the
rater to select only one code for each response. We
believe that this tighter set of codes and coding
protocol will improve the consistency of SOLO ratings
undertaken by educators and researchers.

Table 6: The Final SOLO Categories

SOLO
category

Description

Relational

[R]

Provides a summary of what the
code does in terms of the code’s
purpose. (The “forest”)

Relational
Error [RE]

Provides a summary of what the
code does in terms of the code’s
purpose, but with some minor
error.

Multistructural

[M]

A line by line description is
provided of all the code. (The
individual “trees”).

Multistructural
Omission
[MO]

A line by line description is
provided for most of the code, but
with some detail omitted.

Multistructural
Error [ME]

A line by line description is
provided for most of the code, but
with some minor errors.

Unistructural

[U]

Provides a description for one
portion of the code.

Prestructural

[P]

Substantially lacks knowledge of
programming constructs or is
unrelated to the question

The authors further hope that the examples provided
here, together with these classification guidelines and
the augmented SOLO coding scheme for the
programming domain will serve as a practical guidance
for computing researchers and educators in applying
SOLO ratings to student responses.

We invite others to apply the SOLO coding scheme of
Table 6 to their own programming assessments. We
hope others will conduct their own evaluation of the
results formally using the same statistical tests, so that
the robustness of these techniques may be further
validated. Should these techniques prove deficient in
other contexts, we would welcome suggestions for

30

additional refinements arising from any issues
identified in the field.

7 References
Adelson, B. (1984) When novices surpass experts: The

difficulty of a task may increase with expertise.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 10(3): 483-495.

Biggs, J. B. & Collis, K. F. Evaluating the quality of
learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome). New York, Academic
Press, 1982.

 Clear, T., Edwards, J., Lister, R., Simon, B.,
Thompson, E., & Whalley, J. (2008). The teaching
of novice computer programmers: bringing the
scholarly-research approach to Australia. In Simon
& M. Hamilton (Eds.), Conferences in Research and
Practice in Information Technology (Vol. 78, pp. 63-
68). Wollongong, NSW, Australia: ACS.

Legendre, P. (2005). Species Associations: The
Kendall Coefficient of Concordance Revisited.
Journal of Agricultural, Biological and
Environmental Statistics, 10(2), 226-245.

Lister, R., Simon, B., Thompson, E., Whalley, J. L.,
and Prasad, C. (2006). Not seeing the forest for the
trees: novice programmers and the SOLO taxonomy.
In Proceedings of the 11th Annual SIGCSE
Conference on innovation and Technology in
Computer Science Education. (Bologna, Italy, June
26 - 28, 2006). ITICSE '06. ACM Press, New York,
NY, 118-122.

McKeithen, K., Reitman, J.., Rueter, H., & Hirtle, S.
(1981). Knowledge organization and skill
differences in computer programmers. Canadian J.
of Psychology, 13, 307-325.

Philpott, A., Robbins, P., and Whalley, J. (2007)
Assessing the Steps on the Road to Relational
Thinking. . In Proceedings of the 20th Annual
Conference of the National Advisory Committee on
Computing Qualifications, NACCQ, Nelson, New
Zealand, July 8-11.

Thompson, E. (2004). Does the sum of the parts equal
the whole? In S. Mann & T. Clear (Eds.),
Proceedings of the 17th annual conference of the
National Advisory Committee on Computing
Qualifications (pp. 440-445). Christchurch, New
Zealand: National Advisory Committee on
Computing Qualifications.

Thompson, E., Whalley, J., Lister, R., Simon, B.
(2006) Code Classification as a Learning and
Assessment Exercise for Novice Programmers. In
Proceedings of the 19th Annual Conference of the
National Advisory Committee on Computing
Qualifications, NACCQ, Wellington, New Zealand,
July 7-10. pp. 291-298.

Whalley, J, Lister, R, Thompson, E, Clear, T, Robbins,
P, Prasad, C (2006) An Australasian Study of

Reading and Comprehension Skills in Novice
Programmers, using the Bloom and SOLO
Taxonomies. Australian Computer Science
Communications 52: 243-252.

Whalley, J. (2006). CSEd Research Instrument Design:
The Localisation Problem. In S. Mann & N.
Bridgeman (Eds.), Proceedings of The Nineteenth
Annual NACCQ Conference (pp. 307-312).
Wellington: NACCQ.

Whalley, J., Clear, T., & Lister, R. (2007). The Many
Ways of the BRACElet Project. Bulletin of Applied
Computing and IT. Retrieved June 3, 2007 from
http://www.naccq.co.nz/bacit/0501/2007Whalley_BR
ACELET_Ways.htm, 5(1).

Wiedenbeck, S., Fix, V. & Scholtz, J. (1993)
Characteristics of the mental representations of
novice and expert programmers: An empirical study.
International Journal of Man-Machine Studies, 39,
793-812

8 Acknowledgements
The authors gratefully acknowledge funding via a
Special Projects Grant from the ACM SIGCSE for the
6th BRACElet workshop (held on 18 Dec 2007) at
Auckland University of Technology. This enabled the
participants, whose work was integral to this paper, to
meet and discuss the process of SOLO rating. We also
thank Stuart Young from the School of Computing and
Mathematical Sciences at Auckland University of
Technology for statistical advice. The authors thank
their other collaborators on the BRACElet project.

